000102075 001__ 102075
000102075 005__ 20231221135830.0
000102075 0247_ $$2doi$$a10.1007/s10854-020-03611-4
000102075 0248_ $$2sideral$$a118265
000102075 037__ $$aART-2020-118265
000102075 041__ $$aeng
000102075 100__ $$aShalaby, M.S.
000102075 245__ $$aPreparation, structural characteristics and optical parameters of the synthesized nano-crystalline sulphur-doped Bi2Te2.85Se0.15 thermoelectric materials
000102075 260__ $$c2020
000102075 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102075 5203_ $$aIn the present work, a systematic preparation of Bi2Te2.85Se0.15-xSx (x = 0.0, 0.02, 0.04 and 0.06) compositions was carried out by solvothermal method. The materials were characterized by XRD, SEM, EDX, TEM and Raman spectroscopy. XRD, as well as TEM, to confirm the nanostructure of samples. The electrical and thermal properties were investigated in the temperature range from room temperature to 600 K. The highest power factor was 1.3 × 10-2 mW/K2 m at 600 K for (x = 0.06) sample. This improvement in the thermoelectric properties may be due to the ordered atomic arrangement of Bi, Te, and Se induced by sulphur in the Bi2Te2.85Se0.15-xSx nanocomposites, which was confirmed by X-ray diffraction and Raman spectral analysis. The optical properties, such as energy gap, refractive index, extinction coefficient and dielectric constants, were obtained from the diffused reflectance data in the range of 200 to 800 nm. Sulphur doping influences the optical energy gap, reaching the lowest value for x = 0.04 samples (0.14 eV), while the highest allowed energy gap was found in x = 0.06 ones (0.41 eV). Also, It should be mentioned that dielectric constants (er and ei) were affected due to Sulphur doping, whereas the samples with x = 0.04 and 0.02 have the highest and lowest er, respectively, and the opposite for ei when increasing the wavelength.
000102075 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T54-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82183-C3-1-R
000102075 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000102075 590__ $$a2.478$$b2020
000102075 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b138 / 273 = 0.505$$c2020$$dQ3$$eT2
000102075 591__ $$aPHYSICS, CONDENSED MATTER$$b38 / 69 = 0.551$$c2020$$dQ3$$eT2
000102075 591__ $$aPHYSICS, APPLIED$$b83 / 160 = 0.519$$c2020$$dQ3$$eT2
000102075 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b215 / 333 = 0.646$$c2020$$dQ3$$eT2
000102075 592__ $$a0.488$$b2020
000102075 593__ $$aAtomic and Molecular Physics, and Optics$$c2020$$dQ2
000102075 593__ $$aBioengineering$$c2020$$dQ2
000102075 593__ $$aBiomaterials$$c2020$$dQ2
000102075 593__ $$aCondensed Matter Physics$$c2020$$dQ2
000102075 593__ $$aBiophysics$$c2020$$dQ2
000102075 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000102075 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ2
000102075 593__ $$aBiomedical Engineering$$c2020$$dQ2
000102075 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000102075 700__ $$aHashem, H.M.
000102075 700__ $$aYousif, N.M.
000102075 700__ $$aZayed, H.A.
000102075 700__ $$0(orcid)0000-0001-7056-0546$$aSotelo, A.$$uUniversidad de Zaragoza
000102075 700__ $$aWahab, L.A.
000102075 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000102075 773__ $$g31, 13 (2020), 10612–10627$$pJ. mater. sci., Mater. electron.$$tJournal of Materials Science: Materials in Electronics$$x0957-4522
000102075 8564_ $$s2343289$$uhttps://zaguan.unizar.es/record/102075/files/texto_completo.pdf$$yPostprint
000102075 8564_ $$s1637930$$uhttps://zaguan.unizar.es/record/102075/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000102075 909CO $$ooai:zaguan.unizar.es:102075$$particulos$$pdriver
000102075 951__ $$a2023-12-21-13:42:13
000102075 980__ $$aARTICLE