Resumen: Indicator of Reduction In Soils (IRIS) technology is an important tool for identifying hydric soils, but it does not allow the user to monitor in real time. IRIS uses metal-oxide coatings on a polyvinyl chloride surface that, under anaerobic conditions, are removed to varying degrees over a 4-wk incubation period, during which time the user is not cognizant of the outcome. We document the viability of an alternative IRIS approach using clear-IRIS tubes, made from cellulose acetate butyrate, that can be continuously monitored in situ with a Wi-Fi–enabled video camera. This work shows that IRIS and clear-IRIS tubes are statistically equivalent. Manganese-oxide coated clear-IRIS tubes correlated well with IRIS tubes (r =.79) and ferrous-oxide had a high correlation (r =.97). A time-series analysis showed that rain-driven soil saturation induced IRIS metal-oxide reduction and controlled the rate. Clear-IRIS tubes enable remote sensing of metal-oxide removal over time. Idioma: Inglés DOI: 10.1002/saj2.20171 Año: 2021 Publicado en: SOIL SCIENCE SOCIETY OF AMERICA JOURNAL 85, 1 (2021), 184-192 ISSN: 0361-5995 Factor impacto JCR: 2.932 (2021) Categ. JCR: SOIL SCIENCE rank: 23 / 39 = 0.59 (2021) - Q3 - T2 Factor impacto CITESCORE: 4.3 - Agricultural and Biological Sciences (Q1)