
Trabajo de Fin de Grado

A N Á L I S I S Y
O P T I M I Z A C I Ó N D E U N

P I P E L I N E D E
V I D E O V I G I L A N C I A

autor

Borja Aguado Díez

ponente

Darío Suárez Gracia

director

Francisco Feijoo Cano

enero 2021



R E S U M E N

En los últimos años, se ha experimentado un desarrollo enorme en
el campo de la detección y clasificación de objetos. Ahora es posible
dotar a un sistema de videovigilancia de la capacidad de distinguir los
objetos que está monitorizando, pudiendo actuar en consecuencia. En
parte, este avance ha sido posible gracias a las redes neuronales. Estas
se han beneficiado de la enorme cantidad de imágenes etiquetadas
disponibles para su entrenamiento y a la gran potencia computacional
del hardware actual, lo que ha permitido que las redes neuronales
alcancen una gran precisión en la detección de objetos.

Existen muchos modelos de redes neuronales diseñados para tener
la mejor precisión. Estos modelos utilizan técnicas novedosas que
aumentan poco a poco las necesidades computacionales del modelo,
por lo que consiguen avances en precisión cada muy poco tiempo. No
obstante, en general, las redes más precisas suelen ser ejecutadas en
aceleradores o en GPUs para alcanzar un rendimiento razonable. Sin
embargo, en la práctica, no es posible disponer de una GPU de alta
gama para cada proyecto de detección de objetos debido a su elevado
coste. Además, la precisión que ofrecen es muy elevada, y en muchos
casos se puede prescindir de precisión a cambio de reducir la carga
computacional.

Este trabajo explora alternativas basadas en redes neuronales a
las técnicas de detección existentes en un sistema de videovigilancia,
centrándose en la optimización de la red y en el hardware que será
capaz de ejecutarla. Se va a centrar en el sistema de videovigilancia
de la empresa Buavi.

Las GPUs convencionales consumen mucha energía y ocupan mu-
cho tamaño. No siempre es posible disponer de una GPU para realizar
inferencia, por lo que en ciertos entornos es necesario usar CPUs que
permitan clasificar objetos con una precisión suficiente a la vez que
mantienen el consumo de energía bajo. Normalmente estas soluciones
son necesarias en entornos remotos o en equipos ya instalados que no
dispongan de GPU u otros aceleradores.

El resultado del trabajo ha sido el despliegue de una red que se
puede ejecutar sobre CPU, y que permite detectar personas. La red
es capaz de monitorizar varias cámaras a la vez, por lo que se han
alcanzado los objetivos planteados al comienzo de este proyecto.

2



Í N D I C E

1 introducción 4

1.1 Motivación 4

1.2 Objetivos y Planificación 5

1.3 Alcance 5

1.4 Estructura del Documento 6

2 estado del arte 7

2.1 Redes Neuronales para la Detección 7

2.1.1 You Only Look Once: YOLO 7

2.1.2 Otras Redes 8

2.2 Frameworks de Trabajo con Redes 9

2.2.1 Darknet 9

2.2.2 Tensorflow 9

2.2.3 OpenVino 9

2.3 Hardware 10

2.4 Análisis de Datasets 10

2.4.1 Common Objects in Context 10

2.4.2 Open Images Dataset V6 11

2.4.3 Virat 11

2.5 Pipeline de Buavi 11

3 metodología 13

3.1 Métricas de Interés 13

3.1.1 Intersection Over Union 13

3.1.2 Average Precision 14

3.1.3 Mean Average Precision 14

3.2 Hardware 15

3.3 Software 15

4 solución propuesta 16

4.1 Modelos Comparados 16

4.2 Comparativa de Precisión 18

4.2.1 Versión del Modelo 18

4.2.2 Cantidad de Imágenes en el Entrenamiento 18

4.2.3 Resolución de Entrenamiento 19

4.2.4 Número de Clases 20

4.3 Comparativa de Tiempo de Ejecución 21

4.4 Comparativa de Frameworks 22

5 integración 24

6 conclusiones 25

a anexo 26

a.1 Diagrama de Gantt 26

a.2 Resultados de CenterNet 26

3



1
I N T R O D U C C I Ó N

1.1 motivación

Las redes neuronales utilizadas para la detección de objetos fun-
cionan muy bien, se ha conseguido avanzar enormemente los últi-
mos 10 años. No obstante, los resultados óptimos suelen conseguirse
utilizando redes muy extensas, que requieren de mucha capacidad
computacional para realizar la inferencia de una imagen.

“Convolutions are so compute hungry that they are the
main reason we need so much compute power to train and
run state-of-the-art neural networks.”

Alex Burlacu [1]

Si lo que se quiere es detección en tiempo real, es decir, procesar el
vídeo a la misma velocidad con la que se está captando, el estándar
suele ser procesar 24 imágenes por segundo, con imágenes de 512x512.
Sin embargo, para gran cantidad de aplicaciones, no se necesitan
procesar tantos fotogramas por segundo. Para un sistema de video-
vigilancia común, en el que no hay objetos moviéndose demasiado
rápido, con 4 FPS es suficiente. Si se quisieran detectar objetos que se
mueven más rápido, habría que aumentar la frecuencia de detección.

El hardware necesario para procesar las imágenes en las redes
más populares como YOLO [2] o R-CNN [3] son GPUs de gama alta.
Si lo que se necesita es detección a tiempo real en una cámara, por
ejemplo, tener que adquirir una GPU de gama alta podría ser algo
desmesurado. Existe hardware alternativo, como el acelerador Google
Coral [4] o aceleradores gráficos integrados en la CPU de los móviles.
Estos pueden ejecutar redes más pequeñas con menos precisión, pero
no tienen la potencia suficiente para utilizar las redes más grandes y
precisas.

Por este motivo, en este trabajo se intentan explorar las posibles
optimizaciones, redes más pequeñas, y hardware alternativo para
conseguir una detección a tiempo real, pero sin el consumo y el coste
que supone una GPU de altas prestaciones.

4



1.2 objetivos y planificación 5

1.2 objetivos y planificación

El objetivo de este trabajo es conseguir un sistema de clasificación
de objetos basado en redes neuronales, que esté lo más optimizado
posible de cara a su posible despliegue a nivel comercial. La empresa
que utilizará este sistema desarrolla equipamiento, entre otras cosas,
de sistemas de seguridad. Por lo tanto, es importante que el resultado
sea fiable, y que al mismo tiempo, consuma la menor cantidad de
recursos posible, debiendo funcionar con imágenes en tiempo real.
Con este objetivo en mente, se ha dividido el trabajo en 6 tareas:

1. Análisis del estado del arte en aprendizaje automático para
videovigilancia.

2. Experimentación y puesta en funcionamiento de una red neuro-
nal sencilla.

3. Uso del dataset Open Images Dataset [5] para el entrenamiento
de redes neuronales, en paralelo con la realización de pruebas
y evaluación de rendimiento de los distintos tiempos de redes
neuronales.

4. Familiarización con distintos tipos de hardware según su poten-
cia y coste.

5. Evaluación del rendimiento de distintos tipos de hardware con
las redes neuronales.

6. Extracción de resultados y conclusiones.

1.3 alcance

La solución de la empresa para la detección de personas en su
sistema de videovigilancia emplea detección clásica de movimiento
(cambio en píxeles de un fotograma a otro) y algoritmos de tracking
en la imagen, antes de utilizar el módulo de detección y clasificación
de objetos.

Este tipo de técnicas son sencillas y efectivas, pero presentan ciertos
inconvenientes; el algoritmo no puede determinar si lo que aparece en
la imagen es de interés para el sistema de videovigilancia o no. Para
estos algoritmos no existe diferencia entre un intruso y, por ejemplo,
un pájaro. Además, ciertos artefactos de vídeo pueden desencadenar
la detección de movimiento sin que haya nada relevante que detectar.

Sin embargo, combinarlas con redes neuronales en el módulo de
detección solventa esos inconvenientes. El algoritmo estima qué es
lo que aparece en el vídeo, y puede reaccionar de manera distinta
dependiendo de si es un gato o un coche. La empresa ya utiliza una



1.4 estructura del documento 6

solución basada en redes neuronales que se va a explicar más adelante.
Este trabajo se ha enfocado a la optimización de este módulo para
conseguir más precisión con menor coste.

Existen soluciones fáciles de implementar que funcionan muy bien
pero que requieren gran potencia computacional. Como algunos de
los clientes de la empresa ya disponen de su infraestructura hardware
sin GPUs de alta gama, se han buscado soluciones que requieran
únicamente de CPUs para hacer el cómputo y así poder dar soporte
en dichas plataformas.

1.4 estructura del documento

En los siguientes capítulos se tratará más en profundidad el estado
del arte de las redes neuronales convolucionales. Se describirán los
principales algoritmos de detección existentes, y las diferencias entre
las implementaciones de estos. También se analizarán los datasets
disponibles de forma pública para entrenar las redes.

A continuación, se hablará de la metodología y se introducirán
ciertos conceptos importantes para entender la solución propuesta,
seguidos de explicaciones sobre con qué hardware y de qué modo se
han realizado las pruebas.

Por último, se hablará en detalle de la solución propuesta, expli-
cando los pasos realizados hasta la obtención de un modelo óptimo
que resuelva los problemas planteados. Se evaluarán los resultados
obtenidos y se comentará brevemente la integración de un modelo
final en el sistema de videovigilancia de la empresa Buavi.

Cabe destacar que este trabajo se centra en optimizar la inferencia
de las imágenes, no el entrenamiento del modelo.



2
E S TA D O D E L A RT E

Este capítulo se centra en la tecnología utilizada actualmente para
desarrollar sistemas basados en Redes Neuronales Convolucionales
(RNC). Se abarcan distintos algoritmos, sus implementaciones, y algu-
nos conjuntos de datos existentes para entrenar un modelo.

“The advancements in Computer Vision with Deep Lear-
ning has been constructed and perfected with time, pri-
marily over one particular algorithm — a Convolutional
Neural Network.”

Sumit Saha [6]

2.1 redes neuronales para la detección

En las redes neuronales, las capas más importantes, y las que con-
tienen más información, son las capas convolucionales. Estas aplican
ciertas operaciones a la información de la capa anterior y la transmiten
a la siguiente capa. Estas operaciones suelen ser multiplicaciones de
parámetros de la red, y en redes modernas existen millones de paráme-
tros. Para acelerar el procesamiento de estas capas, las operaciones se
transforman en una multiplicación de matrices, que se puede realizar
rápidamente gracias a las extensiones vectoriales avanzadas en CPUs
[7] o mediante el paralelismo masivo de datos de las GPUs o ASICs.

Existe una gran cantidad de algoritmos para la clasificación de
objetos basados en RNC. En este trabajo se ha decidido utilizar YOLO
(You Only Look Once) [2], debido a su popularidad y su implemen-
tación en distintos frameworks. No obstante, se han estudiado otras
alternativas que se describen a continuación.

2.1.1 You Only Look Once: YOLO

YOLO es un algoritmo de detección y clasificación de objetos
creado en 2015. Se convirtió rápidamente en uno de los algoritmos
más populares, y fue evolucionando hasta llegar a su cuarta versión
en 2020 (YOLOv4) [8].

7



2.1 redes neuronales para la detección 8

El éxito que tuvo fue debido en parte al hecho de ser un detector
de una fase, en contraposición a detectores de dos fases como R-CNN
[3], que eran los más utilizados antes de la publicación de YOLO.

Estos detectores de dos fases separan el problema de detección
en dos etapas: la extracción de zonas de interés y la clasificación de
objetos en dichas zonas. Cada zona de interés detectada en la primera
fase se pasa a la red neuronal, como se aprecia en la Figura 2.1. Esto
retrasa mucho la detección porque suelen extraerse del orden de 2000

zonas de interés.

Figura 2.1: Diferencias entre detectores de dos fases (arriba) y de una fase
(abajo).

En contrapartida, detectores de una fase como YOLO realizan la
inferencia de la imagen en un solo paso, con una única red neuronal
convolucional, por lo que son significativamente más rápidos.

2.1.2 Otras Redes

Una alternativa bastante conocida es Faster R-CNN [9], la evolución
de R-CNN. Al ser bastante conocida, existen implementaciones en
frameworks como Keras [10], que facilitan mucho el desarrollo de
pruebas y la implementación de un detector funcional.

Otra alternativa que se ha estudiado es CenterNet [11]. Se trata, al
igual que YOLO, de un detector de una fase. Además de predecir la
localización del objeto, predice su centro, que utiliza para determinar
con mayor precisión si la detección del objeto ha sido correcta o no.



2.2 frameworks de trabajo con redes 9

2.2 frameworks de trabajo con redes

2.2.1 Darknet

Darknet [12] es el framework original que utiliza el algoritmo
YOLO para la detección y clasificación de objetos. Está desarrollado
por los autores de este algoritmo, y se ha implementado en C y CUDA.

Este framework es extremadamente popular. Se trata del framework
más utilizado a la hora de entrenar modelos, y existe una gran comu-
nidad participando activamente en añadir nuevas funcionalidades y
optimizar su funcionamiento.

2.2.2 Tensorflow

Existen más frameworks, además de Darknet, que implementan el
algoritmo YOLO. Una de las herramientas más utilizadas es Tensor-
flow [13].

Tensorflow es una biblioteca de código abierto creada por Goo-
gle, orientada a desarrollar aplicaciones con aprendizaje automático.
Cuenta también con muchos usuarios activos y es una de las herra-
mientas que se han planteado utilizar en este trabajo. El lenguaje más
extendido para desarrollar aplicaciones con esta biblioteca es Python.

Al ser un lenguaje compilado, C ofrece más rapidez a la hora
de ejecutar programas. Por otra parte, utilizar Python y Tensorflow
para programar aplicaciones de aprendizaje automático es mucho más
sencillo y rápido que hacerlo en C. Por estas razones, en este trabajo
se han explorado ambas opciones.

2.2.3 OpenVino

Intel ha desarrollado un kit de herramientas llamado OpenVino [14].
Estas herramientas permiten optimizar diferentes modelos de redes
neuronales para que se ejecuten en procesadores Intel, aprovechando
al máximo su arquitectura y el repertorio de instrucciones de estas
CPUs. Permite transferir modelos de frameworks distintos a su propio
formato.

Además de los frameworks mencionados anteriormente, este traba-
jo también analiza los resultados obtenidos con este kit de herramien-
tas, comparándolos a los demás.



2.3 hardware 10

2.3 hardware

Para el entrenamiento de modelos basados en RNC hace falta
mucha potencia computacional, por lo que se utilizan GPUs muy po-
tentes. Las más utilizadas son las de la serie GeForce RTX de NVIDIA,
siendo el modelo RTX 3090 la más potente hasta la fecha, y la más
recomendada para esta tarea.

“Nvidia GPUs are widely used for deep learning because
they have extensive support in the forum software, drivers,
CUDA, and cuDNN.”

Prathmesh Patil [15]

Para realizar inferencias una vez el modelo está entrenado, GPUs
como la Jetson Nano de NVIDIA son muy populares, porque son más
potentes que una CPU sin costar tanto como GPUs de gama alta.

Sin embargo, existen alternativas para realizar inferencias en CPUs.
El kit de herramientas OpenVino, permite ejecutar modelos de RNC
en procesadores Intel, siendo posible conseguir buenos resultados con
CPUS como Intel core i5 o i7, sin tener que depender de GPUs.

2.4 análisis de datasets

Un dataset, en el contexto de las RNC, es un conjunto grande
de imágenes, acompañadas de anotaciones que indican qué objetos
aparecen en la imagen, y dónde se encuentran. Son una parte esencial
del desarrollo de un sistema basado en RNC, porque cuantas más
imágenes estén disponibles a la hora de entrenar una red, mayor
tiende a ser su precisión final.

Además, un algoritmo de detección basado en RNC es inútil sin
un conjunto de datos con los que entrenar un modelo. Por eso, en este
apartado se presentan los datasets que se han utilizado en este trabajo.

2.4.1 Common Objects in Context

El dataset COCO es el más extendido en el mundo de las redes
neuronales convolucionales [16]. Todos los desarrolladores de nuevos
algoritmos lo usan para evaluar su rendimiento, siendo el dataset
de referencia, utilizado para comparar el rendimiento de distintos
modelos.

Cuenta con imágenes de 80 clases distintas, que se aprecian en la
Figura 2.2.



2.5 pipeline de buavi 11

Figura 2.2: Clases representadas en el dataset COCO.

2.4.2 Open Images Dataset V6

Construido por Google, es el dataset con anotaciones de localiza-
ción más grande que existe [5]. Cuenta con casi 2 millones de imágenes,
en las que aparecen 600 clases distintas.

2.4.3 Virat

El dataset de Virat [17] está construido con imágenes de videovigi-
lancia. Contiene una gran variedad de escenas y situaciones obtenidas
de sistemas de de vigilancia reales, centrándose principalmente en
personas, coches y otro tipo de vehículos, como se aprecia en la Figu-
ra 2.3

(a) (b)

Figura 2.3: Ejemplos de imágenes en Virat

Este es el dataset ideal para entrenar un modelo que vaya a utili-
zarse en un sistema de videovigilancia, ya que cuanto más parecidas
sean las imágenes del entrenamiento a las imágenes finales, mejores
resultados se obtendrán del modelo.

2.5 pipeline de buavi

La plataforma de seguridad de la empresa Buavi, SharpView [18],
realiza los siguientes pasos para la monitorización. Se obtiene el vídeo
de las cámaras de seguridad, y se descodifican los fotogramas del
vídeo para ser procesados. A continuación se realiza un pre-análisis



2.5 pipeline de buavi 12

muy básico, para detectar cambios en la imagen (esto es rápido).
Si se detecta actividad, se procesan con más detalle las imágenes,
clasificando los objetos (este es el módulo más costoso). Por último,
si se detecta un tipo de objeto no deseado se generan alarmas. Estos
pasos están resumidos en la Figura 2.4.

Figura 2.4: Pipeline de videovigilancia de la plataforma SharpView.

Este trabajo centra sus esfuerzos en optimizar el cuarto módulo,
el de detección y clasificación de objetos utilizando redes neuronales
convolucionales.



3
M E T O D O L O G Í A

3.1 métricas de interés

Para comprender las comparativas entre los distintos modelos, se
van a explicar brevemente tres métricas importantes.

3.1.1 Intersection Over Union

Intersection Over Union, o IoU, es una métrica que indica qué
porcentaje de área comparten dos rectángulos. Para entender la im-
portancia de esta métrica, es necesario conocer la manera en la que
una RNC como YOLO localiza y clasifica un objeto.

Al introducir una imagen en el modelo, YOLO realiza una serie de
operaciones, y para cada objeto que encuentra en la imagen, extrae dos
coordenadas y la clase a la que pertenece. Estas dos coordenadas son el
extremo superior izquierdo y el inferior derecho de una ’caja’ (bounding
box en inglés). Las bounding boxes son rectángulos imaginarios que
sirven para delimitar dónde se encuentra un objeto en la imagen. Si
esta caja se superpone a la imagen, indica dónde se encuentra el objeto,
tal y como muestra la Figura 3.1.

Figura 3.1: Generación de bounding boxes correspondientes a la localización
de los objetos en la imagen.

La medida IoU coge esa caja, y mide cuánto se parece a la caja
que contiene al objeto, como muestra la Figura 3.2. Es decir, mide el

13



3.1 métricas de interés 14

porcentaje de precisión de la red neuronal a la hora de decidir dónde
está un determinado objeto en la imagen.

Figura 3.2: Cálculo de Intersection over Union dadas dos cajas; la correcta y
la detectada [19]

En un sistema de detección, se suele considerar que una detección
es correcta si su IoU es superior a un valor fijo. Típicamente se utiliza
IoU = 0.5, es decir, la detección es correcta si las cajas comparten al
menos la mitad del área.

3.1.2 Average Precision

Definimos la AP (precisión media) como una función de los verda-
deros positivos, falsos positivos y falsos negativos en las detecciones.
Corresponde a la integral de la curva precisión-recall, aunque en es-
te contexto se puede entender como la precisión de un sistema de
detección.

3.1.3 Mean Average Precision

Mean Average Precision, o mAP, es una medida muy utilizada para
evaluar la precisión de un modelo basado en RNC.

La mAP se define como la media de las AP para distintos valores
de IoU. Por ejemplo, se realiza la medida AP considerando como
correcta una predicción si su IoU es 0.5 o más. Después, se realiza la
medida AP pero con un IoU de 0.55 ... así hasta 0.9. Finalmente se
hace la media de estas medidas, y se obtiene la mAP.



3.2 hardware 15

3.2 hardware

El sistema principal utilizado para entrenar e inferir durante to-
do este trabajo ha sido un computador del grupo de Arquitectura
de Computadores denominado socarrat.unizar.es. Cuenta con un
procesador Intel Core i7 de 6

a generación y 4 GHz, y dispone también
de una gráfica Nvidia Geforce GTX Titan X de 12 GB de memoria
dedicada.

Para monitorizar el uso de la CPU, se han utilizado las herramientas
perf htop, y para el uso de la GPU, la herramienta para gráficas de
NVIDIA nvidia-smi.

3.3 software

Socarrat tiene el sistema operativo CentOS 7, con la versión de
kernel 3.10.0-693. Todas las pruebas de este trabajo se han realizado
en este sistema, para obtener las comparativas más objetivas posibles.

Para realizar comparativas de precisión entre modelos distintos, las
imágenes que se infieren son exactamente las mismas, con la misma
resolución. Las pruebas se han ejecutado entre 5 y 10 veces por modelo,
para detectar inconsistencias producidas por algún otro proceso que
esté ejecutándose. Además, las imágenes utilizadas para entrenar los
modelos son distintas a las utilizadas para evaluar la precisión.

Se ha monitorizado en todo momento el uso de CPU y GPU, y
comprobado que su uso fuese el esperado. Los repositorios utilizados
para realizar las pruebas de Darknet, Tensorflow y OpenVino son, res-
pectivamente, darknet [20], tensorflow-yolov4-tflite [21] y OpenVINO-
YOLOV4 [22]. Las versiones utilizadas han sido Tensorflow 2.3.0 y
OpenVino 2020R4.



4
S O L U C I Ó N P R O P U E S TA

Al comienzo de este proyecto, se decidió utilizar el modelo YOLOv3

(versión 3 de YOLO) [23], pero ya que fue publicada una mejora del
mismo, YOLOv4, se cambió al nuevo modelo.

YOLOv4, al igual que sus versiones anteriores, engloba al modelo
principal (yolov4) y a distintas variantes de la red convolucional. Una
de estas variantes es la versión ’tiny’ del modelo (yolov4-tiny), que
es una versión muy reducida en número de capas convolucionales.
Por tanto, permite una inferencia mucho más rápida, pero con menor
precisión.

Este trabajo persigue un modelo ligero y preciso, capaz de clasificar
objetos ejecutándolo con el menor consumo posible, idealmente una
CPU. En este capítulo se evalúan los modelos yolov4 estándar y yolov4

’tiny’, realizando comparativas de rapidez y de precisión. Se compara
la precisión de modelos entrenados con distintos parámetros, y cómo
el número de clases afecta a la rapidez. Por último, se evalúan distintos
frameworks sobre los que ejecutar el modelo óptimo.

El modelo resultante es yolov4 tiny, entrenado para reconocer una
sola clase con una resolución de 512x512. Este modelo, ejecutado en
Tensorflow y OpenVino, es el ganador de las pruebas y un modelo que
puede ejecutarse sin ningún problema en una CPU estándar, sopor-
tando la detección de objetos con rendimiento de hasta 24 fotogramas
por segundo.

También realizaron pruebas de detección utilizando CenterNet [11],
pero se decidió descartar este modelo por estar desarrollado sobre
Tensorflow, y estar solo disponible para GPU y no en CPU como se
buscaba.

4.1 modelos comparados

Para no tener que entrenar un modelo entero antes de realizar prue-
bas, los autores de Darknet ponen disposición modelos pre-entrenados
para reconocer objetos. Estos modelos están almacenados en ficheros
de “pesos” que representan los distintos parámetros de la red neuro-
nal, y son los valores que la red ajusta durante su entrenamiento.

16



4.1 modelos comparados 17

Ofrecen un modelo para cada versión de YOLO, por tanto contamos
con el modelo por defecto de yolov4, y además contamos con yolov4-
tiny. Estos se han entrenado con el dataset de COCO, por lo que
reconocen 80 clases distintas.

Estos modelos podrían utilizarse en el sistema tal y como vienen
por defecto, pero lo ideal es re-entrenarlo con imágenes de videovigi-
lancia, ya que se ajustan más a las que se van a utilizar en el sistema
(Figura 4.1). El riesgo que se corre es over-fitting, es decir, entrenar
demasiado a la red hasta el punto en el que solo reconozca bien las
imágenes con las que se le ha entrenado.

(a) Dataset COCO [16] (b) Dataset Virat

Figura 4.1: Cuanto más se parezcan las imágenes de entrenamiento a las
imágenes del sistema de videovigilancia, mejor funcionará, pero
también se corre el riesgo de sobre-entrenar.

Además, para reducir el tiempo de ejecución de la red, es interesan-
te no utilizar un modelo que detecte más clases que las que queremos
monitorizar. En lugar de detectar 80 clases distintas, como hace el
modelo por defecto de YOLOv4, nos interesa detectar solamente una:
la clase ’persona’.

Al reducir el número de clases de un modelo, el tiempo de inferen-
cia se reduce. Esto es porque el número de parámetros en ciertas capas
de la red es proporcional al número de clases, y al reducir el número
de clases se reducen las operaciones realizadas. Por ejemplo, en el
modelo estándar de YOLOv4, para 80 clases se utilizan 255 filtros, lo
que genera un total de 456960 parámetros, o ‘pesos’, que la red tiene
que calcular. Si reducimos el número de clases a 1, se utilizan 18 filtros,
lo que genera 32256 parámetros. Es decir, se reducen los parámetros
14× y se requieren menos operaciones.

En este trabajo se comparan modelos de 80 clases con modelos
de 1 clase, para ver en qué medida afecta esta reducción de clases al
resultado final.



4.2 comparativa de precisión 18

4.2 comparativa de precisión

4.2.1 Versión del Modelo

A la hora de comparar la precisión de dos modelos, se ha decidido
mostrar la curva AP - IoU, ya que indica de forma intuitiva la precisión
que se obtiene de cada modelo para valores de IoU bajos y altos. Esto
es, para detecciones menos o más exigentes. En la Figura 4.2 se aprecia
la diferencia de precisión entre el modelo estándar y el tiny.

Figura 4.2: Curva AP-IoU del modelo estándar y tiny de YOLOv4

La precisión de yolov4-tiny, si bien es menor que la de yolov4,
puede ser suficiente para un sistema de detección, especialmente
teniendo en cuenta que el tiempo de inferencia será menor. Además,
esta precisión corresponde a los modelos por defecto. ¿Se podría
obtener una precisión superior reentrenando un modelo con nuevas
imágenes?

4.2.2 Cantidad de Imágenes en el Entrenamiento

Partiendo de los pesos originales, se ha reentrenado la red yolov4

dos veces; una con 10.000 imágenes, y otra con 100.000, para comparar
cómo la cantidad de imágenes afecta al entrenamiento de este modelo
en concreto.

Al hecho de empezar el entrenamiento con los pesos de un modelo
ya entrenado se le conoce como fine-tuning. Si se hubiera partido de
un fichero de pesos aleatorio, el entrenamiento habría tardado mucho
más en alcanzar un estado aceptable, ya que los parámetros habrían
tenido que variar mucho más.



4.2 comparativa de precisión 19

(a) Modelo estándar (b) Modelo tiny

Figura 4.3: Comparativa de precisión entre los modelos por defecto y los
re-entrenados con 10.000 y 100.000 imágenes

Como se aprecia en la Figura 4.3, incluso al aumentar el número de
imágenes del entrenamiento, no parecemos ser capaces de llegar a la
precisión del modelo por defecto. Vamos a intentar cambiar algunos
parámetros del entrenamiento y comparar la precisión que se obtiene.

(Las siguientes pruebas se realizan con yolov4-tiny, ya que entrenar el
modelo estándar tarda más de un día, y el modelo tiny termina en unas pocas
horas.)

4.2.3 Resolución de Entrenamiento

Tras investigar acerca de los parámetros del entrenamiento que
podrían mejorar la precisión del modelo, se decidió entrenar el modelo
yolov4-tiny con más resolución. En el modelo por defecto, las imágenes
de entrada se redimensionan a 418x418 píxeles, antes de empezar a
realizar los cálculos.

Por tanto, se decidió probar a entrenar el modelo con una reso-
lución superior, 512x512 píxeles. En teoría, esto debería permitir al
modelo detectar objetos más pequeños, ya que la imagen tiene más
resolución.

Como se aprecia en la Figura 4.4, se ha conseguido una precisión
superior re-entrenando la red con más resolución. Utilizar una resolu-
ción mayor afecta ligeramente al tiempo de inferencia, pero el cambio
es lo suficientemente pequeño como para que no importe sacrificar un
poco de velocidad, obteniendo a cambio más precisión.



4.2 comparativa de precisión 20

Figura 4.4: Comparativa de precisión entre el modelo original y el
re-entrenado con mayor resolución

4.2.4 Número de Clases

Además, se decidió entrenar con los mismos parámetros un modelo
tiny de una sola clase, en vez de 80, para comprobar si el número de
clases afecta a la precisión final con el mismo entrenamiento.

Figura 4.5: Comparativa de precisión entre el modelo original, el
re-entrenado con 80 clases y el re-entrenado con una sola clase

Disminuir el número de clases no siempre conlleva un aumento en
la precisión, sino que depende del problema específico y del modelo.
En nuestro caso, como se ve en la Figura 4.5, la precisión ha aumentado,
de modo que hemos conseguido un modelo más preciso y más rápido
que el de por defecto.

La precisión que se obtiene con el modelo tiny, si bien no es tan
buena como la del modelo estándar, es suficiente para un entorno de



4.3 comparativa de tiempo de ejecución 21

videovigilancia. Para darnos cuenta de cuanta velocidad se obtiene
sacrificando un poco de precisión, vamos a realizar la comparativa de
rapidez de los modelos.

4.3 comparativa de tiempo de ejecución

Teniendo en cuenta que modelos con distinta cantidad de clases no
tardan lo mismo en inferir imágenes, se decidió comparar la rapidez
de yolov4 y la de yolov4-tiny en el framework Darknet, con modelos
de 80 clases y de 1 clase para cada uno. Se ha medido el tiempo medio
de inferencia por imagen para un conjunto de 26 imágenes escogidas
al azar del dataset de COCO.

(a) GPU (b) CPU

Figura 4.6: Comparativa del tiempo de ejecución de los modelos estándar y
tiny. En CPU la diferencia es mucho más grande.

Fotogramas por Segundo

GPU CPU

clases Standard Tiny Standard Tiny

80 21 44 0.32 4.5

1 29 57 0.5 4.6

Cuadro 4.1: Comparativa de fotogramas por segundo

Queda claro, tanto en la Figura 4.6 como en el Cuadro 4.1, que
el modelo óptimo para este problema es la versión tiny de YOLOv4.
Tiene una precisión suficiente para este sistema, y alcanza los 4.6 FPS
ejecutándose en CPU con Darknet, lo que ya sería suficiente para
la detección en una única cámara de personas u objetos que no se
muevan a alta velocidad.

A continuación se van a analizar los distintos frameworks sobre los
que se podría ejecutar el modelo para conseguir la mayor velocidad
posible y detectar objetos en varias cámaras, o ejecutar la detección de
objetos más rápidos en una cámara.



4.4 comparativa de frameworks 22

4.4 comparativa de frameworks

Los frameworks que se van a comparar son Darknet, Tensorflow
y OpenVino. Se muestran pruebas de inferencia en CPU, ya que se
ha comprobado en el apartado anterior que una CPU es suficiente
para este problema. Además, no haría falta adquirir una GPU por
cada sistema de videovigilancia instalado, lo que supone un ahorro
importante para la empresa.

Existe una variante de Tensorflow optimizada para dispositivos
móviles llamada Tensorflow Lite. Las pruebas de velocidad se han
realizado también con este framework, para ver si se consigue un
rendimiento superior.

Para cada framework, se ha realizado la inferencia de 200 imágenes
con el modelo yolov4-tiny de 80 clases.

Figura 4.7: Comparativa de rapidez entre los distintos frameworks para la
inferencia de 200 imágenes.

Como se observa en la comparativa de la Figura 4.7, Darknet está
muy por debajo de los demás en velocidad, ya que se trata de un
framework optimizado para GPUs. En la Figura 4.8 se muestra una
comparativa ampliada de las demás opciones.

Framework FPS

Darknet 4.5

Tensorflow 17.77

TFLite 9.06

OpenVino 24.09

Cuadro 4.2: Comparativa de fotogramas por segundo para yolov4-tiny en
distintos frameworks.



4.4 comparativa de frameworks 23

Figura 4.8: Comparativa de rapidez entre los distintos frameworks para la
inferencia de 200 imágenes.

Tensorflow Lite ha salido perdiendo, tardando casi el doble que el
modelo en Tensorflow. La razón es que TFLite está optimizado para
procesadores ARM (con el set de instrucciones vectoriales NEON).
Al ejecutarlo sobre una CPU de Intel, no se utilizan las instrucciones
vectoriales de la CPU y el rendimiento es peor.

De hecho, esta es la razón de que el ganador en velocidad sea
OpenVino; este kit de herramientas aprovecha lo más posible la arqui-
tectura del procesador de Intel, siendo la opción más optimizada si se
quiere ejecutar el modelo en CPUs de esta marca.

Si, por el contrario, no se quiere depender de CPUs de Intel por el
precio o las opciones que ofrecen otras marcas, Tensorflow es clara-
mente el framework a utilizar para este problema, ya que funciona
muy bien en otros dispositivos como GPUs o aceleradores discretos.

En definitiva, el mejor modelo observado para este problema es
yolov4 tiny, entrenado para reconocer una sola clase con una resolución
de 512x512. Se puede ejecutar en OpenVino para procesadores Intel,
y en Tensorflow para otras CPUs. Consigue detección en tiempo real
en varias cámaras, y si se quieren detectar objetos más rápidos, es
capaz de procesar 24 fotogramas por segundo. Obtiene precisiones
muy elevadas para una red de su tamaño.



5
I N T E G R A C I Ó N

Como paso final, la solución se ha integrado en SharpView, la
plataforma de videovigilancia de Buavi. El nuevo modelo consigue
una mayor precisión que el modelo anterior utilizado por la empresa
manteniendo el rendimiento. Además, se han explorado alternati-
vas casi igual de rápidas para dispositivos de computo que no sean
de Intel, ya que OpenVino soporta unos pocos dispositivos de es-
ta compañia https://docs.openvinotoolkit.org/latest/openvino_

docs_IE_DG_supported_plugins_Supported_Devices.html . En la Fi-
gura 5.1 se muestran capturas del sistema de detección actuando a
tiempo real.

(a) Interior

(b) Exterior con infrarrojos

Figura 5.1: Imágenes de detección usando el modelo final en el sistema de
Buavi.

24

https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_Supported_Devices.html
https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_Supported_Devices.html


6
C O N C L U S I O N E S

El objetivo del trabajo era conseguir optimizar el módulo de detec-
ción y clasificación de objetos de la plataforma SharpView, haciendo
que se pueda ejecutar en CPUs para consumir la menor cantidad de
energía posible.

La solución propuesta ofrece a la empresa una mayor optimización
en el módulo de detección y clasificación de objetos de su sistema
de videovigilancia. Se han explorado también alternativas para no
tener que depender de procesadores de Intel, de modo que se ha
encontrado una solución versátil y rápida, independientemente del
hardware utilizado.

Desde hace unos años, los procesadores Intel y AMD cuentan con
extensiones vectoriales avanzadas (AVX [7]). Gracias a ello, hoy en día
la potencia de una CPU estándar es suficiente para obtener detección
en una cámara en tiempo real. Aún así, si se necesitan monitorizar
más cámaras, se puede utilizar una GPU de bajo coste, obteniendo
resultados aún mejores debido al aumento de potencia computacional.
El modelo es lo suficientemente pequeño para que, utilizando una
GPU, se consigan monitorizar varias cámaras a la vez.

Como trabajo futuro, se plantea la posibilidad de emplear el da-
taset de Virat para ver si el modelo resultante se ajustaría más a las
imágenes de videovigilancia y respondería a todas las necesidades de
la plataforma de Buavi.

25



A
A N E X O

a.1 diagrama de gantt

A continuación se muestra el diagrama de Gantt, Figura A.1 y el
cuadro A.1 con la distribución de horas por tarea. El bloque más im-
portante ha sido el estudio de las técnicas y búsqueda de información
relevante al que se le ha dedidado prácticamente un cuarto del TFG.

Figura A.1: Diagrama de Gantt del proyecto.

a.2 resultados de centernet

Se realizaron pequeñas pruebas con CenterNet, antes de descartar-
lo debido a la imposibilidad de ejecutarlo sobre CPU, y a la escasa
documentación disponible, especialmente comparado a otras alternati-
vas.

26



A.2 resultados de centernet 27

Horas

Análisis del estado del arte e investigación 90

Experimentación y rendimiento de CenterNet 15

Experimentación con YOLO 40

Rendimiento de YOLO estándar 40

Rendimiento de YOLO tiny 20

Comparativas de precisión 20

Comparativas de rapidez 15

Comparativas de distintos frameworks 60

Redacción de bitácora 30

Redacción de memoria 30

Reuniones 30

Total 390

Cuadro A.1: Horas dedicadas al proyecto

Centernet es un modelo de red neuronal que detecta, además de la
caja de predicción, un punto extra, que se corresponde con el centro
de dicha caja. Este punto se detecta por separado (la predicción de
la caja no influencia la predicción del centro). La idea detrás de este
cálculo extra es descartar resultados potencialmente erróneos; si el
centro detectado de un objeto en particular cae en el centro de una caja
detectada del mismo objeto, se acepta la predicción de dicho objeto. Si
se aleja demasiado del centro de la caja predicha, se descarta.

Los resultados obtenidos con CenterNet fueron muy buenos, a la
altura de YOLOv4. Obtuvo una media de fotogramas por segundo de
24, frente los 21 de YOLOv4. Sin embargo, no cuenta con una versión
pequeña del modelo, lo que nos ha sido muy útil en este trabajo. Las
figuras A.2 y A.3 muestran las predicciones para imágenes del dataset
de Virat y el de COCO, respectivamente.

Figura A.2: Predicciones de CenterNet para una imagen del dataset de Virat,
las personas en verde y los coches en rojo.



A.2 resultados de centernet 28

(a)

(b)

Figura A.3: Predicciones de CenterNet para imágenes del dataset de COCO,
las personas en verde y los coches en rojo.



B I B L I O G R A F Í A

[1] Speeding up Convolutional Neural Networks. url: https://towardsdatascience.
com/speeding-up-convolutional-neural-networks-240beac5e30f.

[2] YOLO: Real-Time Object Detection. url: https://pjreddie.com/
darknet/yolo/.

[3] Rich feature hierarchies for accurate object detection and semantic
segmentation. url: https://arxiv.org/abs/1311.2524.

[4] Coral USB Accelerator. url: https : / / coral . ai / products /

accelerator.

[5] Open Images Dataset. url: https://opensource.google/projects/
open-images-dataset.

[6] A Comprehensive Guide to Convolutional Neural Networks — the
ELI5 way. url: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53.

[7] Extensiones Vectoriales Avanzadas. url: https://es.wikipedia.
org/wiki/Extensiones_Vectoriales_Avanzadas.

[8] YOLOv4: Optimal Speed and Accuracy of Object Detection. url:
https://arxiv.org/abs/2004.10934.

[9] Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. url: https://arxiv.org/abs/1506.01497.

[10] Keras API. url: https://keras.io/.

[11] CenterNet: Keypoint Triplets for Object Detection. url: https://
arxiv.org/abs/1904.08189.

[12] Darknet: Open Source Neural Networks in C. url: https://pjreddie.
com/darknet/.

[13] An end-to-end open source machine learning platform. url: https:
//www.tensorflow.org/.

[14] OpenVINOTM Toolkit Overview. url: https://docs.openvinotoolkit.
org/latest/index.html.

[15] Why GPUs are more suited for Deep Learning? url: https://www.
analyticsvidhya.com/blog/2020/09/why- gpus- are- more-

suited-for-deep-learning/.

[16] COCO Dataset Explorer. url: https://cocodataset.org/#explore.

[17] The VIRAT Video Dataset. url: https://viratdata.org/.

[18] Plataforma de seguridad SharpView. url: https://buavi.com/es/
sharpview/.

29

https://towardsdatascience.com/speeding-up-convolutional-neural-networks-240beac5e30f
https://towardsdatascience.com/speeding-up-convolutional-neural-networks-240beac5e30f
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://arxiv.org/abs/1311.2524
https://coral.ai/products/accelerator
https://coral.ai/products/accelerator
https://opensource.google/projects/open-images-dataset
https://opensource.google/projects/open-images-dataset
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://es.wikipedia.org/wiki/Extensiones_Vectoriales_Avanzadas
https://es.wikipedia.org/wiki/Extensiones_Vectoriales_Avanzadas
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1506.01497
https://keras.io/
https://arxiv.org/abs/1904.08189
https://arxiv.org/abs/1904.08189
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://www.analyticsvidhya.com/blog/2020/09/why-gpus-are-more-suited-for-deep-learning/
https://www.analyticsvidhya.com/blog/2020/09/why-gpus-are-more-suited-for-deep-learning/
https://www.analyticsvidhya.com/blog/2020/09/why-gpus-are-more-suited-for-deep-learning/
https://cocodataset.org/#explore
https://viratdata.org/
https://buavi.com/es/sharpview/
https://buavi.com/es/sharpview/


bibliografía 30

[19] Adrian Rosebrock. Intersection over Union (IoU) for object detec-
tion. url: https : / / www . pyimagesearch . com / 2016 / 11 / 07 /

intersection-over-union-iou-for-object-detection/.

[20] Alexey Bochkovskiy. Darknet (YOLOv4). url: https://github.
com/AlexeyAB/darknet.

[21] hunglc007. Tensorflow YOLOv4 TFLite. url: https://github.
com/hunglc007/tensorflow-yolov4-tflite.

[22] Tianwen Wu. OpenVino YOLOv4. url: https://github.com/
TNTWEN/OpenVINO-YOLOV4.

[23] YOLOv3: An Incremental Improvement. url: https://arxiv.org/
abs/1804.02767.

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/TNTWEN/OpenVINO-YOLOV4
https://github.com/TNTWEN/OpenVINO-YOLOV4
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767

	1 Introducción
	1.1 Motivación
	1.2 Objetivos y Planificación
	1.3 Alcance
	1.4 Estructura del Documento

	2 Estado del Arte
	2.1 Redes Neuronales para la Detección
	2.1.1 You Only Look Once: YOLO
	2.1.2 Otras Redes

	2.2 Frameworks de Trabajo con Redes
	2.2.1 Darknet
	2.2.2 Tensorflow
	2.2.3 OpenVino

	2.3 Hardware
	2.4 Análisis de Datasets
	2.4.1 Common Objects in Context
	2.4.2 Open Images Dataset V6
	2.4.3 Virat

	2.5 Pipeline de Buavi

	3 Metodología
	3.1 Métricas de Interés
	3.1.1 Intersection Over Union
	3.1.2 Average Precision
	3.1.3 Mean Average Precision

	3.2 Hardware
	3.3 Software

	4 Solución Propuesta
	4.1 Modelos Comparados
	4.2 Comparativa de Precisión
	4.2.1 Versión del Modelo
	4.2.2 Cantidad de Imágenes en el Entrenamiento
	4.2.3 Resolución de Entrenamiento
	4.2.4 Número de Clases

	4.3 Comparativa de Tiempo de Ejecución
	4.4 Comparativa de Frameworks

	5 Integración
	6 Conclusiones
	A Anexo
	A.1 Diagrama de Gantt
	A.2 Resultados de CenterNet


