000102130 001__ 102130
000102130 005__ 20230519145407.0
000102130 0247_ $$2doi$$a10.3390/membranes11020105
000102130 0248_ $$2sideral$$a124361
000102130 037__ $$aART-2021-124361
000102130 041__ $$aeng
000102130 100__ $$aUpadhyaya, Lakshmeesha
000102130 245__ $$aBlock copolymer-based magnetic mixed matrix membranes-effect of magnetic field on protein permeation and membrane fouling
000102130 260__ $$c2021
000102130 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102130 5203_ $$aIn this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2, 3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes.
000102130 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102130 590__ $$a4.562$$b2021
000102130 592__ $$a0.517$$b2021
000102130 594__ $$a3.7$$b2021
000102130 591__ $$aPOLYMER SCIENCE$$b21 / 90 = 0.233$$c2021$$dQ1$$eT1
000102130 593__ $$aProcess Chemistry and Technology$$c2021$$dQ2
000102130 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b132 / 345 = 0.383$$c2021$$dQ2$$eT2
000102130 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ2
000102130 591__ $$aCHEMISTRY, PHYSICAL$$b69 / 165 = 0.418$$c2021$$dQ2$$eT2
000102130 591__ $$aENGINEERING, CHEMICAL$$b47 / 143 = 0.329$$c2021$$dQ2$$eT1
000102130 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102130 700__ $$aSemsarilar, Mona
000102130 700__ $$aQuemener, Damien
000102130 700__ $$0(orcid)0000-0002-6813-780X$$aFernández-Pacheco, Rodrigo
000102130 700__ $$0(orcid)0000-0001-7872-6301$$aMartinez, Gema$$uUniversidad de Zaragoza
000102130 700__ $$aCoelhoso, Isabel M.
000102130 700__ $$aNunes, Suzana P.
000102130 700__ $$aCrespo, Joao G.
000102130 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, Reyes$$uUniversidad de Zaragoza
000102130 700__ $$aPortugal, Carla A. M.
000102130 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000102130 773__ $$g11, 2 (2021), 105 [16 pp.]$$pMembranes$$tMembranes$$x2077-0375
000102130 8564_ $$s4641391$$uhttps://zaguan.unizar.es/record/102130/files/texto_completo.pdf$$yVersión publicada
000102130 8564_ $$s2702955$$uhttps://zaguan.unizar.es/record/102130/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102130 909CO $$ooai:zaguan.unizar.es:102130$$particulos$$pdriver
000102130 951__ $$a2023-05-18-13:49:51
000102130 980__ $$aARTICLE