000102083 001__ 102083
000102083 005__ 20210902121808.0
000102083 0247_ $$2doi$$a10.1016/j.advwatres.2020.103617
000102083 0248_ $$2sideral$$a118134
000102083 037__ $$aART-2020-118134
000102083 041__ $$aeng
000102083 100__ $$0(orcid)0000-0002-3635-6223$$aFernández-Pato, J.$$uUniversidad de Zaragoza
000102083 245__ $$aA 2D finite volume simulation tool to enable the assessment of combined hydrological and morphodynamical processes in mountain catchments
000102083 260__ $$c2020
000102083 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102083 5203_ $$aNowadays, the great power of modern computers allows to develop computational models able to deal with simulations of several coupled phenomena over detailed complex topography. An efficient and properly calibrated computational model represents a useful tool to provide insight into the catchment dynamics at hydrological and geomorphological levels. In addition, it allows to develop detailed risk management and conservation plans. In this work, we present a coupled surface-groundwater distributed flow model with hydrological (rainfall and infiltration) and geomorphological (suspended and bed load sediment transport) components. The coupled model is applied to well characterized experimental catchments that are used as realistic test cases. The calibration of the water flow model response to rainfall is performed by means of the fitting to experimental outlet hydrographs of the results supplied by a coupled formulation of 2D Shallow Water Equations and 2D Darcy's law for saturated porous media connected via suitable infiltration laws. The calibration of a suspended and bed load model is also addressed by means of the fitting to experimental outlet sedigraphs. The numerical results show a good agreement between numerical and observed hydrographs and sedigraphs, significantly improving previous published simulations. Additionally, the need to repeat the simulations in the calibration processes is no longer an unapproachable problem.
000102083 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FSE$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00$$9info:eu-repo/grantAgreement/ES/MINECO/DI-14-06987
000102083 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000102083 590__ $$a4.51$$b2020
000102083 591__ $$aWATER RESOURCES$$b17 / 97 = 0.175$$c2020$$dQ1$$eT1
000102083 592__ $$a1.314$$b2020
000102083 593__ $$aWater Science and Technology$$c2020$$dQ1
000102083 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000102083 700__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000102083 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000102083 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000102083 773__ $$g141 (2020), 103617 [26 pp]$$pAdv. water resour.$$tAdvances in Water Resources$$x0309-1708
000102083 8564_ $$s9788858$$uhttps://zaguan.unizar.es/record/102083/files/texto_completo.pdf$$yPostprint
000102083 8564_ $$s1138202$$uhttps://zaguan.unizar.es/record/102083/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000102083 909CO $$ooai:zaguan.unizar.es:102083$$particulos$$pdriver
000102083 951__ $$a2021-09-02-09:59:25
000102083 980__ $$aARTICLE