000102079 001__ 102079
000102079 005__ 20210902121816.0
000102079 0247_ $$2doi$$a10.1016/j.jenvman.2020.110783
000102079 0248_ $$2sideral$$a118119
000102079 037__ $$aART-2020-118119
000102079 041__ $$aeng
000102079 100__ $$0(orcid)0000-0001-9050-236X$$aPueyo, Noelia
000102079 245__ $$aElectrochemical oxidation of butyl paraben on boron doped diamond in environmental matrices and comparison with sulfate radical-AOP
000102079 260__ $$c2020
000102079 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102079 5203_ $$aThe electrochemical oxidation (EO) of butyl paraben (BP) over boron-doped diamond (BDD) anode was studied in this work. Emphasis was put on degradation performance in various actual water matrices, including secondary treated wastewater (WW), bottled water (BW), surface water (SW), ultrapure water (UW), and ultrapure water spiked with humic acid (HA). Experiments were performed utilizing 0.1 M Na2SO4 as the electrolyte. Interestingly, matrix complexity was found to favor BP degradation, i.e. in the order WW ~ BW > SW > UW, thus implying some kind of synergy between the water matrix constituents, the reactive oxygen species (ROS) and the anode surface. The occurrence of chloride in water matrices favors reaction presumably due to the formation of chlorine-based oxidative species, and this can partially offset the need to work at increased current densities in the case of chlorine-free electrolytes. No pH effect in the range 3–8 on degradation was recorded. EO oxidation was also compared with a sulfate radical process using carbon black as activator of sodium persulfate. The matrix effect was, in this case, detrimental (i.e. UW > BW > WW), pinpointing the different behavior of different processes in similar environments.
000102079 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000102079 590__ $$a6.789$$b2020
000102079 591__ $$aENVIRONMENTAL SCIENCES$$b34 / 273 = 0.125$$c2020$$dQ1$$eT1
000102079 592__ $$a1.441$$b2020
000102079 593__ $$aEnvironmental Engineering$$c2020$$dQ1
000102079 593__ $$aWaste Management and Disposal$$c2020$$dQ1
000102079 593__ $$aMedicine (miscellaneous)$$c2020$$dQ1
000102079 593__ $$aManagement, Monitoring, Policy and Law$$c2020$$dQ1
000102079 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000102079 700__ $$0(orcid)0000-0003-3014-0322$$aOrmad, María P.$$uUniversidad de Zaragoza
000102079 700__ $$0(orcid)0000-0002-1807-5049$$aMiguel, Natividad$$uUniversidad de Zaragoza
000102079 700__ $$aKokkinos, Petros
000102079 700__ $$aIoannidi, Alexandra
000102079 700__ $$aMantzavinos, Dionissios
000102079 700__ $$aFrontistis, Zacharias
000102079 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000102079 773__ $$g269 (2020), 110783  [9 pp.]$$pJ. environ. manag.$$tJournal of Environmental Management$$x0301-4797
000102079 8564_ $$s668794$$uhttps://zaguan.unizar.es/record/102079/files/texto_completo.pdf$$yPostprint
000102079 8564_ $$s1744575$$uhttps://zaguan.unizar.es/record/102079/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000102079 909CO $$ooai:zaguan.unizar.es:102079$$particulos$$pdriver
000102079 951__ $$a2021-09-02-10:04:25
000102079 980__ $$aARTICLE