000102078 001__ 102078
000102078 005__ 20210902121806.0
000102078 0247_ $$2doi$$a10.1007/s10008-020-04622-1
000102078 0248_ $$2sideral$$a118285
000102078 037__ $$aART-2020-118285
000102078 041__ $$aeng
000102078 100__ $$aRodríguez, C.A.
000102078 245__ $$aEffect of supporting electrolyte concentration on one-step electrodeposited CuInS2 films for ZnS/CuInS2 solar cell applications
000102078 260__ $$c2020
000102078 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102078 5203_ $$aA one-step electrodeposition process was used to obtain CuInS2 (CIS) films on a molybdenum substrate by varying the supporting electrolyte (lithium chloride, LiCl) concentration. The as-deposited samples were characterized by scanning electron microscopy, energy-dispersive spectroscopy, profilometry, and diffuse reflectance spectroscopy. From characterization, it was found that different concentrations of LiCl mainly lead to a morphological change in the obtained CIS films. Moreover, their chemical composition shifted to the stoichiometric composition for high concentrations of the supporting electrolyte. After annealing, the structural analysis from X-ray diffraction revealed that all samples crystallized in the tetragonal phase of CIS. In addition, it was found that the crystallite size increased for samples grown at higher concentrations of LiCl. Optical studies carried out by diffuse reflectance spectroscopy revealed that the band gap values increased from ~ 1.40 to ~ 1.45 eV (average) after the annealing process. Finally, zinc sulfide (ZnS) thin films were chemically deposited onto electrodeposited CIS films in order to evaluate the photovoltaic response of ZnS/CIS bilayer systems. We discovered that ZnS thin films covered the surface of CIS more effectively for the highest concentration of LiCl and that only the ZnS/CIS bilayer with the CIS film obtained at the highest concentration of LiCl showed a photovoltaic response.
000102078 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E14-17R
000102078 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000102078 590__ $$a2.647$$b2020
000102078 591__ $$aELECTROCHEMISTRY$$b20 / 29 = 0.69$$c2020$$dQ3$$eT3
000102078 592__ $$a0.575$$b2020
000102078 593__ $$aCondensed Matter Physics$$c2020$$dQ2
000102078 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ2
000102078 593__ $$aElectrochemistry$$c2020$$dQ2
000102078 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000102078 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000102078 700__ $$aDelgadillo, A.
000102078 700__ $$aNúñez, J.
000102078 700__ $$aCabello-Guzmán, G.
000102078 700__ $$aMera, A.C.
000102078 700__ $$aDelplancke, M.P.
000102078 700__ $$0(orcid)0000-0001-9814-0834$$aVillacampa, B.$$uUniversidad de Zaragoza
000102078 700__ $$aCarrasco, C.
000102078 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000102078 773__ $$g24 (2020), 1405-1414$$pJ. solid state electrochem.$$tJournal of Solid State Electrochemistry$$x1432-8488
000102078 8564_ $$s2780131$$uhttps://zaguan.unizar.es/record/102078/files/texto_completo.pdf$$yPostprint
000102078 8564_ $$s2433291$$uhttps://zaguan.unizar.es/record/102078/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000102078 909CO $$ooai:zaguan.unizar.es:102078$$particulos$$pdriver
000102078 951__ $$a2021-09-02-09:58:10
000102078 980__ $$aARTICLE