000102103 001__ 102103
000102103 005__ 20230519145400.0
000102103 0247_ $$2doi$$a10.3390/nano11051077
000102103 0248_ $$2sideral$$a124296
000102103 037__ $$aART-2021-124296
000102103 041__ $$aeng
000102103 100__ $$0(orcid)0000-0001-9566-0738$$aGracia Abad, Rubén$$uUniversidad de Zaragoza
000102103 245__ $$aOmnipresence of Weak Antilocalization (WAL) in Bi2Se3 Thin Films: A Review on Its Origin
000102103 260__ $$c2021
000102103 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102103 5203_ $$aTopological insulators are materials with time-reversal symmetric states of matter in which an insulating bulk is surrounded by protected Dirac-like edge or surface states. Among topological insulators, Bi2Se3 has attracted special attention due to its simple surface band structure and its relatively large band gap that should enhance the contribution of its surface to transport, which is usually masked by the appearance of defects. In order to avoid this difficulty, several features characteristic of topological insulators in the quantum regime, such as the weak-antilocalization effect, can be explored through magnetotransport experiments carried out on thin films of this material. Here, we review the existing literature on the magnetotransport properties of Bi2Se3 thin films, paying thorough attention to the weak-antilocalization effect, which is omnipresent no matter the film quality. We carefully follow the different situations found in reported experiments, from the most ideal situations, with a strong surface contribution, towards more realistic cases where the bulk contribution dominates. We have compared the transport data found in literature to shed light on the intrinsic properties of Bi2Se3, finding a clear relationship between the mobility and the phase coherence length of the films that could trigger further experiments on transport in topological systems.
000102103 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E13-20R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-2-R
000102103 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102103 590__ $$a5.719$$b2021
000102103 592__ $$a0.839$$b2021
000102103 594__ $$a6.6$$b2021
000102103 591__ $$aPHYSICS, APPLIED$$b37 / 161 = 0.23$$c2021$$dQ1$$eT1
000102103 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000102103 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b109 / 345 = 0.316$$c2021$$dQ2$$eT1
000102103 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ1
000102103 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 180 = 0.306$$c2021$$dQ2$$eT1
000102103 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b53 / 109 = 0.486$$c2021$$dQ2$$eT2
000102103 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102103 700__ $$aSangiao Barral, Soraya
000102103 700__ $$aBigi, Chiara
000102103 700__ $$aChaluvadi, Sandeep Kumar
000102103 700__ $$aOrgiani, Pasquale
000102103 700__ $$0(orcid)0000-0002-4123-487X$$aDe Teresa Nogueras, José María$$uUniversidad de Zaragoza
000102103 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000102103 773__ $$g11, 5 (2021), 1077 [20 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000102103 8564_ $$s4050129$$uhttps://zaguan.unizar.es/record/102103/files/texto_completo.pdf$$yVersión publicada
000102103 8564_ $$s2723372$$uhttps://zaguan.unizar.es/record/102103/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102103 909CO $$ooai:zaguan.unizar.es:102103$$particulos$$pdriver
000102103 951__ $$a2023-05-18-13:38:52
000102103 980__ $$aARTICLE