000101646 001__ 101646
000101646 005__ 20230519145459.0
000101646 0247_ $$2doi$$a10.1021/acsanm.1c00311
000101646 0248_ $$2sideral$$a124268
000101646 037__ $$aART-2021-124268
000101646 041__ $$aeng
000101646 100__ $$aNiraula, Gopal
000101646 245__ $$aEngineering shape anisotropy of Fe3O4-¿-Fe2O3 hollow nanoparticles for magnetic hyperthermia
000101646 260__ $$c2021
000101646 5060_ $$aAccess copy available to the general public$$fUnrestricted
000101646 5203_ $$aThe use of microwave-assisted synthesis (in water) of a-Fe2O3 nanomaterials followed by their transformation onto iron oxide Fe3O4-¿-Fe2O3 hollow nanoparticles encoding well-defined sizes and shapes [nanorings (NRs) and nanotubes (NTs)] is henceforth described. The impact of experimental variables such as concentration of reactants, volume of solvent employed, and reaction times/temperatures during the shape-controlled synthesis revealed that the key factor that gated generation of morphologically diverse nanoparticles was associated to the initial concentration of phosphate anions employed in the reactant mixture. All the nanomaterials presented were fully characterized by powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Mössbauer spectroscopy, and superconducting quantum interference device (SQUID). The hollow nanoparticles that expressed the most promising magnetic responses, NTs and NRs, were further tested in terms of efficiencies in controlling the magnetic hyperthermia, in view of their possible use for biomedical applications, supported by their excellent viability as screened by in vitro cytotoxicity tests. These systems NTs and NRs expressed very good magneto-hyperthermia properties, results that were further validated by micromagnetic simulations. The observed specific absorption rate (SAR) and intrinsic loss power of the NRs and NTs peaked the values of 340 W/g and 2.45 nH m2 kg-1 (NRs) and 465 W/g and 3.3 nH m2 kg-1 (NTs), respectively, at the maximum clinical field 450 Oe and under a frequency of 107 kHz and are the highest values among those reported so far in the hollow iron-oxide family. The higher SAR in NTs accounts the importance of magnetic shape anisotropy, which is well-predicted by the modified dynamic hysteresis (ß-MDH) theoretical model.
000101646 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000101646 590__ $$a6.14$$b2021
000101646 592__ $$a1.178$$b2021
000101646 594__ $$a7.2$$b2021
000101646 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b101 / 345 = 0.293$$c2021$$dQ2$$eT1
000101646 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000101646 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b46 / 109 = 0.422$$c2021$$dQ2$$eT2
000101646 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000101646 700__ $$aCoaquira, José A.H.
000101646 700__ $$aZoppellaro, Giorgio
000101646 700__ $$aVillar, Bianca M. G.
000101646 700__ $$aGarcia, Flavio
000101646 700__ $$aBakuzis, Andris F.
000101646 700__ $$aLongo, João P. F.
000101646 700__ $$aRodrigues, Mosar C.
000101646 700__ $$aMuraca, Diego
000101646 700__ $$aAyesha, Ahmad I.
000101646 700__ $$aSinfrônio, Francisco Sávio M.
000101646 700__ $$aMenezes, Alan S. de
000101646 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, Gerardo F.$$uUniversidad de Zaragoza
000101646 700__ $$aSharma, Surender K.
000101646 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000101646 773__ $$g4, 3 (2021), 3148–3158$$pACS appl. nano mater.$$tACS APPLIED NANO MATERIALS$$x2574-0970
000101646 8564_ $$s5231024$$uhttps://zaguan.unizar.es/record/101646/files/texto_completo.pdf$$yVersión publicada
000101646 8564_ $$s3298448$$uhttps://zaguan.unizar.es/record/101646/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000101646 909CO $$ooai:zaguan.unizar.es:101646$$particulos$$pdriver
000101646 951__ $$a2023-05-18-14:54:42
000101646 980__ $$aARTICLE