000101547 001__ 101547 000101547 005__ 20250619084223.0 000101547 0247_ $$2doi$$a10.1103/PhysRevResearch.3.013163 000101547 0248_ $$2sideral$$a124026 000101547 037__ $$aART-2021-124026 000101547 041__ $$aeng 000101547 100__ $$aReyna-Lara, Adriana 000101547 245__ $$aVirus spread versus contact tracing: Two competing contagion processes 000101547 260__ $$c2021 000101547 5060_ $$aAccess copy available to the general public$$fUnrestricted 000101547 5203_ $$aAfter the blockade that many nations suffered to stop the growth of the incidence curve of COVID-19 during the first half of 2020, they face the challenge of resuming their social and economic activity. The rapid airborne transmissibility of SARS-CoV-2, and the absence of a vaccine, calls for active containment measures to avoid the propagation of transmission chains. The best strategy to date, popularly known as test-track-treat (TTT), consists in testing the population for diagnosis, tracking the contacts of those infected, and treating by quarantine all these cases. The dynamical process that better describes the combined action of the former mechanisms is that of a contagion process that competes with the spread of the pathogen, cutting off potential contagion pathways. Here we propose a compartmental model that couples the dynamics of the infection with the contact tracing and isolation of cases. We develop an analytical expression for the effective case reproduction number R-c(t) that reveals the role of contact tracing in the mitigation and suppression of the epidemics. We show that there is a trade-off between the infection propagation and the isolation of cases. If the isolation is limited to symptomatic individuals only, the incidence curve can be flattened but not bent. However, if contact tracing is applied to asymptomatic individuals too, the strategy can bend the curve and suppress the epidemics. Quantitative results are dependent on the network topology. We quantify the most important indicator of the effectiveness of contact tracing, namely, its capacity to reverse the increasing tendency of the epidemic curve, causing its bending. 000101547 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E36-20R$$9info:eu-repo/grantAgreement/EC/H2020/713679/EU/Martí i Franquès COFUND/MFP$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 713679-MFP$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2017-87519-P$$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-094754-B-C21 000101547 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000101547 594__ $$a4.6$$b2021 000101547 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000101547 700__ $$0(orcid)0000-0002-6388-4056$$aSoriano-Paños, David$$uUniversidad de Zaragoza 000101547 700__ $$aGómez, Sergio 000101547 700__ $$0(orcid)0000-0003-3156-0417$$aGranell, Clara 000101547 700__ $$aMatamalas, Joan T. 000101547 700__ $$aSteinegger, Benjamin 000101547 700__ $$aArenas, Alex 000101547 700__ $$0(orcid)0000-0001-5204-1937$$aGómez-Gardeñes, Jesús$$uUniversidad de Zaragoza 000101547 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000101547 773__ $$g3, 1 (2021), [11 pp.]$$pPhys. rev. res.$$tPhysical Review Research$$x2643-1564 000101547 8564_ $$s1809602$$uhttps://zaguan.unizar.es/record/101547/files/texto_completo.pdf$$yVersión publicada 000101547 8564_ $$s3043598$$uhttps://zaguan.unizar.es/record/101547/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000101547 909CO $$ooai:zaguan.unizar.es:101547$$particulos$$pdriver 000101547 951__ $$a2025-06-19-08:41:26 000101547 980__ $$aARTICLE