000102107 001__ 102107
000102107 005__ 20230519145402.0
000102107 0247_ $$2doi$$a10.3390/math9050474
000102107 0248_ $$2sideral$$a124313
000102107 037__ $$aART-2021-124313
000102107 041__ $$aeng
000102107 100__ $$0(orcid)0000-0003-2453-7841$$aAbadias, L.$$uUniversidad de Zaragoza
000102107 245__ $$a(w, c)-periodic mild solutions to non-autonomous abstract differential equations
000102107 260__ $$c2021
000102107 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102107 5203_ $$aWe investigate the semi-linear, non-autonomous, first-order abstract differential equation x′(t)=A(t)x(t)+f(t,x(t),φ[α(t,x(t))]),t∈R. We obtain results on existence and uniqueness of (ω,c)-periodic (second-kind periodic) mild solutions, assuming that A(t) satisfies the so-called Acquistapace–Terreni conditions and the homogeneous associated problem has an integrable dichotomy. A new composition theorem and further regularity theorems are given.
000102107 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26-17R$$9info:eu-repo/grantAgreement/ES/MICINN PID2019-105979GB-I00$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2019-CIE-01
000102107 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102107 590__ $$a2.592$$b2021
000102107 592__ $$a0.538$$b2021
000102107 594__ $$a2.9$$b2021
000102107 591__ $$aMATHEMATICS$$b21 / 333 = 0.063$$c2021$$dQ1$$eT1
000102107 593__ $$aComputer Science (miscellaneous)$$c2021$$dQ2
000102107 593__ $$aEngineering (miscellaneous)$$c2021$$dQ2
000102107 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102107 700__ $$aAlvarez, Edgardo
000102107 700__ $$aGrau, Rogelio
000102107 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000102107 773__ $$g9, 5 (2021), 474 [15 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390
000102107 8564_ $$s302419$$uhttps://zaguan.unizar.es/record/102107/files/texto_completo.pdf$$yVersión publicada
000102107 8564_ $$s2396510$$uhttps://zaguan.unizar.es/record/102107/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102107 909CO $$ooai:zaguan.unizar.es:102107$$particulos$$pdriver
000102107 951__ $$a2023-05-18-13:41:42
000102107 980__ $$aARTICLE