000102157 001__ 102157
000102157 005__ 20230519145439.0
000102157 0247_ $$2doi$$a10.1039/d0nr08558h
000102157 0248_ $$2sideral$$a124094
000102157 037__ $$aART-2021-124094
000102157 041__ $$aeng
000102157 100__ $$0(orcid)0000-0001-9713-5603$$aHernández López, L.
000102157 245__ $$aSearching for kagome multi-bands and edge states in a predicted organic topological insulator
000102157 260__ $$c2021
000102157 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102157 5203_ $$aRecently, mixed honeycomb–kagome lattices featuring metal–organic networks have been theoretically proposed as topological insulator materials capable of hosting nontrivial edge states. This new family of so-called “organic topological insulators” are purely two-dimensional and combine polyaromatic-flat molecules with metal adatoms. However, their experimental validation is still pending given the generalized absence of edge states. Here, we generate one such proposed network on a Cu(111) substrate and study its morphology and electronic structure with the purpose of confirming its topological properties. The structural techniques reveal a practically flawless network that results in a kagome network multi-band observed by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. However, at the network island borders we notice the absence of edge states. Bond-resolved imaging of the network exhibits an unexpected structural symmetry alteration that explains such disappearance. This collective lifting of the network symmetry could be more general than initially expected and provide a simple explanation for the recurrent experimental absence of edge states in predicted organic topological insulators.
000102157 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2019-107338RB-C63$$9info:eu-repo/grantAgreement/ES/AEI/PID2019-107338RB-C64$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E12-20R$$9info:eu-repo/grantAgreement/EUR/ERDF/EFA194-16TNSI$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78293-C6-4-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78293-C6-6R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-83468-R
000102157 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000102157 590__ $$a8.307$$b2021
000102157 592__ $$a1.744$$b2021
000102157 594__ $$a13.4$$b2021
000102157 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b37 / 180 = 0.206$$c2021$$dQ1$$eT1
000102157 593__ $$aNanoscience and Nanotechnology$$c2021$$dQ1
000102157 591__ $$aPHYSICS, APPLIED$$b23 / 161 = 0.143$$c2021$$dQ1$$eT1
000102157 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000102157 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b70 / 345 = 0.203$$c2021$$dQ1$$eT1
000102157 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b31 / 109 = 0.284$$c2021$$dQ2$$eT1
000102157 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102157 700__ $$aPiquero-Zulaica, I.
000102157 700__ $$0(orcid)0000-0002-0058-9746$$aDowning, C.A.
000102157 700__ $$aPiantek, M.
000102157 700__ $$aFujii, J.
000102157 700__ $$0(orcid)0000-0002-3260-9641$$aSerrate, D.
000102157 700__ $$aOrtega, J.E.
000102157 700__ $$0(orcid)0000-0002-0047-1772$$aBartolomé, F.
000102157 700__ $$0(orcid)0000-0003-2698-2543$$aLobo Checa, J.
000102157 773__ $$g13, 10 (2021), 5216-5223$$pNanoscale$$tNanoscale$$x2040-3364
000102157 8564_ $$s2044273$$uhttps://zaguan.unizar.es/record/102157/files/texto_completo.pdf$$yVersión publicada
000102157 8564_ $$s3003866$$uhttps://zaguan.unizar.es/record/102157/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102157 909CO $$ooai:zaguan.unizar.es:102157$$particulos$$pdriver
000102157 951__ $$a2023-05-18-14:28:49
000102157 980__ $$aARTICLE