000102141 001__ 102141
000102141 005__ 20230519145408.0
000102141 0247_ $$2doi$$a10.1140/epjc/s10052-020-08801-2
000102141 0248_ $$2sideral$$a124374
000102141 037__ $$aART-2021-124374
000102141 041__ $$aeng
000102141 100__ $$aAalseth, C.E.
000102141 245__ $$aSiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range
000102141 260__ $$c2021
000102141 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102141 5203_ $$aProportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (“neutral bremsstrahlung”, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science.
000102141 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102141 590__ $$a4.994$$b2021
000102141 592__ $$a1.563$$b2021
000102141 594__ $$a8.3$$b2021
000102141 591__ $$aPHYSICS, PARTICLES & FIELDS$$b8 / 29 = 0.276$$c2021$$dQ2$$eT1
000102141 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ1
000102141 593__ $$aEngineering (miscellaneous)$$c2021$$dQ1
000102141 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102141 700__ $$aAbdelhakim, S.
000102141 700__ $$aAgnes, P.
000102141 700__ $$aAjaj, R.
000102141 700__ $$aAlbuquerque, I.F.M.
000102141 700__ $$aAlexander, T.
000102141 700__ $$aAlici, A.
000102141 700__ $$aAlton, A.K.
000102141 700__ $$aAmaudruz, P.
000102141 700__ $$aAmeli, F.
000102141 700__ $$aAnstey, J.
000102141 700__ $$aAntonioli, P.
000102141 700__ $$aArba, M.
000102141 700__ $$aArcelli, S.
000102141 700__ $$aArdito, R.
000102141 700__ $$aArnquist, I.J.
000102141 700__ $$aArpaia, P.
000102141 700__ $$aAsner, D.M.
000102141 700__ $$aAsunskis, A.
000102141 700__ $$aAve, M.
000102141 700__ $$aBack, H.O.
000102141 700__ $$aBarbaryan, V.
000102141 700__ $$aBarrado Olmedo, A.
000102141 700__ $$aBatignani, G.
000102141 700__ $$aBisogni, M.G.
000102141 700__ $$aBocci, V.
000102141 700__ $$aBondar, A.
000102141 700__ $$aBonfini, G.
000102141 700__ $$aBonivento, W.
000102141 700__ $$aBorisova, E.
000102141 700__ $$aBottino, B.
000102141 700__ $$aBoulay, M.G.
000102141 700__ $$aBunker, R.
000102141 700__ $$aBussino, S.
000102141 700__ $$aBuzulutskov, A.
000102141 700__ $$aCadeddu, M.
000102141 700__ $$aCadoni, M.
000102141 700__ $$aCaminata, A.
000102141 700__ $$aCanci, N.
000102141 700__ $$aCandela, A.
000102141 700__ $$aCantini, C.
000102141 700__ $$aCaravati, M.
000102141 700__ $$aCariello, M.
000102141 700__ $$aCarnesecchi, F.
000102141 700__ $$aCastellani, A.
000102141 700__ $$aCastello, P.
000102141 700__ $$aCavalcante, P.
000102141 700__ $$aCavazza, D.
000102141 700__ $$aCavuoti, S.
000102141 700__ $$0(orcid)0000-0002-6948-5101$$aCebrian, S.$$uUniversidad de Zaragoza
000102141 700__ $$aCela Ruiz, J.M.
000102141 700__ $$aCelano, B.
000102141 700__ $$aCereseto, R.
000102141 700__ $$aChashin, S.
000102141 700__ $$aCheng, W.
000102141 700__ $$aChepurnov, A.
000102141 700__ $$aCicalò, C.
000102141 700__ $$aCifarelli, L.
000102141 700__ $$aCitterio, M.
000102141 700__ $$aCoccetti, F.
000102141 700__ $$aCocco, V.
000102141 700__ $$aColocci, M.
000102141 700__ $$aConde Vilda, E.
000102141 700__ $$aConsiglio, L.
000102141 700__ $$aCossio, F.
000102141 700__ $$aCovone, G.
000102141 700__ $$aCrivelli, P.
000102141 700__ $$aD’Antone, I.
000102141 700__ $$aD’Incecco, M.
000102141 700__ $$aDa Rocha Rolo, M.D.
000102141 700__ $$aDadoun, O.
000102141 700__ $$aDaniel, M.
000102141 700__ $$aDavini, S.
000102141 700__ $$aDe Cecco, S.
000102141 7102_ $$12004$$2390$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Atóm.Molec.y Nucl.
000102141 773__ $$g81, 2 (2021), 153 [17 pp.]$$pEur. phys. j., C$$tThe European Physical Journal C$$x1434-6044
000102141 8564_ $$s1879932$$uhttps://zaguan.unizar.es/record/102141/files/texto_completo.pdf$$yVersión publicada
000102141 8564_ $$s2754344$$uhttps://zaguan.unizar.es/record/102141/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102141 909CO $$ooai:zaguan.unizar.es:102141$$particulos$$pdriver
000102141 951__ $$a2023-05-18-13:51:34
000102141 980__ $$aARTICLE