000101529 001__ 101529
000101529 005__ 20210902121754.0
000101529 0247_ $$2doi$$a10.1021/acs.iecr.0c01483
000101529 0248_ $$2sideral$$a118394
000101529 037__ $$aART-2020-118394
000101529 041__ $$aeng
000101529 100__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L.M.$$uUniversidad de Zaragoza
000101529 245__ $$aComparative Analysis of the Efficiency Penalty in Power Plants of Different Amine-Based Solvents for CO2 Capture
000101529 260__ $$c2020
000101529 5060_ $$aAccess copy available to the general public$$fUnrestricted
000101529 5203_ $$aAmine solvents are one of the main options for post-combustion CO2 capture applications. The main drawback of the carbon capture processes is the required energy to regenerate the solvent once it has reacted with the CO2. When applied to a power plant, the energy requirement has an important impact on the net efficiency of the overall system. Several solvents, i.e., monoethanolamine (MEA), diethanolamine (DEA), methyl diethanolamine (MDEA), and many others have been proposed to overcome this drawback. Regeneration temperature and heat duty reduction are considered to be the significant objectives. Moreover, enhancement of the amine''s concentration and its working capacity without the impact on the other variables are important. In this work, different types of amines with a wide range of heat duty and regeneration temperatures under the same set of assumptions are calculated and compared. The effect of both variables on the energy penalty caused by carbon capture is measured. A review of amines and their effects on the net efficiency of the overall system (power plant, chemical absorption, CO2 compression) are conducted and analyzed. As expected, the impact of heat duty is greater than the modification of regeneration temperature. The effect of reducing 1 GJ/ton CO2 in the heat duty is similar to the effect of reducing the regeneration temperature from 40 degrees C to 25 degrees C.
000101529 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA/T46-17R
000101529 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000101529 590__ $$a3.72$$b2020
000101529 591__ $$aENGINEERING, CHEMICAL$$b54 / 143 = 0.378$$c2020$$dQ2$$eT2
000101529 592__ $$a0.878$$b2020
000101529 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000101529 593__ $$aIndustrial and Manufacturing Engineering$$c2020$$dQ1
000101529 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000101529 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000101529 700__ $$aMinguell, D.
000101529 700__ $$aShirmohammadi, R.
000101529 700__ $$0(orcid)0000-0002-8609-7389$$aAndres, J.M.
000101529 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000101529 773__ $$g59, 21 (2020), 10082-10092$$pInd. eng. chem. res.$$tINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH$$x0888-5885
000101529 8564_ $$s766384$$uhttps://zaguan.unizar.es/record/101529/files/texto_completo.pdf$$yPostprint
000101529 8564_ $$s2924160$$uhttps://zaguan.unizar.es/record/101529/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000101529 909CO $$ooai:zaguan.unizar.es:101529$$particulos$$pdriver
000101529 951__ $$a2021-09-02-09:51:12
000101529 980__ $$aARTICLE