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Instituto de F́ısica, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, CP 7250 Puebla, México
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of tunneling times in undergraduate physics courses. The tunneling of mechanical energy through
a taut string is revisited in this paper in order to study tunneling times for this classical system.
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I. INTRODUCTION

Analogies between quantum phenomena described by the time-independent Schrödinger equation and the classical
world can be drawn provided that the equations of motion of classical systems can be written as Helmholtz equations.
Limiting ourselves to elastic waves and acoustics, we can mention among such analogies the classical Anderson
localization in 1D acoustical system,1,2 acoustic Bloch oscillations,3 acoustic Wannier-Stark ladders,4–6 and doorway
states in quasi-1D elastic systems.7 The physics of quantum tunneling has also been extrapolated to modes of vibration
of elastic structures that account for interacting particles in crystals.8–10 Such vibrational modes can be described as
classical elastic waves.

The group delay or phase time τg is one of the important quantities related to the dynamic aspect of the tunneling.
In quantum mechanics, it is defined as the derivative of the phase shift of a wavepacket with respect to energy. It is
surprising to find that τg for a particle tunneling through a rectangular barrier is independent of the barrier thickness
provided the barrier is opaque. This phenomenon is often referred to as the Hartman effect (HE).11 Notice that the
particle travels with a group velocity vg = L/τg. If phase time becomes a constant while the barrier length increases,
the group velocity will exceed the speed of light in vacuum.

The HE has been verified by a series of experiments measuring the delay time between the appearance of an
electromagnetic pulse peak at the two sides of a barrier.12–18 The existence of superluminal group velocities in tunneling
has been attributed to a reshaping phenomenon.14 The accepted explanation for this counterintuitive behavior is that
the barrier transmits the early parts of the incident pulse and rejects the later parts. This argument is based on
the analogy between electromagnetic tunneling of evanescent waves and quantum-mechanical tunneling. Winful19

proposed the alternative argument that the measured delays are not propagation delays and, therefore, the saturation
of the group delay time does not imply superluminal and unlimited velocity. It is worth to notice that the isomorphism
between quantum tunneling and tunneling of vibrational modes has been exploited to interpret the paradoxical HE
for acoustic waves.20–22

In this paper, we revisit the canonical system for elastic waves, a taut string, which is typically discussed in
undergraduate physics courses.23,24 Despite its simplicity, it can greatly assist engineer and physics students in un-
derstanding the vibration of continuous systems and wave phenomena in layered systems. Recent experimental25–28

and theoretical29–32 studies confirm the interest on this system.
Our attention is focused on the tunneling of mechanical energy through a taut string. The main goal of this paper is

to show that tunneling times, a controversial subject of quantum mechanics,19 can be naturally defined and analyzed
in simple terms with help of this basic model. We find here that group delays and dwell times in a taut string are
equivalent to those times computed for other kind of waves. In particular, we shall discuss the HE.

The systems considered in this paper are schematically represented in Fig. 1. Fig. 1 (a) shows a taut string of
mass density ρs2 , phase velocity vs2 and thickness L sandwiched between two semi-infinite strings. We assume that
a transverse wave, excited in the infinite string I, impinges at the boundary with the finite string II. Part of the
mechanical energy is reflected back to medium I and the remaining energy is transmitted to the infinite string III.

The strings in Fig. 1 (a) are characterized by a linear dispersion relation. Thus, transverse waves traveling trough
the stretched strings are found to be mathematically equivalent to either light waves in dielectrics33 or acoustic phonon
waves.34 Dispersive waves can be excited by placing the string on an elastic foundation, as in Fig. 1 (b), which is
modelled as a transverse elastic force that provides a quadratic dispersion relation.23,24 Such dispersive waves are
equivalent to either matter waves or optical vibrational modes in solids.8 We shall also compute the tunneling times
of a periodic array of strings with piecewise constitutive parameters. This idealized model is depicted in Fig. 1(c).

The paper is organized as follows. Section II studies the tunneling through a single taut string. The general
properties of its wave equation and the corresponding continuity equation are first described in this section. Next, the
different tunneling times are defined. Such quantities are used to explain the Hartman effect. Section III extends the
results to an array of strings. Several mathematical derivations and lengthy calculations are moved to the appendixes
for the sake of clarity. The main conclusions are given at the end of the paper.

II. TUNNELING THROUGH A SINGLE STRING

The general approach to the tunneling problem is applied to the single taut strings shown in Figs. 1 (a) and
(b). Their relevant tunneling times are defined and characterized in this section. Our didactic approach is organized
as follows: (i) We start with the equation of motion of the classical systems. (ii) A continuity equation for the
energy density is derived from the equation of motion. (iii) The group delays that characterize the tunneling time are
calculated using the method of stationary phase. (iv) The dwell time is written in terms of the mechanical energy
accumulated in the system. (v) A mathematical relation between group delay and dwell time is derived from the
Helmholtz equation.
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FIG. 1. (a) A taut string of mass density ρs2 and length L is sandwiched between two identical semi-infinite strings. (b) The
same string on an elastic base. (c) A periodic array of strings on elastic base. The substrate and detector vibrational properties
are assumed to be the same in all numerical calculations.

A. Wave equation

The wave equation for the transverse waves of an ideal string,

∂2y

∂t2
= v2

s

∂2y

∂x2
, (1)

is obtained by applying second Newton law to an infinitesimal portion of the string.24,30 We have assumed a linearly
elastic string without flexural rigidity, so the only restoring force acting on string elements is a tensile force T , which
is tangential to the local string direction. Under such conditions, the string oscillates along the vertical direction.
The displacement from equilibrium at any time of this transverse wave can be specified by the coordinate y(x, t). The

wave propagates with constant speed vs =
√
T/ρs in a non-dispersive medium, where ρs is the linear mass density

of the string. The relationships between wave number k, angular frequency ω, frequency f and wavelength λ are
k = 2π/λ = ω/vs, where ω = 2πf and vs = λf . Longitudinal displacements of string points caused by nonlinear
effects31,32 will be neglected here for this subject largely exceeds the didactic goals of this paper.

When the string is supported by an elastic foundation with elastic modulus K, the vertical elastic force per unit
length Fe = −Ky(x, t) must be added to the wave equation,23,24

∂2y

∂t2
= −ω2

cy + v2
s

∂2y

∂x2
, (2)

where ωc =
√
K/ρs = vs

√
K/T is the cutoff frequency.

We consider that a one-dimensional wave with unit amplitude, eik1x, is incident from medium I. Harmonic solutions
are assumed in what follows and the factor exp(−iωt) is omitted for the sake of simplicity. Both Eqs. (1) and (2)
have the same solution that, for the piecewise material shown in Figs. 1(a) and (b), can be written as

y(x) =

 eik1x + re−ik1x, x < 0,
Aeik2x +Be−ik2x, 0 ≤ x ≤ L,
teik1(x−L), x > L.

(3)

The unknown constants t, r, A and B can be determined from the boundary conditions: continuity at x = 0 and x = L
of both the displacement field y(x) and the stress field

σ = T
∂y

∂x
. (4)
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In fact, we use the continuity of ∂y/∂x for T = ρsv
2
s is constant. The quantities

t =
1

cos (k2L)− i ξ̃m2 sin (k2L)
,

r = − i
2
ξ̃n sin (k2L) t,

are the reflected and transmitted amplitudes, respectively, where ξ̃m = Z1/Z2 + Z2/Z1, ξ̃n = Z1/Z2 − Z2/Z1, and
Zi = ρsiv

2
siki, with i = 1, 2. These complex quantities can be written as t = |t|exp(iαt) and r = |r|exp(iαr). The

transmission and reflection coefficients are defined as the squared absolute values of t and r,

T ≡ |t|2 =
1

1 +
ξ̃2n
4 sin2 (k2L)

, (5)

R ≡ |r|2 =
1

4
ξ̃2
n sin2 (k2L) T , (6)

which fulfill the identity T +R = 1. Their respective phases,

αt = arctan

(
ξ̃m
2

tan (k2L)

)
, (7)

αr = −π/2 + arctan

(
ξ̃m
2

tan (k2L)

)
, (8)

will be used below for computing the tunneling times. The amplitudes of the field in medium II are equal to

A =
1

2

(
1 +

Z1

Z2

)
te−ik2L,

B =
1

2

(
1− Z1

Z2

)
teik2L.

Nonetheless, the above solution yields different wavenumbers for Eqs. (1, 2). The wave of Eq. (1) is not dispersive
due to the linear relation between wavenumber and angular frequency,

ki =
2πf

vsi
, (9)

with i = 1, 2. Equivalent linear dispersion relations are found for acoustic waves and for the light traversing lossless
dielectric materials. By contrast, the wave becomes dispersive in the presence of an elastic foundation. The dispersion
relation that satisfies Eq. (2) is a quadratic function: f2 = (vsi/2π)2k2

i + f2
ci . Similar dispersion relations are found

for electrons and optical phonons. The functional form of the wavenumber,

ki =
2π

vsi

√
f2 − f2

ci , (10)

determines that the wave is at cutoff for the frequency fci = (vsi/2π)
√
Ki/T . The wave can freely propagate along

the string with a real ki when the frequency is beyond cutoff, while, below cutoff, the string behaves as a potential
barrier for the incident wave because it decays for imaginary values of ki. The solution for such non-propagating
waves will be written as

y(x) = Ae−κx +Beκx,

for the central string (0 ≤ x ≤ L), where κ = −ik2 is used for the sake of simplicity.

B. Continuity equation

The continuity equation for the energy density

∂H
∂t

+
∂j

∂x
= 0, (11)
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can be derived from the wave equation (see Appendix A). The energy density flux j is

j = −1

2

(
σ
∂y∗

∂t
+ σ∗

∂y

∂t

)
(12)

for both Eqs. (1) and (2). One can check that both transmission (5) and reflection (6) coefficients can be computed
as T = jt/jin and R = jr/jin, in terms of the transmission, jt = ρs1ωv

2
s1k1|t(k1)|2, reflection, jr = ρs1ωv

2
s1k1|r(k1)|2,

and incident, jin = ρs1ωv
2
s1k1, fluxes, respectively.

The energy density is given by

Hs =
1

2
ρs

∣∣∣∣∂y∂t
∣∣∣∣2 +

1

4

(
σ
∂y∗

∂x
+ σ∗

∂y

∂x

)
(13)

for the standard taut string (Eq. 1) and by

Hef =
1

2
ρs

∣∣∣∣∂y∂t
∣∣∣∣2 +

1

4

(
σ
∂y∗

∂x
+ σ∗

∂y

∂x

)
+

1

2
ρsω

2
c |y|

2
(14)

for the string on the elastic foundation (Eq. 2). In the above equations, the first term represents the kinetic energy
density and the second one is the strain energy density. The third term in Eq. (14) is the density of elastic potential
energy related to the interaction of the string with its elastic foundation.

The total mechanical energy accumulated in the scattering region [0, L] is equal to

H =

∫ L

0

Hdx. (15)

It yields

H = ρs2ω
2
(
|A|2 + |B|2

)
L+

ρs2ω
2
c2

k2
|A||B| [sin(2k2L+ Λ)− sin(Λ)] , (16)

for propagating waves in a string on the elastic foundation, where we defined A = |A|eiα, B = |B|eiβ , and Λ = α−β.
The second term vanishes for a simple taut string (with ωc2 = 0). In turn, H is more involved for non-propagating
waves,

H =
ρs2ω

2
c2

2κ2

[
|A|2

(
1− e−2κ2L

)
+ |B|2

(
1− e2κ2L

)]
+ 2ρs2ω

2|A||B|L cos(Λ).

C. Tunneling times

In this section, group delay and dwell time are defined and a mathematical relation is established between these
quantities. We follow a general approach based in the stationary phase method, which is valid for an arbitrary one-
dimensional wave packet. This approach is briefly reviewed here for the sake of completeness. At the end of the
section, we will compute explicit expressions for tunneling times of the two particular systems shown in Figs. 1 (a)
and (b).

We construct a spatially-localized incident wave packet by superposition of stationary states with different wave
numbers as

yin(x, t) =

∫
dk

2π
φ(k − k0)yk(x)e−iω(k), (17)

where φ(k − k0) is a narrow momentum distribution such as a Gaussian centered around k0. We assume that, at
t = 0, the wave packet is centered at x = 0 and propagates to the right with a group velocity vg = ∂w

∂k . This packet
is replaced by reflected and transmitted wave packets. The one reflected at the structure left side (x < 0) can be
written as

yL(x, t) =

∫
dk

2π
φ(k − k0) |r(k)| e−iΦr(k), (18)

where Φr(k) = −αr + kx+ωt is the total phase of the reflected wave. Stationary phase method24 is the simplest and
most common approximation adopted for obtaining the tunneling times of a wave packet in a tunneling process.24
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Assuming that the phase Φr(k) varies sufficiently smoothly, the stationary phase method can be successfully applied
to describe the movement of the peak of the reflected wave packet. According to this method, the integral (18) can
therefore be estimated by finding the value for which the phase has a vanishing derivative. Evaluating the integral in
the neighborhood of the k0, we obtain

∂

∂k
Φr(k)

∣∣∣∣
k=k0

= x+

(
−∂αr
∂k

+
∂ω

∂k
t

)∣∣∣∣
k=k0

= 0. (19)

The reflected wave-packet peak appears at position x = 0 with a group delay given by

τr =
∂αr
∂ω

. (20)

The transmitted packet at the structure right side (x > L) can be written as

yR(x, t) =

∫
dk

2π
φ(k − k0) |t(k)| eiΦt(k), (21)

where Φt(k) = αt + k(x − L) − ωt is total phase of the transmitted wave. Applying the stationary phase method
results in

∂

∂k
Φt(k)

∣∣∣∣
k=k0

= x− L+

(
∂αt
∂k
− ∂ω

∂k
t

)∣∣∣∣
k=k0

= 0. (22)

In this case, the transmitted wave-packet peak appears at position x = L with the group delay

τt =
∂αt
∂ω

. (23)

On the other hand, the dwell time35,37 is the time spent by a wave in the scattering region regardless of whether
it is ultimately transmitted or reflected. In analogy with matter, electromagnetic, and acoustic waves, we can define
the dwell time as

tD =
H

jin
, (24)

where H (15) is the vibrational energy stored by the scattering system (region [0, L]) and jin is incident energy density
flux.

Reflection and transmission group delays and the dwell time satisfy the following identity (derived in Appendix B)

tD = T τt +Rτr + τi, (25)

where the interference time

τi =
ω2
c1

ωv2
s1k

2
1

√
R sin (αr) , (26)

is only defined for the taut string on the elastic foundation. The interference term comes from the overlap of incident
and reflected waves packets in front of the structure.39 Alternatively, the interference time is defined as the ratio of
the total excess energy to the left of the structure and the incident flux (see Ref. 40 and references therein). We stress
that this term vanishes when the elastic base is removed (ωc1 = 0).

Quantities derived up to this point are valid for any one dimensional wave. Particular expressions for the simple
systems shown in Fig. 1 are given in what follows. The taut string of Fig. 1(a) is considered first. By substituting
Eqs. (7) and (8) into Eqs. (23) and (20), we find that the group delay is proportional to the transmission coefficient,

τt =
ξ̃mωL

2v2
s2k2
T . (27)

In the symmetric configuration considered here (the strings have the same constitutive parameters in media I and
III) transmission and reflection times are equal, τr = τt, as pointed out in Refs. 37 and 41. Replacing Eq. (13) into
Eq. (15) (or equivalently from Eq. (16) by taking ωc2 =0), we obtain the mechanical energy

H =
Z1

Z2

ρs2 ξ̃mω
2L

2
T .
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FIG. 2. (a) Transmission coefficient versus frequency for a bare taut string (solid line) and taut string with an elastic base
(dashed line). (b) The corresponding group delays are compared with the free time (dash-dotted line). The vertical red-dashed
line indicates the position of the cutoff frequency fc2=59 Hz. The input parameters for the medium I(II) are ρs1 = 1.0 g/cm
(ρs2 = 0.5 g/cm ), vs1 = 40.0 m/s (vs2 = 56.57 m/s) and L = 42.43 cm. Medium III is identical to medium I. The elastic
constants for the elastic foundation in (b) are K1 =0 and K2 =700 π2N/m2. Therefore, only the finite string 2 is coupled to
this base.

Notice that for this case τt = tD = H/jin (Eq. 24), in agreement with the identity (25).
Expressions are more involved for the taut string on an elastic foundation, shown in Fig. 1(b). Only propagating

states are considered here. For this particular case we find

τt = T ω

[
ξ̃n
4

(
1

k2
1v

2
s1

− 1

k2
2v

2
s2

)
sin(2k2L) +

ξ̃mL

2k2v2
s2

]
, (28)

H =
ρs2
2

Z1

Z2
T
(
ω2ξ̃mL− ω2

c2 ξ̃n
sin(2k2L)

2k2

)
, (29)

tD =
T

2v2
s2k2

(
ωξ̃mL−

ω2
c2

ω
ξ̃n

sin(2k2L)

2k2

)
, (30)

τi = −
ω2
c1 ξ̃nT

4ωk2
1v

2
s1

sin(2k2L). (31)

These equations also satisfy the relationship of Eq. (25).
Fig. 2 compares the tunneling through a single taut string (solid lines) and the same string on an elastic base

(dashed lines). The transmission coefficient T is depicted in Fig. 2 (a), while Fig. 2(b) shows the tunneling time in
transmission, τt. Input parameters are given in the figure caption. We assume that only the finite string 2 is coupled
to the elastic base. Thus, the interference time (31) vanishes identically as it is proportional to ω2

c1 = K1/ρs1 ≡ 0,
and group delay (28) and dwell time are (30) identical quantities.

We observed in Fig. 2(a) that the transmission coefficient oscillates as a function of the frequency. The resonant
frequencies are obtained by setting T = 1 in Eq. (5). This equation is satisfied for k2L = nπ, with n = 0, 1, 2, . . .
The linear dispersion relation of a single taut string of Eq. (9) yields

fn =
nvs2
2L

. (32)

The resonant frequencies excited in Fig. 2 (a) are f0 = 0 Hz, f1 = 67 Hz and f2 = 133 Hz, for n = 0, 1, and 2,
respectively. In contrast, when the taut string is on the elastic foundation, the resulting quadratic dispersion relation,
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Eq. (10), determines that resonances cannot be excited below the cutoff frequency fc = 59 Hz, represented with a
vertical red-dashed line in Fig. 2. At the resonant condition (k2L = nπ), we have

fefn =
√
f2
n + f2

c2 ,

where fn is the resonant frequency of the bare string (32). Therefore, the resonant frequencies for the string on the

elastic foundation are larger than fn. The shifted resonances in Fig. 2 are fef1 = 89 Hz and fef1 = 146 Hz. Also
notice that narrower resonances are obtained in the presence of the elastic base.

Fig. 2 (b) shows the group delay for both the bare string τ bt and the string on the elastic base τeft . The group delay
oscillates around the free propagation time τf = L/v2, represented with a horizontal line. τf is the time of transit (or

free time) of the group pulse through the string. While τ bt is symmetric with respect to τf , τeft has asymmetric and
broader peaks.

Both τ bt (27) and τeft (28) are proportional to the transmission coefficient. Therefore, the peaks of the transmission
times are at the same spectral positions than the resonances of T . The prefactor of τ bt (27) has a constant value,

equal to 7.97 ms for the input parameters of Fig. 2. However, the prefactor of τeft (28) is a non-monotonic function

of the frequency that produces the asymmetric peaks. In fact, the intensity of the resonant peaks of τeft decays with

f , being the main peak of τeft higher than the main peak of τ bt . The prefactor of τeft diverges at f = 0 so its product
with T yields a finite value.

D. Hartman effect

The tunneling time becomes independent of the length L of an opaque barrier, except for a very thin or very thick
barrier. By opaque barrier we mean that the string is at cutoff (k2 = iκ) and Lκ → ∞. This seminal result of
Hartman,11 coined as Hartman effect, suggests the idea of instantaneous propagation that violates our notions of
causality. The HE has received much attention and has been already reported for electronic, photonic and phononic
waves. The tunneling through a potential barrier42 and the quantum tunneling through both single and double
barriers in a single graphene layer43 are nice examples of the electronic HE. Among the realizations of the photonic
HE we can find the tunneling of evanescent electromagnetic waves,39 the superluminal propagation in a left-handed
medium,44 the phenomenon of frustrated total internal reflection of electromagnetic waves45 and the tunneling of
negative-refractive-index metamaterials.46

This paradox was solved by Winful (see Ref 19 and references therein). Winful has shown that the group delay is
proportional to the average time in which the electromagnetic energy is stored in the cavity and it is a measure of the
cavity lifetime for the electromagnetic waves. He used this proportionality between the group delay and the stored
electromagnetic energy to explain the HE paradox: the group delay is not a transit time but a lifetime. This approach
eliminates the possibility of superluminal and unbounded group velocities. Arguments similar to those of Winful
have been employed to describe the saturation of the group delay for long-wavelength phonons in semiconductor
heterostructures.20

We illustrate the HE using the taut string in an elastic base of Fig. 1 (b). Non-propagating states are assumed for
the string, which behaves like a barrier (for a bare string only propagating states are allowed, so we cannot have a
barrier for the incident wave). The wavenumber k2 is replaced by iκ in the expressions for τt (28), H (29), tD (30)
and τi (31). Taking the limiting values of these quantities for a very large string, i.e. for L approaching ∞ when the
Hartman effect appears, the resulting expressions become independent of the barrier length:

τtl =
2ω

ξ̂m

(
1

k2
1v

2
s1

+
1

κ2v2
s2

)
,

Hl =
2ω2

c2
Z1

κ2v2
s2 ξ̂m

,

tDl
=

2ω2
c2

ωκ2v2
s2 ξ̂m

,

τil = −
2ω2

c1

ωk2
1v

2
s1 ξ̂m

,

where the following quantities are redefined to ξ̂m = Z1/Z2 + Z2/Z1, Z1 = ρs1v
2
s1k1 and Z2 = ρs2v

2
s2κ. With the

preceding results at hand, it is not difficult to prove that tDl
= τtl + τil (fulfilling Eq. 25). Subindex l denotes the

limiting values.
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Arguments similar to those used to explain the electromagnetic HE are valid for our system. We can check in the
resulting equations that the dwell time is proportional to the mechanical energy stored in the string, tDl

= Hl/jin,
with jin = ρs1ωv

2
s1k1. Therefore, the total group delay is proportional to the asymptotic mechanical energy, τtl +τil =

Hl/jin and it saturates as the mechanical energy saturates and cannot be a transit time. We conclude the group
delay in tunneling is not a transit time but a cavity lifetime.

III. TUNNELING THROUGH AN ARRAY OF STRINGS

Consider now a distributed Bragg reflector (DBR) made by stacking periodically N times two taut strings A1

and A2 with different mass densities ρ1 and ρ2 and propagating velocities vs1 and vs2 , respectively. The structure
is sandwiched between two identical semi-infinite media X and Y . For the sake of convenience, the constituent
parameters of strings X and Y are equal to those of medium A1. Figure 1 (c) shows a schematic representation of
this system.

The amplitudes of the harmonic waves propagating through this system are computed with help of the transfer
matrix method (TMM).47,48 Other quantities, like the transmission and reflection coefficients, the group delays, the
stored energy, and the dwell time can be computed from these amplitudes using the formulas given in the previous
section. Appendix D briefly reviews the TMM.

Fig. 3 compares the dispersion relation for an infinite array of bare taut strings with both the transmission coefficient
T calculated for a finite DBR with N = 15 periods and the corresponding transmission time τt, c.f Figs. 3 (a), (b),
and (c). Input parameters are given in the figure caption. A similar comparison is made in Figs. 3 (d), (e), and (f)
for the case that string 1 is in air (K1 = 0) and string 2 in an elastic foundation (K2 6= 0). Thus, we can say the string
1 behaves like a well, while the string 2 acts a barrier for the incident wave.
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FIG. 3. (Color online). Bare taut string: (a) Exact (solid line) and approximate (dashed line) dispersion curves calculated
as a function of the frequency (in Hz) for an infinite array of bare strings. The length in the q axis is normalized to unity.
The central frequency of the stop bands are represented by vertical dashed lines. (b) Transmission coefficient vs. frequency for
a finite DBR. (c) Transmission time τt (solid line) and free time τf (dashed line) (both in s) for a DBR. String on elastic
foundation: (d) dispersion relation, (e) transmission coefficient, and (f) transmission time. The input parameters used for the
string A1(A2) are ρs1 = 0.52 g/cm (ρs2 = 1.0 g/cm), and vs1 = 40 m/s (vs2 = 28.84 m/s); d1 = 10 cm and d2 = 21.63 cm are
the width of the layers 1 and 2, respectively, d = d1 + d2 is the period of the structure. The number of periods is assumed to
be N = 15 and Lt = Nd1 + (N − 1)d2 is the total length of the structure. The elastic modulus of the foundations are K1 = 0
and K2 = 9.87 kN/m2.

The transmission coefficient T is compared with the dispersion relation of an ideal periodic array in order to get
physical insight. This analysis is valid for DBR with a large number of cells. In fact, the response of a DBR approaches
thus of an infinite array for an increasing number of cells.9 For the limiting case of an infinity structure (N → ∞),
the dispersion relation is cast into a simple analytic form (explicit calculations are given in Appendix D),

cos(qd) = cos(k1d1 + k2d2)− ε2

2
sin(k1d1) sin(k2d2), (33)
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where ε = (Z2 − Z1)/
√
Z1Z2. Only values of the wavenumber q within the first (−π/d < q < π/d) Brillouin zone

(BZ) are going to be consider in what follows. In general, Eq. (33) must be solved numerically.
For the hypothetical case of having a single string in the unit cell of the array (Z1 = Z2 and ε = 0) the dispersion

relation of the infinite string is folded into the first BZ producing a multiband structure. In this case, the dispersion
relations is

±qd = k1d1 + k2d2 + 2mπ. (34)

where m ∈ Z is the order that labels the different bands. Eq. (34) is obtained from (33) with ε = 0. When the two
strings in the cell are different (Z1 6= Z2 and ε 6= 0), gaps are open at the center q = 0 and the border q = ±π/d of
the BZ. Gaps are also known as stop bands. Exact (solid line) and approximate (dashed line) dispersion curves are
compared in Fig. 3(a).

The approximate expression (34) can be used to estimate the values of the frequency fBm at the center of the stop
bands.49 Substituting the linear dispersion relations of the bare taut strings, k1 = ω/vs1 and k2 = ω/vs2 , into Eq.
(34) we have

fBm =
m

2

(
d1

vs1
+
d2

vs2

)−1

,

with m = 1, 2, . . . . Even (odd) values of m correspond to the gaps at the center (border) of the BZ. For the geometrical
parameters used in Fig. 3, fBm

= (50 Hz) m. Numerical values are represented in Fig. 3(a) with vertical dashed
lines.

The width of the first gap in the center of the BZ is maximum when the input parameters satisfy the relation
3d1/vs1 = d2/vs2 .6 The numerical parameters used in the calculations fulfill this relation. The gap widths in Fig.
3(a) are ∆f2 =12.26 Hz and ∆f1 = ∆f3 =9.86 Hz at center and border of the BZ, respectively.
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FIG. 4. (Color online) (a) Mechanical energy density Hs (normalized to Hs(fR, Lt/2)), (b) stress |σs| (normalized to
|σs(fR, Lt/2)|), and (c) displacement field |ys| (normalized to |ys(fR, Lt/2)|) in the DBR are plotted as a function of the
normalized distance x/d for the frequency values fR =107.5 Hz (black line) and fC =100 Hz (red line) of Fig. 3(b) . The
impedance profile of the DBR is represented with a blue line. The vertical line is located at the center of the structure,
Lt/2 =2.62 m.

Transmission bands and gaps of the finite DBR have practically the same width of those for the infinite array.
The transmission bands have N − 1 = 14 transmission peaks. While the response of the DBR of bare strings is
characterized by transmission bands broader than the gaps, the elastic base in string 2 modifies dramatically the
spectrum to have broader main gaps and deeper secondary gaps, c.f. Figs. 3(b) and (e). As for the single string,
bands of Fig. 3(e) are shifted with respect to those of Fig. 3(b). However, in contrast with the single string, we find
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a transmission band below the cutoff frequency, fc2 =69 Hz. The origin of this band is the tunneling of elastic energy
trough the strings coupled to the elastic foundation. Such strings behave like potential barriers.

Transmission times τt for the bare string and the string on an elastic base are depicted in Figs. 3(c) and (f),
respectively. τt oscillates around the free propagation time, τf = Nd1/vs1 + (N − 1)d2/vs2 . We find that τt is larger
than τf at the transmission resonances and lower than τf within the main transmission gaps. At the secondary gaps,
however, τt = τf .

As for the single string, peaks and dips of both τt and T develop at the same spectral positions. With help of the
TMM it is not difficult to prove that τt is proportional to T for a DBR with an arbitrary number of periods. This
relation is immediate for coefficients of the last string and it is preserved for the remaining strings after successive
multiplications by the transfer matrix. Therefore, we have that not only τt, but also H and tD are proportional to T .

However, the prefactor of T in the general expression for τt substantially changes when the string is on an elastic
foundation, as we have already noted for the single string. While, for the bare strings, τt is symmetric with respect
to the central gap in the center of the BZ, τt decays with f in the presence of the elastic foundation, c.f. Figs. 3(c)
and (f).

In a symmetric environment (semi-infinite strings I and III are identical), transmission and reflection tunneling
times are equal, τt = τr. This property is valid for any number of strings. It can be proved following procedures
developed for electronic37 and phononic41 waves, which are based on the invariance of Eq. (2) under both time reversal
and space reflection and the conservation of energy density flux.

The interference time (26) vanishes as long as there is no elastic base (ωc1 = vs1
√
K1/T = 0). Therefore, in

accordance with Eq. (25), the dwell times is equal to the transmission time for bare strings, tD = τt. In order to
illustrate why the life time of the wave increases when the transmission is enhanced, the mechanical energy density
Hs, the stress |σs| and the displacement field |ys| are plotted as a function of the normalized distance x/d in Fig.
4. These quantities are computed at the center of the gap (red line) and at a maximum intensity points next to the
gap and located at its right side (black line). The points have spectral positions fC =100 Hz and fR =107.5 Hz, as
indicated in Fig. 3(b).

We find that the three quantities Hs, |σs|, and |ys| take a maximum value in the central strings where the string
array is resonant at the frequency fR (for the mechanical energy is totally transmitted at these frequencies), while
their intensities decrease with the distance off-resonance (for more of the energy is reflected back at fC).

IV. CONCLUSIONS

The tunneling of mechanical energy through taut strings have been studied. We have shown that a taut string on
an elastic base can acts as a barrier where the impinging wave is reflected for a given frequency range, while the bare
string behaves like a well. Therefore, string arrays with piecewise constitutive parameters can be built. This system
is shown to be equivalent to heterostructures with alternating well and barrier layers studied in quantum mechanics
or, more recently, in photonics and phononics. Similarly, in a set of N identical multiple wells separated by finite
barriers N -fold splitting of every energy level occurs. For very large N one can speak about evolution of a discrete
set of energy levels into energy bands in the taut string array.

Tunneling times such as the group delay, the dwell time and the interference time, as well as the relation between
these quantities, have been defined for this system. We have discussed the main physical trends of the tunneling times
in both single strings and arrays of strings with alternating constitutive parameters. In particular, the Hartman effect
for infinite long barriers has been analyzed.

We hope that the present discussion motivate the experimental realization of the phenomena here described as well
as further didactic and theoretical work.
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Appendix A: Derivation of the continuity equation for an elastic wave in a taut string on an elastic base

The continuity equation for an elastic wave in a taut string connected to an elastic base is derived here. Results
obtained here are also valid for the simpler case of a bare string. The starting point is the following set of equations

y∗t ytt = v2
sy
∗
t yxx − ω2

cy
∗
t y,

yty
∗
tt = v2

syty
∗
xx − ω2

cyty
∗, (A1)

obtained by multiplying the wave equation (2) by ∂ty and ∂ty
∗, respectively. By adding the two equations and

regrouping terms, we find

∂t (y∗t yt) = v2
s (y∗t yxx + utuy

∗
xx)− ω2

c∂t (y∗y) . (A2)

The integral from x1 to x2 gives

∂t

∫ x2

x1

dx
(
|yt|2 + ω2

c |y|2
)

= v2
s

∫ x2

x1

dx (y∗t yxx + yty
∗
xx) . (A3)

Using a standard integration technique on the left side of Eq. (A3) and rearranging terms leads to

∂t

∫ x2

x1

dx
(ρs

2
|yt|2 +

ρs
2
ω2
c |y|2 +

ρs
4
v2
s (yxy

∗
x + y∗xyx)

)
=
ρs
2
v2
s (y∗t yx + yty

∗
x)|x2

x1
, (A4)

that can be simplified with help of the explicit expression of the stress function (4),

∂t

∫ x2

x1

H(x, t)dx = − (j(x2, t)− j(x1, t)) , (A5)

where

H(x, t) =
ρs
2
|yt|2 +

1

4
(σy∗x + σ∗yx) +

ρs
2
ω2
c |y|

2
, (A6)

and

j(x, t) = −ρs
2

(σ∗yt + σy∗t ) . (A7)

Eq. (A5) can be further transformed by the mean-value theorem,50

∂

∂t
H(x̄, t)(x2 − x1) = − (j(x2, t)− j(x1, t)) . (A8)

Therefore, after dividing by the integration interval ∆x = x2 − x1 and taking the limit ∆x→ 0, we obtain

∂

∂t
H(x̄, t) +

∂

∂x
j(x, t) = 0. (A9)

Since x̄ is an arbitrary point of the interval (x1, x2), Eq. (A9) has a general validity. This equation express the
continuity equation for the energy density (11).

Appendix B: Derivation of the relationship between the tunneling times

In this section the relation between the tunneling times (25) is derived for an elastic wave in a taut string on an
elastic base. Results obtained here are also valid for the simpler case of a bare string. The procedures we follow are
similar to those used for quantum tunneling problems.42 In particular, we consider the sensitivity of the wave function
to variations in frequency.35
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We assume that a time-harmonic solution of the form ỹ(x, t) = y2(x)e−iωtx propagates in the region 0 < 0 < L.
Substituting the energy density (14) into the equation for the mechanical energy (15) and using Eq. (4) yields

Hef =
1

2
ρ2(ω2 + ω2

c2)

∫ L

0

|y2|2 dx+
1

2
ρ2v

2
s2

∫ L

0

∣∣∣∣dy2

dx

∣∣∣∣2 dx. (B1)

The second integral in Eq. (B1),

I1 =

∫ L

0

∣∣∣∣dy2

dx

∣∣∣∣2 dx, (B2)

can be integrated by parts,

I1 = Re

{
y2
dy∗2
dx

∣∣∣∣L
0

−
∫ L

0

y2
d2y∗2
dx2

dx

}
, (B3)

where the function Re(x) denote the real part of x. Notice that the displacement field ỹ(x, t) satisfies the Helmholtz
equation,

d2y2

dx2
+ k2

2y2 = 0, (B4)

where k2
2 =

(
ω2 − ω2

c2

)
/v2
s2 . By replacing the Helmholtz equation into Eq. (B3), one can obtain a new equation

I1 = Re

{
y2
dy∗2
dx

∣∣∣∣L
0

+ k2
2

∫ L

0

|y2|2 dx

}
. (B5)

Using Eq. (B5), the vibrational energy (B1) can be expressed as

Hef = ρ2ω
2

∫ L

0

|y2|2 dx+
1

2
ρ2v

2
s2Re

{
y2
dy∗2
dx

∣∣∣∣L
0

}
. (B6)

The integral on the right-hand of Eq. (B6)

I2 =

∫ L

0

|y2|2 dx, (B7)

can be evaluated as

I2 =
v2
s2

2ω
Re

{(
∂y2

∂ω

dy∗2
dx
− y∗2

∂2y2

∂ω∂x

)∣∣∣∣L
0

}
, (B8)

(See Appendix C for further details). Therefore,

Hef =
ρ2v

2
s2ω

2
Re

{(
∂y2

∂ω

dy∗2
dx
− y∗2

∂2y2

∂ω∂x

)∣∣∣∣L
0

}
+
ρ2v

2
s2

2
Re

{
y2
dy∗2
dx

∣∣∣∣L
0

}
. (B9)

Inserting the boundary conditions (both continuity of displacement and stress fields in x = 0 and x = L) in Eq. (B9),
we obtain:

Hef =
ω

2
Re

{
ρ1v

2
s1

(
∂y3

∂ω

dy∗3
dx
− y∗3

∂2y3

∂ω∂x

)∣∣∣∣
x=L

}
− ω

2
Re

{
ρ1v

2
s1

(
∂y1

∂ω

dy∗1
dx
− y∗1

∂2y1

∂ω∂x

)∣∣∣∣
x=0

}
+
ρ1v

2
s1

2
Re

{
y3
dy∗3
dx

∣∣∣∣
x=L

}
+
ρ1v

2
s1

2
Re

{
y1
dy∗1
dx

∣∣∣∣
x=0

}
, (B10)

Recalling how y1 and y2 are defined by Eq. (3), we finally have

Hef = ρ1ωv
2
s1k1|r|2

dαr
dω

+ ρ1ωv
2
s1k1|t|2

dαt
dω

+ ρ1vs1

(
ω
dk1

dω
− k1

)
|r| sin (αr) . (B11)

Normalizing the mechanical energy Hef to the incident flux jin, and using the proper definitions of tunneling times
(20), (23) and (24), the identity (25) is obtained.
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Appendix C: Calculation of the integral I2

The integral I2 (B8) is computed in this section. We start from the following set of equations,

∂y2

∂ω

d2y∗2
dx2

+ k2
2

∂y2

∂ω
y∗2 = 0,

y∗2
∂

∂ω

d2y2

dx2
+ y∗2

∂

∂ω

(
k2

2y2

)
= 0, (C1)

which are obtained by multiplying the complex conjugate of the Helmholtz equation (B4) by ∂y2/∂ω, and the derivative
with respect to frequency of Helmholtz equation by y∗2 , respectively. Subtracting the two equations and rearranging
terms, give us

|y2|2 =
v2
s2

2ω

∂

∂x

(
∂y2

∂ω

∂y∗2
∂x
− y∗2

∂2y2

∂ω∂x

)
. (C2)

Integrating over the interval 0 ≤ x ≤ L, it reads,

I2 =

∫ L

0

|y2|2 dx =
v2
s2

2ω

∫ L

0

∂

∂x

(
∂y2

∂ω

∂y∗2
∂x
− y∗2

∂2y2

∂ω∂x

)
dx, (C3)

or, equivalently,

I2 =
v2
s2

2ω
Re

{(
∂y2

∂ω

dy∗2
dx
− y∗2

∂2y2

∂ω∂x

)∣∣∣∣L
0

}
. (C4)

Appendix D: Transfer matrix method

Consider a finite number of taut strings sandwiched between two semi-infinite mediums. The transfer matrix
method (TMM) is an efficient way of computing the amplitudes of the harmonic waves in each of the strings.47,48

The general form of the displacement field yn,j in the j layer, with j ∈ (1, · · · , N), is equal to

yn,j(x, t) =
(
An,je

ikjx +Bn,je
−ikjx

)
eiωt, (D1)

where kj and dj are the wave vector and thickness, respectively, of the j layer with 0 < x < dj . In the TMM, the
displacement field is represented by a column vector of the amplitudes,

Cn,j =

(
An,j
Bn,j

)
. (D2)

In particular, the amplitudes of the transmitted and reflected displacement field are

CY =

(
t
0

)
, CX =

(
1
r

)
, (D3)

respectively. A relation between the amplitudes in consecutive layers is developed from the boundary conditions.
This relation is written in form of a matrix. Multiplying N times by this transfer matrix, the following relation is
established between CY and CX ,

CX = D−1
X M1 · · ·Mj · · ·MNDY CY = TCY , (D4)

where Mj = DjPjD
−1
j ,

Dj =

(
1 1

iZ̃j −iZ̃j

)
, (D5)

Pj =

(
e−ikjdj 0

0 eikjdj

)
, (D6)
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Z̃j = ρjv
2
sjkj and T = D−1

X M1 · · ·Mj · · ·MNDY . Finally, t and r can be easily obtained from Eq. (D4).
Let us now consider a periodic structure with an infinite number of identical cells. The relation between the

amplitudes of the displacement fields at two consecutive cells can be written either using the periodicity of the system
or the transfer matrix, (

An+1,1

Bn+1,1

)
= M

(
An,1
Bn,1

)
= eiqd

(
An,1
Bn,1

)
,

where M = D−1
1 D2P2D

−1
2 D1P1 is the transfer matrix, q is the Bloch wave vector, and d = d1 + d2 is the period of

the structure. A nontrivial solutions of last equation can be achieved for

Det(M − eiqdI) = 0,

where I is the identity matrix of order 2. The dispersion relation (33) is the straightforward solution of this secular
equation.

∗ diosdado@ifuap.buap.mx
† Corresponding author. e-mails: fdlp@unizar.es
1 S. He and J. D. Maynard, “Detailed measurements of inelastic scattering in Anderson localization,” Phys. Rev. Lett. 57,

3171 (1986).
2 J. D. Maynard, “Colloquium: Acoustical analogs of condensed-matter problems,” Rev. Mod. Phys. 73, 401–417 (2001).
3 N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Phonon Bloch oscillations in acoustic-cavity structures,” Phys.

Rev. B 71, 041305(R) (2005).
4 L. Gutiérrez, A. Dı́az-de-Anda, J. Flores, R. A. Méndez-Sánchez, G. Monsivais, and A. Morales, “Wannier-Stark Ladders in

One-Dimensional Elastic Systems,” Phys. Rev. Lett. 97, 114301 (2006).
5 G. Monsivais, R. A. Méndez-Sánchez, A. Dı́az-de-Anda, J. Flores, L. Gutiérrez, and A. Morales, “Elastic Wannier-Stark

ladders in torsional waves,” J. of Mechanics of Materials and Structures 2, 1629–1637 (2007).
6 N. D. Lanzillotti-Kimura, A. Fainstein, C. A. Balseiro, and B. Jusserand, “Phonon engineering with acoustic nanocavities:

Theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations,” Phys. Rev. B 75, 024301
(2007).

7 A. Morales, A. Dı́az-de-Anda, J. Flores, L. Gutiérrez, R. A. Méndez-Sánchez, G. Monsivais, and P. Mora, “Doorway states
in quasione-dimensional elastic systems,” EPL 99, 54002 (2012).
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