Engineering shape anisotropy of Fe3O4-¿-Fe2O3 hollow nanoparticles for magnetic hyperthermia
Resumen: The use of microwave-assisted synthesis (in water) of a-Fe2O3 nanomaterials followed by their transformation onto iron oxide Fe3O4-¿-Fe2O3 hollow nanoparticles encoding well-defined sizes and shapes [nanorings (NRs) and nanotubes (NTs)] is henceforth described. The impact of experimental variables such as concentration of reactants, volume of solvent employed, and reaction times/temperatures during the shape-controlled synthesis revealed that the key factor that gated generation of morphologically diverse nanoparticles was associated to the initial concentration of phosphate anions employed in the reactant mixture. All the nanomaterials presented were fully characterized by powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Mössbauer spectroscopy, and superconducting quantum interference device (SQUID). The hollow nanoparticles that expressed the most promising magnetic responses, NTs and NRs, were further tested in terms of efficiencies in controlling the magnetic hyperthermia, in view of their possible use for biomedical applications, supported by their excellent viability as screened by in vitro cytotoxicity tests. These systems NTs and NRs expressed very good magneto-hyperthermia properties, results that were further validated by micromagnetic simulations. The observed specific absorption rate (SAR) and intrinsic loss power of the NRs and NTs peaked the values of 340 W/g and 2.45 nH m2 kg-1 (NRs) and 465 W/g and 3.3 nH m2 kg-1 (NTs), respectively, at the maximum clinical field 450 Oe and under a frequency of 107 kHz and are the highest values among those reported so far in the hollow iron-oxide family. The higher SAR in NTs accounts the importance of magnetic shape anisotropy, which is well-predicted by the modified dynamic hysteresis (ß-MDH) theoretical model.
Idioma: Inglés
DOI: 10.1021/acsanm.1c00311
Año: 2021
Publicado en: ACS APPLIED NANO MATERIALS 4, 3 (2021), 3148–3158
ISSN: 2574-0970

Factor impacto JCR: 6.14 (2021)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 101 / 345 = 0.293 (2021) - Q2 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 46 / 109 = 0.422 (2021) - Q2 - T2

Factor impacto CITESCORE: 7.2 - Materials Science (Q1)

Factor impacto SCIMAGO: 1.178 - Materials Science (miscellaneous) (Q1)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-05-18-14:54:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-05-13, última modificación el 2023-05-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)