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ABSTRACT . 

The effect of the structural properties of graphene materials on the local structure of -OH 

anchored Ir(I)-NHC complexes is herein investigated. For that, two partially reduced 

graphene oxides exhibiting different sheet properties due to an adequate selection of the 

crystalline characteristics of their parent graphite were used. The main differences among 

them were the size of Csp2 domains within their graphenic layers and the distribution of 

functional groups at the basal planes and edges. Anchoring of N-methylimidazolium moieties 

through the graphene -OH functional groups and subsequent formation of the Ir(I)-NHC 

complexes resulted in the formation of graphene-based hybrid materials. The structural 

differences of the support have an influence in the interaction of the supported iridium 

compounds with the graphene sheet. The oxygenated functional groups in the material with a 

smaller graphene sheet are closer leaving larger Csp2 domains in the graphene layer, favoring 

their interaction with the supported iridium atoms therefore displacing the chlorido ligand 

from the first coordination shell. In contrast, the hybrid material in which the distribution of 

the oxygenated functional groups within the basal planes of the graphenic layer is more 

homogeneous shows partial chlorido displacement. This fact has an influence on the 

electrocatalytic performance of the iridium-based hybrid materials as water oxidation 

catalysts (WOCs), exhibiting improved catalytic activity and the catalyst having coordinated 

chlorido ligands.  

 

Keywords: water oxidation, graphene supports, iridium, N-heterocyclic carbenes (NHC). 
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INTRODUCTION 

Nowadays, global warming and depletion of fossil fuels have become a major challenge 

considering the growing worldwide energy demand [1]. Within this scenario, it became a 

critical issue to progress towards a more sustainable society moving towards more efficient 

renewable energies. The use of solar energy in combination with water electrolysis and CO2 

reduction are key processes to produce chemical fuels, being therefore efficient renewable 

energy storage systems. However, the large over-potential and slow kinetics of the oxygen 

evolution reaction (OER) has made catalytic water oxidation a major challenge for the later 

decades [2,3].  

Among the most efficient water oxidation catalysts (WOC) are those based on Ru and Ir 

[4,5,6]. Moreover, homogeneous catalysts based on these metals exhibit a high efficiency in 

the evolution of oxygen and have more tunable structures when compared to those of 

heterogeneous systems such as metal oxides, (oxy)sulfides, (oxy)nitrides or metal 

(oxy)nanoparticles [7,8,9]. However, for a large-scale utilization of these homogeneous 

catalysts, their immobilization on the surface of heterogeneous electrodes, particularly via 

covalent attachment, is required since it substantially improves their recyclability, reduces the 

amount of catalyst, enhances their efficiency and robustness, and prevents deactivation via 

associative intermolecular pathways [10,11]. Carbon materials are commonly used for 

developing heterogeneous WOCs [12,13,14,15]. Among them, graphene offers additional 

advantages that could promote a proactive role improving catalytic efficiency, as for 

example, a unique electronic behavior, high surface area or outstanding chemical stability 

[16,17]. The graphene materials produced from graphite by the easily scalable chemical route 

–i.e. via oxidation of graphite to produce graphene oxides (GOs) and/or subsequent reduction 
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to produce partially reduced graphene oxides (RGOs)– are versatile materials which exhibit 

in their structure a series of oxygenated functional groups from which the organometallic 

catalyst can be covalently attached. Moreover, this route offers the possibility to selectively 

control the structural properties of the obtained graphene materials. Thus, it is possible to 

modulate the type and amount of oxygenated functional groups located at basal planes and 

edges of GO sheets by selecting the oxidation method [18] or selectively remove certain 

functional groups during the production of TRGOs [19]. Even further, the type and 

distribution of oxygenated functional groups in the GO can be also modulated by an adequate 

selection of the crystallinity of the parent graphite [20,21]. This versatility in processing 

allows graphene materials with different structure and properties to be obtained, a fact which 

has been used to improve their field of application (e.g. electrochemical systems, composites, 

etc.) [22,23]. Catalytic applications are not an exception and there are a great number of 

studies in which graphene materials act as proactive supports of nanoparticles [24] or even 

organometallic compounds [25] in different catalytic systems [17,26].  

Much more scarce are the studies focused on the graphene properties themselves and the 

influence of their structural properties on the catalytic performance of the resulting supported 

hybrid catalytic systems, being most of them centered in studying the effect of graphene sheet 

reduction. As an example, the positive correlation between hydrogen transfer catalytic 

activity of iridium N-heterocyclic carbene (NHC) organometallic complexes supported onto 

GO and TRGO has been recently reported [27]. 

Bearing this in mind, herein two TRGOs, obtained from two graphites of different 

crystallinity, have been prepared for the covalent anchorage of an organometallic Ir(I)-NHC 

complex. This anchorage, the same for the two TRGOs, includes a sequential and specific 

reaction with the graphene -OH functional groups that gives rise to the supported iridium 

complexes [28]. The properties of the parent graphenes and hybrid materials have been 
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extensively studied by means of XPS, Raman and EXAFS techniques, and the 

electrocatalytic water oxidation behavior of the supported iridium catalysts evaluated. 

Moreover, the objective of this work is double; on one hand it is intended to determine if 

structural sheet properties lead to some structural changes in the first coordination sphere of 

the anchored metal compounds and, on the other hand, to determine if these changes lead to 

different water oxidation catalytic behavior. Interestingly, a correlation has been found 

between the properties of the parent graphene sheets and the iridium local structure in the 

supported catalysts which also affect the catalytic performance. 

 

2. EXPERIMENTAL SECTION  

2.1. Materials  

Two graphites were used in this work as graphene oxide precursors. These graphites were 

obtained from coal-derived samples, coal tar for G-1 and anthracene oil for G-2, by 

successive thermal polymerization, carbonization and graphitization to 2700°C.  

The imidazolium salt [MeImH(CH2)3OH]Cl  and the starting organometallic compound 

[Ir(µ-OMe)(cod)]2  were prepared according to standard literature procedures [29, 30]. All 

other chemicals were purchased from Aldrich. HPLC grade reagents were employed in all the 

experiments. Solvents were distilled immediately prior to use from the appropriate drying 

agents or obtained from a Solvent Purification System (Innovative Technologies). 

2.2. Preparation of thermally reduced graphene oxides  

Thermally reduced graphene oxides (TRGOs) were obtained from the two graphites by 

means of a modified Hummers process that involves two consecutive steps [19]: (i) oxidation 

of graphite to graphite oxide (GO-1 and GO-2), and (ii) thermal treatment at 500ºC in a 

horizontal furnace under a nitrogen flow of 50 mL min-1. The residence time at the final 



 6

temperature was 60 min. TRGOs were labeled, according to the graphite precursor, as 

TRGO-1 and TRGO-2.  

 

2.3. Preparation of graphene supported hybrid catalysts. 

TRGO-1 and TRGO-2 were functionalized with the imidazolium salts following a three-

steps procedure. First, 0.100 g of TRGO-x were dispersed in 20 mL of anhydrous 

dichloromethane (DCM). Then, p-nitrophenylchloroformate (3.02 g, 15.0 mmol) and 

triethylamine (2.1 mL, 15.0 mmol) were added under inert atmosphere. The mixture was 

cooled to 0 ºC with an ice bath and stirred for 24 h, letting the temperature slowly reach 20 

ºC. The resultant solid was filtered, washed three times with DCM (20 mL), and dried for 2 h 

under vacuum. The solid was dispersed in 15 mL of anhydrous tetrahydrofuran (THF) under 

a nitrogen atmosphere and then, the imidazolium salt [MeImH(CH2)3OH]Cl (0.070 mg, 0.392 

mmol) and a catalytic amount of triethylamine (0.2 mL) were added and the mixture refluxed 

for 24 h. The dispersion was filtered and the solid was washed with THF (3 x 20 mL) and 

DCM (3 x 20 mL) and then dried at 100 ºC in a preheated furnace overnight. These materials 

were labelled as TRGO-1-Ir and TRGO-2-Ir depending on the parent graphite used.  

2.4. Scientific equipment. Characterization of supports and hybrid catalysts.  

High-resolution transmission electron microscopy (HRTEM) images were obtained using a 

JEOL JEM-2100F transmission electron microscope equipped with a field-emission-gun 

(FEG) operating at 200 kV. Energy-dispersive X-ray spectroscopy (EDX) was used to verify 

the atomic composition of the hybrid catalyst. Elemental analyses were performed on a 

LECO-CHNS-932 micro-analyser and a LECO-VTF-900 furnace coupled to the micro-

analyser. X-ray photoelectron spectroscopy (XPS) spectra were performed on a SPECS 

system operating under a pressure of 10-7 Pa with a Mg Kα X-ray source. The functional 

groups in the graphene-based materials were quantified by deconvolution of the 
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corresponding high resolution XPS peaks using a peak analysis procedure that employs a 

combination of Gaussian and Lorentzian functions and a Shirley baseline [31]. The spectra 

did not require charge neutralization and were subsequently calibrated to the C1s line at 

284.5 eV. The binding energy profiles for the C1s spectra were deconvoluted as follows: 

undamaged structures of Csp2-hybridized carbons (284.5 eV), damaged structures or Csp3-

hybridized carbons (285.5 eV), C-OH groups (286.5 eV), O-C-O functional groups (287.7 

eV) and C(O)OH groups at 288.7 eV. The amount of iridium in the hybrid catalysts was 

determined by means of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in an 

Agilent 7700x instrument [32]. Raman spectroscopy was performed on a Renishaw 2000 

Confocal Raman Microprobe (Rhenishaw Instruments, England) using a 514.5 nm argon ion 

laser. Spectra were recorded from 750 to 3500 cm-1. Room temperature X-ray absorption 

spectroscopy (XAS) measurements at the Ir L3-edge were carried out using a Si (311) double 

crystal monochromator at the CLAESS beam line [33] of the ALBA synchrotron facility 

(Cerdanyola del Vallès, Spain). The XAS spectra were measured in the transmission mode 

using pellets diluted with cellulose, if necessary, in order to optimize the absorption jump. 

The energy resolution ΔE/E was estimated to be about 8 × 10−5 at the Ir L3-edge, and a pellet 

of Ir metal mixed with cellulose was simultaneously measured for energy calibration. The 

XAS spectra were normalized to unity edge jump and the  

k-weighted Extended X-ray Absorption Fine Structure (EXAFS) spectra, k2χ(k), were 

obtained using the Athena software from the Demeter package [34]. The Fourier Transform 

(FT) curves of the k2χ(k) signals were obtained for the 2.85 ≤ k ≤ 14.5 Å-1 range, using a 

sinus window. The EXAFS spectra were analyzed using theoretical phases and amplitudes 

calculated by the FEFF-6 code [35] and fits to the experimental data were performed in R-

space (between 1.15 and 3.95 Å) with the ARTEMIS program of the Demeter package. 

2.5. Electrochemical measurements. 
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Electrodes were prepared as follows: 5 mg approximately of TRGO-X-Ir  (as active 

material) were diluted in EtOH (5 mL) and subsequently drop-casted onto a graphite disk 

current collector (2 cm2) and dried at 80 °C (1 h) in order to remove the solvent. Cyclic 

voltammetry (CV) and chronoamperometry (CA) experiments were performed in a Teflon 

home-made three-electrode cell at room temperature and under inert atmosphere. The cell 

consisted on the previously prepared TRGO-X-Ir  electrodes as the working electrodes (1 

cm2 of exposed area), Ag/AgCl/3.5 M KCl as the reference electrode and a graphite rod as 

the counter electrode. All the potentials reported in this study were referenced to 

Ag/AgCl/3.5 M KCl (i.e., 0.205 V vs. NHE). The supporting electrolyte consisted of a 1.0 M 

phosphate buffer solution (PBS) at pH 7.0. The electrochemical measurements were 

performed on a BioLogic VMP Multichannel Potentiostat. The current density values were 

calculated after background subtraction of the bare TRGO-X  electrode. The evolution of 

oxygen was measured at the headspace of the electrocatalytic cell by using a HP 5890 gas 

chromatograph fitted with a thermal conductivity detector (TCD) and packed columns 

(Porapak N and molecular sieve). Mixtures of gases of known composition were used for the 

quantitative analysis. 

 

RESULTS AND DISCUSSION 

Properties of parent thermally reduced graphene oxides (TRGO). 

With the aim of studying the influence of the graphene structure on the catalytic behavior of 

supported Ir–NHC hybrid catalysts, two thermally reduced graphene oxides (TRGO-X , X = 

1 and 2) were selected as catalyst support. They were prepared from two graphites (G-1 and 

G-2) with different crystalline structure. G-1 exhibits a more compact graphitic structure than 

G-2, as observed by the higher Lc value (51 vs 15) and slightly shorter interlayer distance 
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(d002, 0.336 vs 0.337), measured by means of XRD analysis (Table 1). Consequently, after 

subjecting these samples to a modified Hummer´s method (see Supplementary data), the 

resultant graphite oxide from G-1 (GO-1) presents higher amount of oxygen in its structure 

(55.8 wt.% compared to 52.8 wt.% in GO-2), as determined by elemental analysis. The 

higher interlayer distance in this sample (0.949 vs 0.915 nm for GO-1 and GO-2, 

respectively) suggests a location of the functional groups at the basal planes of the graphenic 

layers. It is also interesting to mention that the lateral size of the graphene oxide sheets 

prepared from GO-1 by sonication (see Supplementary data) (~450 nm) is slightly larger than 

that from GO-2 obtained under the same experimental conditions (~300 nm). 

Table 1. Main characteristics of parent graphites (G-X), graphite oxides (GO-X) and 

thermally reduced graphene oxides (TRGO-X) (X=1,2) 

Sample 
Elemental analysis (wt.%)  Raman  XRD 
C H O C/Oa  I d/I g

b  d002
c L c

d 

G-1 99.9 0.1 0.0 -  -  0.336 51 

G-2 99.9 0.1 0.0 -  -  0.337 15 

GO-1  40.7 3.3 55.8 1.0  -  0.949 - 

GO-2 43.7 2.4 52.8 1.1  -  0.915 - 

TRGO-1 79.9 0.7 19.2 5.5  0.95  - - 

TRGO-2 83.5 0.7 15.8 7.0  0.93  - - 

a Carbon/oxygen atomic ratio; b Intensity ratio of D and G bands; c Interlayer distance (nm); d Crystal 
size in the c-direction (nm) 
 

These structural differences are, at some extent, retained after their thermal treatment at 500 

ºC to produce the TRGOs via simultaneous exfoliation and reduction steps (see 

Supplementary data). Elemental analysis measurements suggest that, despite that the 

reduction process significantly diminishes the oxygen content in both partially reduced 

graphene materials (from ~52-55 wt.% in GOs to ~15-20 wt.% in TRGOs), the graphene 

sheet from GO-1 (TRGO-1) is more oxidized than TRGO-2 (lower C/O ratio, 5.5 vs 7.0 for 
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TRGO-2, Table 1). As determined by means of XPS C1s (Table 2), this is mainly a 

consequence of the formation of larger number of C-O bonds along the basal plane of the 

sheets, while TRGO-2 exhibit more functional groups at the edges or defects of the sheets 

(C=O or COO bonds), which could be related with its smaller sheet size. This analysis also 

reveals that the remaining carbon atoms in TRGO-1 are less aromatic (72.3 % of Csp2 and 

13.7 % Csp3 vs 77.4 % Csp2 and 10.0% Csp3 in TRGO-2). Moreover, the full width at half 

maximum (FWHM) of the Csp2 band is also higher in TRGO-1 (1.4 eV vs 1.2 eV in 

TRGO-2), which suggests that the differences among samples are not only the number of 

functional groups in the sheets but also a more heterogeneous environment of the carbon 

atoms within the graphene basal plane. This fact was further corroborated by means of 

Raman determinations in which the bands measured are only associated to defective graphene 

regions (that is, to defects participating in the double resonance Raman scattering near K 

point of Brillouin zone) [36]. Thus, both TRGOs exhibit the typical Raman profile of 

partially reduced graphene materials (see Supplementary data) with two main prominent 

peaks assigned to G band (~1590 cm-1) and D band (~1350 cm-1). However, the higher ID/IG 

ratio of TRGO-1 (0.95 vs 0.93 in TRGO-2, Table 1) are in agreement with a larger size of 

the Csp2 domains within the basal planes in TRGO-2 sheet while in TRGO-1 the graphitic 

domains are more disrupted with C=C/C-H vibrations of segments at grain boundaries, that 

is, carbonaceous graphenic structure with more defects such as holes or vacant within the 

basal planes. Gathering the available data, the overall structure of both samples could be 

understood as follows: TRGO-1 (from the graphite with larger crystal size) seems to be 

composed by graphenic sheets of larger size in which the remaining functional groups 

(mainly epoxy groups) are homogeneously distributed along the basal planes largely 

disrupting its graphenic structure. On the other hand, the sheet size of TRGO-2 (from the 

graphite with lower crystal size) is smaller and contains more oxygenanted functional groups 
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located at the edges or holes of the sheets while the oxygenated functional groups and defects 

at the basal planes (epoxy groups) could be closer among them, leaving Csp2 domains of 

larger size within the basal planes (Chart 1). These results are fully consistent with those 

previously reported concerning the preparation and characterization of GOs from graphites of 

different crystallinity [21]. 

 

Chart 1. Proposed structure of parent thermally reduced graphene oxides.  

Preparation and characterization of two graphene-based Iridium–NHC hybrid 

catalysts. 

The supported graphene-based Ir–NHC hybrid catalysts were prepared form the two 

TRGO-X  by means of a procedure recently described by the authors (Fig. 1) [28]. Briefly, 

the multiple steps procedure comprises the initial selective reactivity of the -OH groups in the 

graphene sheet with p-nitrophenylchloroformate leading to the corresponding p-nitrophenyl 

carbonate esters [37,38]. In a second step, treatment of the carbonates with the imidazolium 

salt [MeImH(CH2)3OH]Cl resulted in the displacement of the p-nitrophenol with formation of 

the imidazolium functionalized graphene materials that, after reaction with the methoxo 

iridium(I) dimer compound [Ir(μ-OMe)(cod)]2 (cod = 1,5-cyclooctadiene) afforded the hybrid 

Smaller graphene sheet size

No homogeneous distribution

of functional groups

Large Csp2 domains

Homogeneous distribution

of functional groups
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materials, TRGO-1-Ir  and TRGO-2-Ir , featuring supported Ir-NHC complexes covalently 

bonded through carbonate functions. 

 

Fig. 1. Preparation procedure of TRGO-X-Ir  graphene-based Ir–NHC hybrid materials (X = 

1 or 2 for both TRGO-1 or TRGO-2 parent materials, respectively).  

XPS analysis of both TRGO-X-Ir  samples revealed the presence of Ir in a similar amount 

(0.8-1.1 %). The high resolution Ir4f XPS spectra (Fig. 2a) show, for both samples, the 

expected two peaks (corresponding to Ir4f5/2 and Ir4f7/2) centered at 65.5 eV and 62.4-62.5 

eV, which are characteristics of iridium(I) compounds [39]. The small differences in the 

maximum value of the Ir 4f7/2 band of both compounds could be related with some 

differences in the first coordination shell of their iridium atoms. 
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Fig. 2. High resolution XPS a) Ir4f and b) N1s core level curves of hybrid materials TRGO-

1-Ir  and TRGO-2-Ir.  

 

HRTEM images of TRGO-1-Ir  and TRGO-2-Ir  (Fig. 3a,b respectively) showed the 

homogeneous distribution of the electrondense regions corresponding to the iridium 

(diameters from 0.2 to 0.7 nm) and to clusters or nanoparticles possibly formed during beam 

irradiation (spots or larger diameter) [40]. Interestingly, the higher aromaticity of TRGO-2-

Ir  observed by Raman analysis was also observed in the image of this sample, in which 

highly crystalline regions within the basal planes are visible (see Fig. 3b and expanded inset). 

EDX mapping of the HRTEM regions obtained for TRGO-1-Ir  (Fig. 3c,d,e) and TRGO-2-

Ir  (see Supplementary data) confirms the presence of nitrogen (Fig. 3e) and iridium (Fig. 3d) 

being homogeneously distributed within the carbonaceous lattice.  
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Fig. 3. HRTEM images of a) TRGO-1-Ir and b) TRGO-2-Ir . c) EDX image of TRGO-1-Ir, 

d) nitrogen mapping and e) iridium mapping extracted from EDX analysis. 

The XPS atomic nitrogen content for TRGO-2-Ir  is of 1.6 % with a Ir/N ratio of 0.8/1.6, 

that is, the expected for quantitative formation of the Ir-NHC complexes. This ratio in 

TRGO-1-Ir  is 1.1/2.4 which indicates a slightly lower degree of functionalization in the last 

metalation step of the synthetic procedure. The XPS N1s spectra of both samples are quite 

similar and show the expected patterns for the N-heterocyclic moiety as a broad signal at 

401.4 eV (Fig. 2b). The deconvolution of the XPS C1s spectra of these hybrid materials also 

show an increased intensity of the C-O/C-N peaks (Table 2) with respect to the parent 

graphene samples, as expected for the presence of the NHC ligand. Moreover, this band is of 

higher intensity in TRGO-1-Ir  which is in agreement with the higher functionalization of 

this sample, while TRGO-2-Ir  shows a larger number of COO bonds. All these results 

evidences not only the larger N-functionalization of the TRGO-1-Ir  graphene sheets but also 

the presence of non-deprotonated imidazolium groups after reaction with the dinuclear 

iridium precursor, being this reaction almost quantitative for TRGO-2-Ir. 
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Table 2. XPS data of thermally reduced graphene oxides (TRGO-X)  and graphene supported 

Ir(I)-NHC complexes (TRGO-X-Ir). 

Sample Csp2 % 
(FWHM a) 

Csp3 % 
(FWHM a) 

   C-O 
C-N % 

(FWHM a) 

C=O % 
(FWHM a) 

COO % 
(FWHM a) 

Ir 
%  

N 
%  

TRGO-1 72.3 (1.4) 13.7 (1.1) 9.5 (1.2) 2.7 (1.1) 1.8 (1.1) - - 

TRGO-2 77.4 (1.2) 10.0 (1.1) 7.0 (1.1) 3.6 (1.1) 2.0 (1.1) - - 

TRGO-1-Ir  61.9 (1.4) 12.3 (1.1) 17.0 (1.1) 5.8 (1.1) 3.0 (1.2) 1.1 2.4 

TRGO-2-Ir  64.3 (1.3) 12.5 (1.1) 12.8 (1.2) 5.3 (1.1) 5.0 (1.3) 0.8 1.6 

        a FWHM in eV 

The local structure of the Ir complexes was studied by means of EXAFS analysis. The FT 

of TRGO-1-Ir  and TRGO-2-Ir  samples are compared in Fig. 4a. The main difference is 

seen in the most intense peak of the FT curves corresponding to the first coordination shell. 

TRGO-2-Ir  exhibits a strong peak at R ≈ 1.65 Å (without phase shift correction) which is 

characteristic of the bond distance between an atom of Ir and a light element such as C or O 

[40, 41]. This peak is less intense for the TRGO-1-Ir  sample and it is accompanied by a 

shoulder at higher R-values that reminds the contribution from Ir-Cl paths in related 

compounds [40,41]. Beyond this peak, both FT curves show the same features for both 

hybrid materials. The real part of the Fourier filtered spectra between 1.15 and 3.95 Å is 

shown in the Fig. 4b. Here, the difference between both samples is clearly manifested in the 

interference observed at k ≈ 8-9 Å-1 for TRGO-1-Ir  that is lacked in the spectrum of TRGO-

2-Ir . Such interference is also typical of the occurrence of Ir-Cl bond length in related 

compounds [41].  
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Fig. 4. a) Fits (lines) of the Fourier transform signal from the k2-weighted EXAFS signal 

(triangles and circles) of TRGO-2-Ir  and TRGO-1-Ir  until R = 3.95 Å. b) Fits (lines) of the 

real part of the Fourier-filtered spectra (triangles and circles) between R = 1.15–3.95 Å for 

the same samples in the k-space. 

In order to model the Ir local structure in these hybrid compounds, we have used the 

modified crystallographic data [40] of compound [Ir(NCCH3)(cod){MeIm(CH2)3OH}][BF 4] 

[41] which is expected to have a similar environment for the Ir atom as it is coordinated to an 

imidazol-2-ylidene ring, a cyclooctadiene (cod) ligand and a nitrogen atom. The modification 

consisted of replacing the nitrogen coordinated to the iridium with an oxygen and thus, we 

can obtain theoretical phases and amplitudes for Ir-O, Ir-C and Ir-N paths, including multiple 

scattering paths. The values for the Ir-Cl path were obtained from the reference complex 

[IrCl(cod){MeIm(CH2)3OH}] used in a previous study of carbon nanotubes [41]. The Ir 

environment in this complex is similar to [Ir(NCCH3)(cod){MeIm(CH2)3OH}][BF 4] with the 

exchange of a nitrogen for a chlorine atom in the first coordination shell. The EXAFS spectra 

of TRGO-2-Ir  can be fitted with the data of modified 

[Ir(NCCH3)(cod){MeIm(CH2)3OH}][BF 4] indicating that the first coordination shell of Ir in 

this material is composed by six light elements: an oxygen from the oxidized graphene, four 

carbons from the cod ligand and a fifth carbon from the imidazol-2-ylidene ligand. Therefore, 
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the Cl- present in the imidazolium salt (see Fig. 1) remains uncoordinated after the anchorage 

process to TRGO-2 and subsequent metalation (Chart 2). Further coordination shells up to R 

≈ 4 Å can be accounted for by the single and multiple scattering contributions arising from 

cod and imidazol-2-ylidene ligands. The fits in R- and k-spaces can also be seen in the Fig. 4. 

The refined parameters for the first coordination shell are summarized in the table 3.  

 

Table 3. Refined inner potential, interatomic distances and Debye-Waller factors (σ2) 

obtained from the best fits.a,b,c 

Sample Ir-C(NHC) (Å) Ir-O  (Å)  b Ir-C(cod) (Å)  σ
2 (Å2)c Ir-Cl (Å) σ

2 (Å2)c RF 

TRGO-1-Ir  2.029(7) 2.029(7) 4x2.164(15) 0.0065(6) 2.389(13) 0.0037(10) 0.009 

TRGO-2-Ir  2.025(23) 2.025(23) 2x2.103(13) 
2x2.164(13) 0.0046(14) - - 0.005 

a The residual factor (RF) accounts for the misfit between the actual data and the theoretical calculations. 
Numbers in parentheses are the errors estimated in the last significant digits. A single inner potential E0 was 
refined for all paths, being E0=1.9(9) eV for TRGO-1-Ir  and E0=2.3(6) eV for TRGO-2-Ir . b Ir-O bond length 
was set to the value of Ir-C1(NHC). c A single Debye-Waller factor was refined for Ir-C(NHC), Ir-O and Ir-Ccod. 
The coordination numbers of Ir-O and Ir-Cl paths for the TRGO-1-Ir  sample were refined from the attenuation 
factors (S0

2) as N=S0
2=0.48(3) and N’=1- S0

2=0.52(3), respectively. S0
2 was fixed to 1 for the rest of paths. 

 

Regarding the TRGO-1-Ir  material, our attempts to fit the spectrum using an environment 

without removing Cl from the first coordination shell of Ir, ie similar to 

[IrCl(cod){MeIm(CH2)3OH}] complex with an Ir-Cl path and five Ir-C paths, were 

unsuccessful as the intensity of the abovementioned shoulder turned out to be too big. The 

next logical step was to consider a partial replacement of Cl by O. The refinements quickly 

converged indicating than half of the Cl present in the imidazolium salt is coordinated to 

iridium while the other half remains uncoordinated due to the replacement with O from the 

oxidized graphene in the TRGO-1-Ir  hybrid material. The fit and the refined results can be 

viewed in Fig. 4 and Table 3, respectively. The results obtained for further shells (not shown 

here) are similar to those observed in the previous sample indicating a similar distribution of 
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cod and imidazol-2-ylidene rings around the Ir atoms for both hybrid materials. A possible 

explanation for these Ir local structural differences could be found considering the previously 

discussed carbonaceous structure of both graphene sheets (TRGO-1 and TRGO-2). Despite 

the fact that TRGO-1 appears to have more oxygenated functional groups (mainly C-O) in its 

layers, they appear to be more homogeneously distributed along a larger graphene basal plane 

and possibly less close to each other. In contrast, the oxygenated functional groups in 

TRGO-2, although slightly less abundant, are much closer among them. As the iridium 

atoms occupies positions coming from the functionalization of -OH groups, they also will be 

closer to each other and to other free oxygenated functional groups in TRGO-2-Ir , possibly 

favoring additional interaction Ir-graphene and displacing the chlorido ligands (Chart 2).  

 

Chart 2. Proposed structure for a) TRGO-1-Ir  and b) TRGO-2-Ir  (in accordance with the 

EXAFS analysis). 

 

Electrocatalytic water oxidation performance of the hybrid catalysts. 

In order to study their electrochemical water oxidation behavior, the two graphene-based 

Iridium–NHC hybrid materials were drop casted onto graphite disks of 1 cm of diameter in 

order to be used as electrodes to carry on the electrochemical measurements. SEM analysis of 

the electrode surface (Fig. 5a for TRGO-1-Ir  electrode) shows the heterogeneous 

morphology created by the superposition of wrinkled graphene sheets (inset in Fig. 5a). 

TRGO-2-Ir  electrode shows a similar appearance (see Supplementary data). The electrodes 
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were set up in an inert home-made three electrode cell using a Ag/AgCl/3.5 M KCl and a 

graphite rod, as reference and counter electrodes respectively. A phosphate buffer solution 

(PBS) at pH of 7.0 was selected as supporting electrolyte for the electrocatalytic tests. The 

formation of oxygen during the experiments was recorded by means of gas chromatography 

(No CO or CO2 formation was detected). 

The electrocatalytic performance of the TRGO-1-Ir  and TRGO-2-Ir  electrodes was 

evaluated studied by means of cyclic voltammetry (CV) measurements (Fig. 5b). The 

corresponding cyclic voltammograms (CVs) were recorded between 0.00 and 1.40 V (vs 

Ag/AgCl/3.5 M KCl, i.e., 0.20 V vs NHE). At 1.4 eV (corresponding to an overpotential of 

0.79 V over the thermodynamic potential for water oxidation, which is 0.61 V vs 

Ag/AgCl/3.5 M KCl at pH 7.0), the highest current density was measured for TRGO-1-Ir  

(~22 mA cm-2) while TRGO-2-Ir  only reaches ~16 mA cm-2 at this potential. These data 

correspond to the second CV recorded. As comparative purposes, the current densities of the 

bare TRGO-X electrodes accounts for less than 3-4 mA cm-2 in the first CV recorded, being 

these values even lower in the second CV used for measurement (see Supplementary data). 

On the other hand, TRGO-1-Ir  reaches a current density of 10 mA/cm2 at 1.15 V while 

TRGO-2-Ir  reaches this value at 1.30 V [13,15,42].  Moreover, the Tafel slope obtained for 

TRGO-1-Ir  (Fig. 5c) is much lower than that of TRGO-2-Ir  (185.5 mV dec-1 vs 336.8 mV 

dec-1) which is in agreement with an enhanced kinetics on the former. The amount of iridium 

in each electrode, calculated by ICP-MS, resulted slightly different (0.00188 and 0.00201 

mmol for TRGO-1-Ir  and TRGO-2-Ir , respectively). It was also interesting to compare the 

current densities measured on each electrode per mmol of Ir (Fig. 5d). The results remarks 

even more the catalytic efficiency of TRGO-1-Ir  with respect to that of TRGO-2-Ir . 

Chronoamperometry (CA) experiments were carried out on both electrodes (Fig. 6) 

measuring simultaneously the evolution of oxygen in both experiments by means of gas 
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chromatography (Fig. 6, inset). A similar trend was observed in both cases. The current 

measured was stabilized after 150 s, time from which only a small decay of such current is 

observed. However, the value of the stabilized current measured on TRGO-1-Ir  was 

significantly higher. The, both samples exhibiting a similar trend but confirming the slightly 

higher catalytic efficiency of TRGO-1-Ir in comparison with TRGO-2-Ir.  

 

Fig. 5. a) SEM images of TRGO-1-Ir  electrode, b) CVs recorded on the two electrodes 

between 0.00 and 1.40 V, c) Tafel plots, d) current density values calculated per mmol of Ir. 

Once the experiments ended, a small quantity of Ir in the solution (0.05 % for TRGO-1-Ir  

and 0.3 % for TRGO-2-Ir ) was detected by ICP-MS and only small differences in the 

electrode surface were detected after washing (see Supplementary data). Further experiments 

are ongoing to elucidate the mechanism involved in these catalytic cycles including the 

changes promoted at the metal center during the catalytic cycle. 
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Fig. 6. CAs recorded at an applied potential of 1.4 V on the TRGO-1-Ir  and TRGO-2-Ir  

electrodes. Inset shows the evolution of oxygen as a function of time during the 

chronoamperometric measurements as determined by gas chromatography. 

All the results obtained suggest that small structural differences in the graphenic support 

could promote some changes in the first coordination shell of the metal center (catalyst). 

Moreover, these changes could affect the catalytic behavior of the supported organometallic 

compound.  

Going further in these asseverations, it seems that graphene layers in which the oxygenated 

functional groups are closer to each other (TRGO-2) lead, after the selective covalent 

attachment of the iridium organometallic compound, to the ionization of the chlorido ligand 

(otherwise attached directly to the iridium center) by interacting with these oxygenated 

functional groups. As a consequence, the electrocatalytic activity in water oxidation decay. It 

seems therefore that the presence of the chlorido ligand in the coordination sphere of the 

iridium center is somehow required to perform the water oxidation effectively.  

 

Conclusions 

We have confirmed that the covalent anchorage of Ir(I)-NHC complexes through carbonate 

functions to thermally reduced graphene oxides of different properties lead to hybrid 
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materials suitable as water oxidation electrocatalysts. This work also demonstrates that the 

structural properties of the graphene layers play a crucial role not only in the overall structure 

of the supported iridium compounds but also in their subsequent electrocatalytic behavior 

towards water oxidation. In this sense, it appears that partially reduced graphene layers in 

which the remaining functional groups are closer to each other (produced when a graphite 

with small domains is used as parent material in the chemical via) could led to a partial 

displacement of the chlorido ligand coordinated to the metal center. This seems to have a 

negative impact in its electrocatalytic behavior in water oxidation.  
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Highlights 

 

Hybrid materials resulting from the covalent attachment of Ir(I)-NHC complexes to 
thermally reduced graphene oxide materials are suitable electrocatalysts for water 
oxidation. 

EXAFS analysis evidences that the properties of the parent graphite influence the 
iridium local structure in the hybrid materials. 

The iridium local structure determines the electrocatalytic behavior in water oxidation. 
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