000102129 001__ 102129
000102129 005__ 20230519145407.0
000102129 0247_ $$2doi$$a10.1103/PhysRevE.103.022802
000102129 0248_ $$2sideral$$a124360
000102129 037__ $$aART-2021-124360
000102129 041__ $$aeng
000102129 100__ $$0(orcid)0000-0002-1625-2785$$aMartínez, Pedro J.$$uUniversidad de Zaragoza
000102129 245__ $$aNumerical study of pattern formation in compliant surfaces scraped by a rigid tip
000102129 260__ $$c2021
000102129 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102129 5203_ $$aThe emergence of surface patterns on the surfaces of compliant materials subject to plowing wear is a complex problem which can be quantitatively characterized, e.g., on polymer surfaces scraped by an atomic force microscope (AFM) tip. Here we explore the applicability of a phenomenological model recently introduced to describe this phenomenon. Based on the competition between the viscoplastic indentation and the elastic shear stress caused by the tip, the model is able to reproduce the wavy features (ripples) observed when the tip is scanned along a series of parallel lines. For low values of the driving velocity v and the spacing b between scan lines, the existence of dotted areas formed by variously oriented pit alignments is observed. Moreover, coexistence of rippled with dotted domains is also observed at suitable parameter values. The formation process of the ripples is also described in detail. The amplitude, period, and orientation of these features are estimated numerically for different values of v and b parameters. We have also revisited the formation of the wavy patterns formed when a single line is scanned, and derived an equation which correctly describes their period and depth, and the static friction as well. This equation is not applicable when several lines are scanned one after the other and the ripples emerge as result of a cooperative process which involves the scanning of several lines.
000102129 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-17R-FENOL$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2017-87519-P
000102129 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102129 590__ $$a2.707$$b2021
000102129 592__ $$a0.847$$b2021
000102129 594__ $$a4.5$$b2021
000102129 591__ $$aPHYSICS, MATHEMATICAL$$b10 / 56 = 0.179$$c2021$$dQ1$$eT1
000102129 593__ $$aStatistical and Nonlinear Physics$$c2021$$dQ1
000102129 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b16 / 34 = 0.471$$c2021$$dQ2$$eT2
000102129 593__ $$aCondensed Matter Physics$$c2021$$dQ1
000102129 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102129 700__ $$aGnecco, Enrico
000102129 700__ $$0(orcid)0000-0003-0698-6555$$aMazo, Juan J.$$uUniversidad de Zaragoza
000102129 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000102129 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000102129 773__ $$g103, 2 (2021), 022802 [7 pp.]$$pPhys. rev., E$$tPhysical Review E$$x2470-0045
000102129 8564_ $$s2563444$$uhttps://zaguan.unizar.es/record/102129/files/texto_completo.pdf$$yVersión publicada
000102129 8564_ $$s3116238$$uhttps://zaguan.unizar.es/record/102129/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102129 909CO $$ooai:zaguan.unizar.es:102129$$particulos$$pdriver
000102129 951__ $$a2023-05-18-13:49:36
000102129 980__ $$aARTICLE