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RESUMEN

En los dltimos afios, se ha experimentado un desarrollo enorme en
el campo de la detecciéon y clasificacién de objetos. Ahora es posible
dotar a un sistema de videovigilancia de la capacidad de distinguir los
objetos que estd monitorizando, pudiendo actuar en consecuencia. En
parte, este avance ha sido posible gracias a las redes neuronales. Estas
se han beneficiado de la enorme cantidad de imagenes etiquetadas
disponibles para su entrenamiento y a la gran potencia computacional
del hardware actual, lo que ha permitido que las redes neuronales
alcancen una gran precisién en la detecciéon de objetos.

Existen muchos modelos de redes neuronales disefiados para tener
la mejor precision. Estos modelos utilizan técnicas novedosas que
aumentan poco a poco las necesidades computacionales del modelo,
por lo que consiguen avances en precision cada muy poco tiempo. No
obstante, en general, las redes mds precisas suelen ser ejecutadas en
aceleradores o en GPUs para alcanzar un rendimiento razonable. Sin
embargo, en la préctica, no es posible disponer de una GPU de alta
gama para cada proyecto de deteccion de objetos debido a su elevado
coste. Ademds, la precisién que ofrecen es muy elevada, y en muchos
casos se puede prescindir de precisién a cambio de reducir la carga
computacional.

Este trabajo explora alternativas basadas en redes neuronales a
las técnicas de deteccion existentes en un sistema de videovigilancia,
centrandose en la optimizacién de la red y en el hardware que sera
capaz de ejecutarla. Se va a centrar en el sistema de videovigilancia
de la empresa Buavi.

Las GPUs convencionales consumen mucha energia y ocupan mu-
cho tamafio. No siempre es posible disponer de una GPU para realizar
inferencia, por lo que en ciertos entornos es necesario usar CPUs que
permitan clasificar objetos con una precisién suficiente a la vez que
mantienen el consumo de energia bajo. Normalmente estas soluciones
son necesarias en entornos remotos o en equipos ya instalados que no
dispongan de GPU u otros aceleradores.

El resultado del trabajo ha sido el despliegue de una red que se
puede ejecutar sobre CPU, y que permite detectar personas. La red
es capaz de monitorizar varias cdmaras a la vez, por lo que se han
alcanzado los objetivos planteados al comienzo de este proyecto.
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INTRODUCCION

1.1 MOTIVACION

Las redes neuronales utilizadas para la deteccién de objetos fun-
cionan muy bien, se ha conseguido avanzar enormemente los ulti-
mos 10 afios. No obstante, los resultados 6ptimos suelen conseguirse
utilizando redes muy extensas, que requieren de mucha capacidad
computacional para realizar la inferencia de una imagen.

“Convolutions are so compute hungry that they are the
main reason we need so much compute power to train and
run state-of-the-art neural networks.”

Alex Burlacu [1]

Si lo que se quiere es deteccién en tiempo real, es decir, procesar el
video a la misma velocidad con la que se estd captando, el estaindar
suele ser procesar 24 imdgenes por segundo, con imagenes de 512x512.
Sin embargo, para gran cantidad de aplicaciones, no se necesitan
procesar tantos fotogramas por segundo. Para un sistema de video-
vigilancia comtn, en el que no hay objetos moviéndose demasiado
rapido, con 4 FPS es suficiente. Si se quisieran detectar objetos que se
mueven mds rapido, habria que aumentar la frecuencia de deteccién.

El hardware necesario para procesar las imagenes en las redes
mas populares como YOLO [2] o0 R-CNN [3] son GPUs de gama alta.
Si lo que se necesita es deteccién a tiempo real en una cdmara, por
ejemplo, tener que adquirir una GPU de gama alta podria ser algo
desmesurado. Existe hardware alternativo, como el acelerador Google
Coral [4] o aceleradores gréficos integrados en la CPU de los méviles.
Estos pueden ejecutar redes mas pequefias con menos precision, pero
no tienen la potencia suficiente para utilizar las redes més grandes y
precisas.

Por este motivo, en este trabajo se intentan explorar las posibles
optimizaciones, redes mas pequefias, y hardware alternativo para
conseguir una deteccién a tiempo real, pero sin el consumo y el coste
que supone una GPU de altas prestaciones.
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1.2 OBJETIVOS Y PLANIFICACION

El objetivo de este trabajo es conseguir un sistema de clasificacién
de objetos basado en redes neuronales, que esté lo mds optimizado
posible de cara a su posible despliegue a nivel comercial. La empresa
que utilizara este sistema desarrolla equipamiento, entre otras cosas,
de sistemas de seguridad. Por lo tanto, es importante que el resultado
sea fiable, y que al mismo tiempo, consuma la menor cantidad de
recursos posible, debiendo funcionar con imégenes en tiempo real.
Con este objetivo en mente, se ha dividido el trabajo en 6 tareas:

1. Andlisis del estado del arte en aprendizaje automético para
videovigilancia.

2. Experimentacién y puesta en funcionamiento de una red neuro-
nal sencilla.

3. Uso del dataset Open Images Dataset [5] para el entrenamiento
de redes neuronales, en paralelo con la realizaciéon de pruebas
y evaluacion de rendimiento de los distintos tiempos de redes
neuronales.

4. Familiarizacién con distintos tipos de hardware segtin su poten-
cia y coste.

5. Evaluacién del rendimiento de distintos tipos de hardware con
las redes neuronales.

6. Extraccién de resultados y conclusiones.

1.3 ALCANCE

La solucién de la empresa para la deteccién de personas en su
sistema de videovigilancia emplea deteccién cldsica de movimiento
(cambio en pixeles de un fotograma a otro) y algoritmos de tracking
en la imagen, antes de utilizar el médulo de deteccién y clasificacion
de objetos.

Este tipo de técnicas son sencillas y efectivas, pero presentan ciertos
inconvenientes; el algoritmo no puede determinar si lo que aparece en
la imagen es de interés para el sistema de videovigilancia o no. Para
estos algoritmos no existe diferencia entre un intruso y, por ejemplo,
un péjaro. Ademas, ciertos artefactos de video pueden desencadenar
la deteccién de movimiento sin que haya nada relevante que detectar.

Sin embargo, combinarlas con redes neuronales en el médulo de
deteccién solventa esos inconvenientes. El algoritmo estima qué es
lo que aparece en el video, y puede reaccionar de manera distinta
dependiendo de si es un gato o un coche. La empresa ya utiliza una
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solucién basada en redes neuronales que se va a explicar mas adelante.
Este trabajo se ha enfocado a la optimizacién de este médulo para
conseguir mds precision con menor coste.

Existen soluciones faciles de implementar que funcionan muy bien
pero que requieren gran potencia computacional. Como algunos de
los clientes de la empresa ya disponen de su infraestructura hardware
sin GPUs de alta gama, se han buscado soluciones que requieran
tnicamente de CPUs para hacer el computo y asi poder dar soporte
en dichas plataformas.

1.4 ESTRUCTURA DEL DOCUMENTO

En los siguientes capitulos se tratara més en profundidad el estado
del arte de las redes neuronales convolucionales. Se describiran los
principales algoritmos de detecciéon existentes, y las diferencias entre
las implementaciones de estos. También se analizardn los datasets
disponibles de forma ptblica para entrenar las redes.

A continuacién, se hablara de la metodologia y se introduciran
ciertos conceptos importantes para entender la solucién propuesta,
seguidos de explicaciones sobre con qué hardware y de qué modo se
han realizado las pruebas.

Por ultimo, se hablara en detalle de la solucién propuesta, expli-
cando los pasos realizados hasta la obtencién de un modelo 6ptimo
que resuelva los problemas planteados. Se evaluarédn los resultados
obtenidos y se comentara brevemente la integracién de un modelo
final en el sistema de videovigilancia de la empresa Buavi.

Cabe destacar que este trabajo se centra en optimizar la inferencia
de las imagenes, no el entrenamiento del modelo.



ESTADO DEL ARTE

Este capitulo se centra en la tecnologia utilizada actualmente para
desarrollar sistemas basados en Redes Neuronales Convolucionales
(RNC). Se abarcan distintos algoritmos, sus implementaciones, y algu-
nos conjuntos de datos existentes para entrenar un modelo.

“The advancements in Computer Vision with Deep Lear-
ning has been constructed and perfected with time, pri-
marily over one particular algorithm — a Convolutional
Neural Network.”

Sumit Saha [6]

2.1 REDES NEURONALES PARA LA DETECCION

En las redes neuronales, las capas mds importantes, y las que con-
tienen mds informacién, son las capas convolucionales. Estas aplican
ciertas operaciones a la informacion de la capa anterior y la transmiten
a la siguiente capa. Estas operaciones suelen ser multiplicaciones de
parametros de la red, y en redes modernas existen millones de pardme-
tros. Para acelerar el procesamiento de estas capas, las operaciones se
transforman en una multiplicacién de matrices, que se puede realizar
rdpidamente gracias a las extensiones vectoriales avanzadas en CPUs
[7] o mediante el paralelismo masivo de datos de las GPUs o ASICs.

Existe una gran cantidad de algoritmos para la clasificaciéon de
objetos basados en RNC. En este trabajo se ha decidido utilizar YOLO
(You Only Look Once) [2], debido a su popularidad y su implemen-
tacién en distintos frameworks. No obstante, se han estudiado otras
alternativas que se describen a continuacién.

2.1.1 You Only Look Once: YOLO

YOLO es un algoritmo de deteccion y clasificacion de objetos
creado en 2015. Se convirtié rapidamente en uno de los algoritmos
mads populares, y fue evolucionando hasta llegar a su cuarta version
en 2020 (YOLOvy) [8].



2.1 REDES NEURONALES PARA LA DETECCION

El éxito que tuvo fue debido en parte al hecho de ser un detector
de una fase, en contraposicién a detectores de dos fases como R-CNN
[3], que eran los més utilizados antes de la publicacién de YOLO.

Estos detectores de dos fases separan el problema de deteccién
en dos etapas: la extracciéon de zonas de interés y la clasificaciéon de
objetos en dichas zonas. Cada zona de interés detectada en la primera
fase se pasa a la red neuronal, como se aprecia en la Figura 2.1. Esto
retrasa mucho la deteccién porque suelen extraerse del orden de 2000
zonas de interés.

2 stage

Region proposals

ConvNet +——»Results

Y

Y

%

ConvNet ——Results

"

Figura 2.1: Diferencias entre detectores de dos fases (arriba) y de una fase
(abajo).

En contrapartida, detectores de una fase como YOLO realizan la
inferencia de la imagen en un solo paso, con una tnica red neuronal
convolucional, por lo que son significativamente mas rapidos.

2.1.2 Otras Redes

Una alternativa bastante conocida es Faster R-CNN [9], 1a evolucion
de R-CNN. Al ser bastante conocida, existen implementaciones en
frameworks como Keras [10], que facilitan mucho el desarrollo de
pruebas y la implementacién de un detector funcional.

Otra alternativa que se ha estudiado es CenterNet [11]. Se trata, al
igual que YOLO, de un detector de una fase. Ademds de predecir la
localizacién del objeto, predice su centro, que utiliza para determinar
con mayor precision si la deteccién del objeto ha sido correcta o no.
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2.2 FRAMEWORKS DE TRABAJO CON REDES

2.2.1 Darknet

Darknet [12] es el framework original que utiliza el algoritmo
YOLO para la deteccion y clasificacién de objetos. Esta desarrollado
por los autores de este algoritmo, y se ha implementado en C y CUDA.

Este framework es extremadamente popular. Se trata del framework
mas utilizado a la hora de entrenar modelos, y existe una gran comu-
nidad participando activamente en afiadir nuevas funcionalidades y
optimizar su funcionamiento.

2.2.2  Tensorflow

Existen méas frameworks, ademds de Darknet, que implementan el
algoritmo YOLO. Una de las herramientas mas utilizadas es Tensor-
flow [13].

Tensorflow es una biblioteca de cédigo abierto creada por Goo-
gle, orientada a desarrollar aplicaciones con aprendizaje automaético.
Cuenta también con muchos usuarios activos y es una de las herra-
mientas que se han planteado utilizar en este trabajo. El lenguaje mas
extendido para desarrollar aplicaciones con esta biblioteca es Python.

Al ser un lenguaje compilado, C ofrece mas rapidez a la hora
de ejecutar programas. Por otra parte, utilizar Python y Tensorflow
para programar aplicaciones de aprendizaje automatico es mucho mas
sencillo y rapido que hacerlo en C. Por estas razones, en este trabajo
se han explorado ambas opciones.

2.2.3 OpenVino

Intel ha desarrollado un kit de herramientas llamado OpenVino [14].
Estas herramientas permiten optimizar diferentes modelos de redes
neuronales para que se ejecuten en procesadores Intel, aprovechando
al mdximo su arquitectura y el repertorio de instrucciones de estas
CPUs. Permite transferir modelos de frameworks distintos a su propio
formato.

Ademas de los frameworks mencionados anteriormente, este traba-
jo también analiza los resultados obtenidos con este kit de herramien-
tas, compardndolos a los demas.

9



2.3 HARDWARE

2.3 HARDWARE

Para el entrenamiento de modelos basados en RNC hace falta
mucha potencia computacional, por lo que se utilizan GPUs muy po-
tentes. Las mads utilizadas son las de la serie GeForce RTX de NVIDIA,
siendo el modelo RTX 3090 la mds potente hasta la fecha, y la mas
recomendada para esta tarea.

“Nvidia GPUs are widely used for deep learning because
they have extensive support in the forum software, drivers,
CUDA, and cuDNN.”

Prathmesh Patil [15]

Para realizar inferencias una vez el modelo estd entrenado, GPUs
como la Jetson Nano de NVIDIA son muy populares, porque son mas
potentes que una CPU sin costar tanto como GPUs de gama alta.

Sin embargo, existen alternativas para realizar inferencias en CPUs.
El kit de herramientas OpenVino, permite ejecutar modelos de RNC
en procesadores Intel, siendo posible conseguir buenos resultados con
CPUS como Intel core i5 o iy, sin tener que depender de GPUs.

2.4 ANALISIS DE DATASETS

Un dataset, en el contexto de las RNC, es un conjunto grande
de imagenes, acompafiadas de anotaciones que indican qué objetos
aparecen en la imagen, y dénde se encuentran. Son una parte esencial
del desarrollo de un sistema basado en RNC, porque cuantas més
imdgenes estén disponibles a la hora de entrenar una red, mayor
tiende a ser su precision final.

Ademads, un algoritmo de deteccién basado en RNC es indtil sin
un conjunto de datos con los que entrenar un modelo. Por eso, en este
apartado se presentan los datasets que se han utilizado en este trabajo.

2.4.1  Common Objects in Context

El dataset COCO es el mas extendido en el mundo de las redes
neuronales convolucionales [16]. Todos los desarrolladores de nuevos
algoritmos lo usan para evaluar su rendimiento, siendo el dataset
de referencia, utilizado para comparar el rendimiento de distintos
modelos.

Cuenta con imédgenes de 8o clases distintas, que se aprecian en la
Figura 2.2.
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Figura 2.2: Clases representadas en el dataset COCO.

2.4.2  Open Images Dataset V6

Construido por Google, es el dataset con anotaciones de localiza-
cién mas grande que existe [5]. Cuenta con casi 2 millones de imagenes,
en las que aparecen 600 clases distintas.

2.4.3 Virat

El dataset de Virat [17] estd construido con imagenes de videovigi-
lancia. Contiene una gran variedad de escenas y situaciones obtenidas
de sistemas de de vigilancia reales, centrandose principalmente en
personas, coches y otro tipo de vehiculos, como se aprecia en la Figu-
ra 2.3

Figura 2.3: Ejemplos de imédgenes en Virat

Este es el dataset ideal para entrenar un modelo que vaya a utili-
zarse en un sistema de videovigilancia, ya que cuanto mds parecidas
sean las imagenes del entrenamiento a las imagenes finales, mejores
resultados se obtendran del modelo.

2.5 PIPELINE DE BUAVI

La plataforma de seguridad de la empresa Buavi, SharpView [18],
realiza los siguientes pasos para la monitorizacion. Se obtiene el video
de las camaras de seguridad, y se descodifican los fotogramas del
video para ser procesados. A continuacién se realiza un pre-andlisis

11



2.5 PIPELINE DE BUAVI

muy bdésico, para detectar cambios en la imagen (esto es rapido).
Si se detecta actividad, se procesan con mdés detalle las imagenes,
clasificando los objetos (este es el médulo més costoso). Por dltimo,
si se detecta un tipo de objeto no deseado se generan alarmas. Estos
pasos estan resumidos en la Figura 2.4.

Pre-anilisis, Generaciéon
Descodificacion cambios Clasificacion de objetos CooEras
en la imagen

Obtencion

de video

Figura 2.4: Pipeline de videovigilancia de la plataforma SharpView.

Este trabajo centra sus esfuerzos en optimizar el cuarto médulo,
el de deteccién y clasificacién de objetos utilizando redes neuronales
convolucionales.

12



METODOLOGIA

3.1 METRICAS DE INTERES

Para comprender las comparativas entre los distintos modelos, se
van a explicar brevemente tres métricas importantes.

3.1.1 Intersection Over Union

Intersection Over Union, o IoU, es una métrica que indica qué
porcentaje de drea comparten dos rectdngulos. Para entender la im-
portancia de esta métrica, es necesario conocer la manera en la que
una RNC como YOLO localiza y clasifica un objeto.

Al introducir una imagen en el modelo, YOLO realiza una serie de
operaciones, y para cada objeto que encuentra en la imagen, extrae dos
coordenadas y la clase a la que pertenece. Estas dos coordenadas son el
extremo superior izquierdo y el inferior derecho de una "caja’ (bounding
box en inglés). Las bounding boxes son rectdngulos imaginarios que
sirven para delimitar donde se encuentra un objeto en la imagen. Si
esta caja se superpone a la imagen, indica dénde se encuentra el objeto,
tal y como muestra la Figura 3.1.

eoe = predictions.pg

Figura 3.1: Generacién de bounding boxes correspondientes a la localizacién
de los objetos en la imagen.

La medida IoU coge esa caja, y mide cudnto se parece a la caja
que contiene al objeto, como muestra la Figura 3.2. Es decir, mide el

13



3.1 METRICAS DE INTERES

porcentaje de precisiéon de la red neuronal a la hora de decidir dénde
estd un determinado objeto en la imagen.

Area of Overlap
loU =

Area of Union

Figura 3.2: Calculo de Intersection over Union dadas dos cajas; la correcta y
la detectada [19]

En un sistema de deteccién, se suele considerar que una deteccién
es correcta si su IoU es superior a un valor fijo. Tipicamente se utiliza
IoU = 0.5, es decir, la deteccién es correcta si las cajas comparten al
menos la mitad del area.

3.1.2 Average Precision

Definimos la AP (precisién media) como una funcién de los verda-
deros positivos, falsos positivos y falsos negativos en las detecciones.
Corresponde a la integral de la curva precisién-recall, aunque en es-
te contexto se puede entender como la precisién de un sistema de
deteccion.

3.1.3 Mean Average Precision

Mean Average Precision, 0 mAP, es una medida muy utilizada para
evaluar la precisién de un modelo basado en RNC.

La mAP se define como la media de las AP para distintos valores
de IoU. Por ejemplo, se realiza la medida AP considerando como
correcta una prediccion si su IoU es 0.5 o més. Después, se realiza la
medida AP pero con un IoU de o0.55 ... asi hasta 0.9. Finalmente se
hace la media de estas medidas, y se obtiene la mAP.

14



3.2 HARDWARE

3.2 HARDWARE

El sistema principal utilizado para entrenar e inferir durante to-
do este trabajo ha sido un computador del grupo de Arquitectura
de Computadores denominado socarrat.unizar.es. Cuenta con un
procesador Intel Core iy de 6% generacion y 4 GHz, y dispone también
de una grafica Nvidia Geforce GTX Titan X de 12 GB de memoria
dedicada.

Para monitorizar el uso de la CPU, se han utilizado las herramientas
perf htop, y para el uso de la GPU, la herramienta para gréficas de
NVIDIA nvidia-smi.

3.3 SOFTWARE

Socarrat tiene el sistema operativo CentOS 7, con la versién de
kernel 3.10.0-693. Todas las pruebas de este trabajo se han realizado
en este sistema, para obtener las comparativas mas objetivas posibles.

Para realizar comparativas de precisién entre modelos distintos, las
imdgenes que se infieren son exactamente las mismas, con la misma
resolucién. Las pruebas se han ejecutado entre 5y 10 veces por modelo,
para detectar inconsistencias producidas por algtin otro proceso que
esté ejecutdndose. Ademds, las imédgenes utilizadas para entrenar los
modelos son distintas a las utilizadas para evaluar la precision.

Se ha monitorizado en todo momento el uso de CPU y GPU, y
comprobado que su uso fuese el esperado. Los repositorios utilizados
para realizar las pruebas de Darknet, Tensorflow y OpenVino son, res-
pectivamente, darknet [20], tensorflow-yolov4-tflite [21] y OpenVINO-
YOLOVy [22]. Las versiones utilizadas han sido Tensorflow 2.3.0 y
OpenVino 2020R4.

15



SOLUCION PROPUESTA

Al comienzo de este proyecto, se decidi6 utilizar el modelo YOLOv3
(version 3 de YOLO) [23], pero ya que fue publicada una mejora del
mismo, YOLOv4, se cambi6 al nuevo modelo.

YOLOvy, al igual que sus versiones anteriores, engloba al modelo
principal (yolov4) y a distintas variantes de la red convolucional. Una
de estas variantes es la versién 'tiny” del modelo (yolovs-tiny), que
es una version muy reducida en namero de capas convolucionales.
Por tanto, permite una inferencia mucho maés répida, pero con menor
precision.

Este trabajo persigue un modelo ligero y preciso, capaz de clasificar
objetos ejecutandolo con el menor consumo posible, idealmente una
CPU. En este capitulo se evaltan los modelos yolovy estdndar y yolov4
"tiny’, realizando comparativas de rapidez y de precisiéon. Se compara
la precisién de modelos entrenados con distintos pardmetros, y como
el nimero de clases afecta a la rapidez. Por ltimo, se evaltian distintos
frameworks sobre los que ejecutar el modelo 6ptimo.

El modelo resultante es yolov4 tiny, entrenado para reconocer una
sola clase con una resolucién de 512x512. Este modelo, ejecutado en
Tensorflow y OpenVino, es el ganador de las pruebas y un modelo que
puede ejecutarse sin ningtn problema en una CPU estdndar, sopor-
tando la deteccién de objetos con rendimiento de hasta 24 fotogramas
por segundo.

También realizaron pruebas de deteccién utilizando CenterNet [11],
pero se decidi6 descartar este modelo por estar desarrollado sobre
Tensorflow, y estar solo disponible para GPU y no en CPU como se
buscaba.

4.1 MODELOS COMPARADOS

Para no tener que entrenar un modelo entero antes de realizar prue-
bas, los autores de Darknet ponen disposicion modelos pre-entrenados
para reconocer objetos. Estos modelos estan almacenados en ficheros
de “pesos” que representan los distintos pardmetros de la red neuro-
nal, y son los valores que la red ajusta durante su entrenamiento.

16



4.1 MODELOS COMPARADOS

Ofrecen un modelo para cada versiéon de YOLO, por tanto contamos
con el modelo por defecto de yolov4, y ademds contamos con yolov4-
tiny. Estos se han entrenado con el dataset de COCO, por lo que
reconocen 8o clases distintas.

Estos modelos podrian utilizarse en el sistema tal y como vienen
por defecto, pero lo ideal es re-entrenarlo con imagenes de videovigi-
lancia, ya que se ajustan més a las que se van a utilizar en el sistema
(Figura 4.1). El riesgo que se corre es over-fitting, es decir, entrenar
demasiado a la red hasta el punto en el que solo reconozca bien las
imagenes con las que se le ha entrenado.

(a) Dataset COCO [16] (b) Dataset Virat

Figura 4.1: Cuanto mds se parezcan las imagenes de entrenamiento a las
imagenes del sistema de videovigilancia, mejor funcionard, pero
también se corre el riesgo de sobre-entrenar.

Ademés, para reducir el tiempo de ejecucién de la red, es interesan-
te no utilizar un modelo que detecte mas clases que las que queremos
monitorizar. En lugar de detectar 8o clases distintas, como hace el
modelo por defecto de YOLOv4, nos interesa detectar solamente una:
la clase "persona’.

Al reducir el niimero de clases de un modelo, el tiempo de inferen-
cia se reduce. Esto es porque el nimero de parametros en ciertas capas
de la red es proporcional al ntiimero de clases, y al reducir el nimero
de clases se reducen las operaciones realizadas. Por ejemplo, en el
modelo estdndar de YOLOvy, para 8o clases se utilizan 255 filtros, lo
que genera un total de 456960 pardmetros, o ‘pesos’, que la red tiene
que calcular. Si reducimos el niimero de clases a 1, se utilizan 18 filtros,
lo que genera 32256 pardmetros. Es decir, se reducen los parametros
14X y Se requieren menos operaciones.

En este trabajo se comparan modelos de 8o clases con modelos
de 1 clase, para ver en qué medida afecta esta reduccion de clases al
resultado final.
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4.2 COMPARATIVA DE PRECISION
4.2 COMPARATIVA DE PRECISION
4.2.1  Version del Modelo

A la hora de comparar la precisién de dos modelos, se ha decidido
mostrar la curva AP - IoU, ya que indica de forma intuitiva la precisién
que se obtiene de cada modelo para valores de IoU bajos y altos. Esto
es, para detecciones menos o mds exigentes. En la Figura 4.2 se aprecia
la diferencia de precisién entre el modelo estdndar y el tiny.

100
90
80
70
60

YOLOw4
50 )
YOLOv4-tiny

40

AF %

30

20

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
10U

Figura 4.2: Curva AP-IoU del modelo estdndar y tiny de YOLOv4

La precision de yolov4-tiny, si bien es menor que la de yolovy,
puede ser suficiente para un sistema de deteccién, especialmente
teniendo en cuenta que el tiempo de inferencia serd menor. Ademads,
esta precision corresponde a los modelos por defecto. ;Se podria
obtener una precisién superior reentrenando un modelo con nuevas
imagenes?

4.2.2  Cantidad de Imdgenes en el Entrenamiento

Partiendo de los pesos originales, se ha reentrenado la red yolovy
dos veces; una con 10.000 imdgenes, y otra con 100.000, para comparar
como la cantidad de imédgenes afecta al entrenamiento de este modelo
en concreto.

Al hecho de empezar el entrenamiento con los pesos de un modelo
ya entrenado se le conoce como fine-tuning. Si se hubiera partido de
un fichero de pesos aleatorio, el entrenamiento habria tardado mucho
maés en alcanzar un estado aceptable, ya que los pardmetros habrian
tenido que variar mucho maés.
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4.2 COMPARATIVA DE PRECISION
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(a) Modelo estdndar (b) Modelo tiny

Figura 4.3: Comparativa de precision entre los modelos por defecto y los
re-entrenados con 10.000 y 100.000 imédgenes

Como se aprecia en la Figura 4.3, incluso al aumentar el nimero de
imagenes del entrenamiento, no parecemos ser capaces de llegar a la
precisiéon del modelo por defecto. Vamos a intentar cambiar algunos
pardmetros del entrenamiento y comparar la precisién que se obtiene.

(Las siguientes pruebas se realizan con yolovg-tiny, ya que entrenar el
modelo estdndar tarda mds de un dia, y el modelo tiny termina en unas pocas
horas.)

4.2.3 Resolucion de Entrenamiento

Tras investigar acerca de los pardmetros del entrenamiento que
podrian mejorar la precisiéon del modelo, se decidi6 entrenar el modelo
yolov4-tiny con mads resolucion. En el modelo por defecto, las imégenes
de entrada se redimensionan a 418x418 pixeles, antes de empezar a
realizar los calculos.

Por tanto, se decidié probar a entrenar el modelo con una reso-
lucién superior, 512x512 pixeles. En teoria, esto deberia permitir al
modelo detectar objetos mds pequerios, ya que la imagen tiene mds
resolucion.

Como se aprecia en la Figura 4.4, se ha conseguido una precisiéon
superior re-entrenando la red con més resolucién. Utilizar una resolu-
cién mayor afecta ligeramente al tiempo de inferencia, pero el cambio
es lo suficientemente pequefio como para que no importe sacrificar un
poco de velocidad, obteniendo a cambio més precision.
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4.2 COMPARATIVA DE PRECISION
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Figura 4.4: Comparativa de precision entre el modelo original y el
re-entrenado con mayor resolucién

4.2.4 Nimero de Clases

Ademés, se decidi6 entrenar con los mismos pardmetros un modelo
tiny de una sola clase, en vez de 8o, para comprobar si el nimero de
clases afecta a la precision final con el mismo entrenamiento.
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Figura 4.5: Comparativa de precisién entre el modelo original, el
re-entrenado con 8o clases y el re-entrenado con una sola clase

Disminuir el ndmero de clases no siempre conlleva un aumento en
la precision, sino que depende del problema especifico y del modelo.
En nuestro caso, como se ve en la Figura 4.5, la precisiéon ha aumentado,
de modo que hemos conseguido un modelo més preciso y mds rdpido
que el de por defecto.

La precisién que se obtiene con el modelo tiny, si bien no es tan
buena como la del modelo estdndar, es suficiente para un entorno de
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4.3 COMPARATIVA DE TIEMPO DE E]ECUCIéN

videovigilancia. Para darnos cuenta de cuanta velocidad se obtiene
sacrificando un poco de precisién, vamos a realizar la comparativa de
rapidez de los modelos.

4.3 COMPARATIVA DE TIEMPO DE E]ECUCIéN

Teniendo en cuenta que modelos con distinta cantidad de clases no
tardan lo mismo en inferir imagenes, se decidié comparar la rapidez
de yolov4 y la de yolovj-tiny en el framework Darknet, con modelos
de 8o clases y de 1 clase para cada uno. Se ha medido el tiempo medio
de inferencia por imagen para un conjunto de 26 imagenes escogidas
al azar del dataset de COCO.

[N 0 clases I 50 clases

0.045 I 1 olase I 1 ciase

° °
s 2 o @
B 2 & o
o & &6 &

segundos
segundos

0.02

YOLO big YOLO tiny YOLO big YOLO tiny

(a) GPU (b) CPU

Figura 4.6: Comparativa del tiempo de ejecucion de los modelos estandar y
tiny. En CPU la diferencia es mucho mds grande.

Fotogramas por Segundo
GPU CPU
clases | Standard | Tiny | Standard | Tiny
8o 21 44 0.32 4.5
1 29 57 0.5 4.6

Cuadro 4.1: Comparativa de fotogramas por segundo

Queda claro, tanto en la Figura 4.6 como en el Cuadro 4.1, que
el modelo 6ptimo para este problema es la version tiny de YOLOvy4.
Tiene una precisién suficiente para este sistema, y alcanza los 4.6 FPS
ejecutdandose en CPU con Darknet, lo que ya serfa suficiente para
la deteccién en una tnica cdmara de personas u objetos que no se
muevan a alta velocidad.

A continuacién se van a analizar los distintos frameworks sobre los
que se podria ejecutar el modelo para conseguir la mayor velocidad
posible y detectar objetos en varias cAmaras, o ejecutar la deteccién de
objetos més rdpidos en una cdmara.
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4.4 COMPARATIVA DE FRAMEWORKS

4.4 COMPARATIVA DE FRAMEWORKS

Los frameworks que se van a comparar son Darknet, Tensorflow
y OpenVino. Se muestran pruebas de inferencia en CPU, ya que se
ha comprobado en el apartado anterior que una CPU es suficiente
para este problema. Ademads, no haria falta adquirir una GPU por
cada sistema de videovigilancia instalado, lo que supone un ahorro
importante para la empresa.

Existe una variante de Tensorflow optimizada para dispositivos
moviles llamada Tensorflow Lite. Las pruebas de velocidad se han
realizado también con este framework, para ver si se consigue un
rendimiento superior.

Para cada framework, se ha realizado la inferencia de 200 imégenes
con el modelo yolovy-tiny de 8o clases.

45

40

35

segundos
)
o

P
=]

Darknet Tensorflow TFLite OpenVino

Figura 4.7: Comparativa de rapidez entre los distintos frameworks para la
inferencia de 200 imagenes.

Como se observa en la comparativa de la Figura 4.7, Darknet est4
muy por debajo de los demads en velocidad, ya que se trata de un
framework optimizado para GPUs. En la Figura 4.8 se muestra una
comparativa ampliada de las demds opciones.

Framework‘ FPS ‘

Darknet 4.5

Tensorflow | 17.77
TFLite 9.06
OpenVino | 24.09

Cuadro 4.2: Comparativa de fotogramas por segundo para yolov4-tiny en
distintos frameworks.
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4.4 COMPARATIVA DE FRAMEWORKS
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Figura 4.8: Comparativa de rapidez entre los distintos frameworks para la
inferencia de 200 imagenes.

Tensorflow Lite ha salido perdiendo, tardando casi el doble que el
modelo en Tensorflow. La razén es que TFLite estd optimizado para
procesadores ARM (con el set de instrucciones vectoriales NEON).
Al ejecutarlo sobre una CPU de Intel, no se utilizan las instrucciones
vectoriales de la CPU y el rendimiento es peor.

De hecho, esta es la razén de que el ganador en velocidad sea
OpenVino; este kit de herramientas aprovecha lo mas posible la arqui-
tectura del procesador de Intel, siendo la opcién mas optimizada si se
quiere ejecutar el modelo en CPUs de esta marca.

Si, por el contrario, no se quiere depender de CPUs de Intel por el
precio o las opciones que ofrecen otras marcas, Tensorflow es clara-
mente el framework a utilizar para este problema, ya que funciona
muy bien en otros dispositivos como GPUs o aceleradores discretos.

En definitiva, el mejor modelo observado para este problema es
yolovy4 tiny, entrenado para reconocer una sola clase con una resoluciéon
de 512x512. Se puede ejecutar en OpenVino para procesadores Intel,
y en Tensorflow para otras CPUs. Consigue deteccion en tiempo real
en varias cdmaras, y si se quieren detectar objetos mds rapidos, es
capaz de procesar 24 fotogramas por segundo. Obtiene precisiones
muy elevadas para una red de su tamario.
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INTEGRACION

Como paso final, la solucién se ha integrado en SharpView, la
plataforma de videovigilancia de Buavi. El nuevo modelo consigue
una mayor precisién que el modelo anterior utilizado por la empresa
manteniendo el rendimiento. Ademads, se han explorado alternati-
vas casi igual de rdpidas para dispositivos de computo que no sean
de Intel, ya que OpenVino soporta unos pocos dispositivos de es-
ta compafiia https://docs.openvinotoolkit.org/latest/openvino_
docs_IE_DG_supported_plugins_Supported_Devices.html . En la Fi-

gura 5.1 se muestran capturas del sistema de deteccién actuando a
tiempo real.

(a) Interior

(b) Exterior con infrarrojos

Figura 5.1: Imagenes de deteccion usando el modelo final en el sistema de
Buavi.
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CONCLUSIONES

El objetivo del trabajo era conseguir optimizar el médulo de detec-
cién y clasificacion de objetos de la plataforma SharpView, haciendo
que se pueda ejecutar en CPUs para consumir la menor cantidad de
energia posible.

La solucion propuesta ofrece a la empresa una mayor optimizacion
en el médulo de deteccién y clasificacion de objetos de su sistema
de videovigilancia. Se han explorado también alternativas para no
tener que depender de procesadores de Intel, de modo que se ha
encontrado una solucién versatil y rdpida, independientemente del
hardware utilizado.

Desde hace unos afios, los procesadores Intel y AMD cuentan con
extensiones vectoriales avanzadas (AVX [7]). Gracias a ello, hoy en dia
la potencia de una CPU estandar es suficiente para obtener deteccién
en una camara en tiempo real. Atn asi, si se necesitan monitorizar
mdés camaras, se puede utilizar una GPU de bajo coste, obteniendo
resultados atn mejores debido al aumento de potencia computacional.
El modelo es lo suficientemente pequefio para que, utilizando una
GPU, se consigan monitorizar varias cimaras a la vez.

Como trabajo futuro, se plantea la posibilidad de emplear el da-
taset de Virat para ver si el modelo resultante se ajustaria maés a las
iméagenes de videovigilancia y responderia a todas las necesidades de
la plataforma de Buavi.
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ANEXO

A.1 DIAGRAMA DE GANTT

A continuacién se muestra el diagrama de Gantt, Figura A.1y el
cuadro A.1 con la distribucién de horas por tarea. El bloque mas im-
portante ha sido el estudio de las técnicas y biasqueda de informacién
relevante al que se le ha dedidado practicamente un cuarto del TFG.
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project Y T T T
Py ] - o
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© CenterNet 1/6/20 4/6/20 =
© YOLO 3/6/20 30/6/20
B @ Evaluacién de rendimiento de distintas redes 4/6/20 2177120 P — \
© CenterNet 4/6/20 6/6/20 =0
© YOLO estandar 30/6/20 2177720 [ ]
© YOLO tiny 10/7/20 2177720 ]
E ¢ Comparativa de modelos 2177720 19/12/20 o
© Precisién 2177720 30/8/20 [ ]
© Rapidez 5/8/20 30/8/20 L ]
B © Frameworks 29/10/20 18/12/20
© Darknet 29/10/20 15/11/20
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< o 2021
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Figura A.1: Diagrama de Gantt del proyecto.

A.2 RESULTADOS DE CENTERNET

Se realizaron pequefas pruebas con CenterNet, antes de descartar-
lo debido a la imposibilidad de ejecutarlo sobre CPU, y a la escasa

documentacién disponible, especialmente comparado a otras alternati-
vas.
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A.2 RESULTADOS DE CENTERNET

Horas
Analisis del estado del arte e investigacion 90
Experimentacién y rendimiento de CenterNet 15
Experimentacién con YOLO 40
Rendimiento de YOLO estandar 40
Rendimiento de YOLO tiny 20
Comparativas de precision 20
Comparativas de rapidez 15
Comparativas de distintos frameworks 60
Redaccién de bitacora 30
Redacciéon de memoria 30
Reuniones 30
Total 390

Cuadro A.1: Horas dedicadas al proyecto

Centernet es un modelo de red neuronal que detecta, ademads de la
caja de prediccion, un punto extra, que se corresponde con el centro
de dicha caja. Este punto se detecta por separado (la prediccién de
la caja no influencia la predicciéon del centro). La idea detrds de este
calculo extra es descartar resultados potencialmente erréneos; si el
centro detectado de un objeto en particular cae en el centro de una caja
detectada del mismo objeto, se acepta la prediccién de dicho objeto. Si
se aleja demasiado del centro de la caja predicha, se descarta.

Los resultados obtenidos con CenterNet fueron muy buenos, a la
altura de YOLOv4. Obtuvo una media de fotogramas por segundo de
24, frente los 21 de YOLOvy4. Sin embargo, no cuenta con una versién
pequefia del modelo, lo que nos ha sido muy ttil en este trabajo. Las
figuras A.2 y A.3 muestran las predicciones para imdgenes del dataset
de Virat y el de COCO, respectivamente.

Figura A.2: Predicciones de CenterNet para una imagen del dataset de Virat,
las personas en verde y los coches en rojo.
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(b)

Figura A.3: Predicciones de CenterNet para imagenes del dataset de COCO,
las personas en verde y los coches en rojo.
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