000102102 001__ 102102
000102102 005__ 20230519145400.0
000102102 0247_ $$2doi$$a10.3390/pharmaceutics13030416
000102102 0248_ $$2sideral$$a124311
000102102 037__ $$aART-2021-124311
000102102 041__ $$aeng
000102102 100__ $$aCaro, C.
000102102 245__ $$aFe3O4-Au core-shell nanoparticles as a multimodal platform for in vivo imaging and focused photothermal therapy
000102102 260__ $$c2021
000102102 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102102 5203_ $$aIn this study, we report the synthesis of gold-coated iron oxide nanoparticles capped with polyvinylpyrrolidone (Fe@Au NPs). The as-synthesized nanoparticles (NPs) exhibited good stability in aqueous media and excellent features as contrast agents (CA) for both magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Additionally, due to the presence of the local surface plasmon resonances of gold, the NPs showed exploitable “light-to-heat” conversion ability in the near-infrared (NIR) region, a key attribute for effective photothermal therapies (PTT). In vitro experiments revealed biocompatibility as well as excellent efficiency in killing glioblastoma cells via PTT. The in vivo nontoxicity of the NPs was demonstrated using zebrafish embryos as an intermediate step between cells and rodent models. To warrant that an effective therapeutic dose was achieved inside the tumor, both intratumoral and intravenous routes were screened in rodent models by MRI and CT. The pharmacokinetics and biodistribution confirmed the multimodal imaging CA capabilities of the Fe@AuNPs and revealed constraints of the intravenous route for tumor targeting, dictating intratumoral administration for therapeutic applications. Finally, Fe@Au NPs were successfully used for an in vivo proof of concept of imaging- guided focused PTT against glioblastoma multiforme in a mouse model.
000102102 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BIO2017-84246-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2017-86655-R
000102102 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102102 590__ $$a6.525$$b2021
000102102 592__ $$a0.922$$b2021
000102102 594__ $$a6.0$$b2021
000102102 591__ $$aPHARMACOLOGY & PHARMACY$$b39 / 279 = 0.14$$c2021$$dQ1$$eT1
000102102 593__ $$aPharmaceutical Science$$c2021$$dQ1
000102102 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102102 700__ $$aGámez, F.
000102102 700__ $$aQuaresma, P.
000102102 700__ $$aPáez-Muñoz, J.M.
000102102 700__ $$aDomínguez, A.
000102102 700__ $$aPearson, J.R.
000102102 700__ $$aPernía Leal, M.
000102102 700__ $$aBeltrán, A.M.
000102102 700__ $$0(orcid)0000-0002-0970-1917$$aFernandez-Afonso, Y.
000102102 700__ $$0(orcid)0000-0003-1081-8482$$aMartínez De la Fuente, Jesús
000102102 700__ $$aFranco, R.
000102102 700__ $$aPereira, E.
000102102 700__ $$aGarcía-Martín, M.L.
000102102 773__ $$g13, 3 (2021), 416 [21 pp.]$$pPharmaceutics$$tPharmaceutics$$x1999-4923
000102102 8564_ $$s4784739$$uhttps://zaguan.unizar.es/record/102102/files/texto_completo.pdf$$yVersión publicada
000102102 8564_ $$s2782248$$uhttps://zaguan.unizar.es/record/102102/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102102 909CO $$ooai:zaguan.unizar.es:102102$$particulos$$pdriver
000102102 951__ $$a2023-05-18-13:38:35
000102102 980__ $$aARTICLE