000102158 001__ 102158
000102158 005__ 20230519145439.0
000102158 0247_ $$2doi$$a10.1039/d0na00873g
000102158 0248_ $$2sideral$$a124099
000102158 037__ $$aART-2021-124099
000102158 041__ $$aeng
000102158 100__ $$0(orcid)0000-0002-3373-9341$$aIdiago López, J.
000102158 245__ $$aNanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications
000102158 260__ $$c2021
000102158 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102158 5203_ $$aBioorthogonal chemistry comprises chemical reactions that can take place inside complex biological environments, providing outstanding tools for the investigation and elucidation of biological processes. Its use in combination with nanotechnology can lead to further developments in diverse areas of biomedicine, such as molecular bioimaging, targeted delivery, in situdrug activation, study of cell-nanomaterial interactions, biosensing, etc.Here, we summarise the recent efforts to bring together the unique properties of nanoparticles and the remarkable features of bioorthogonal reactions to create a toolbox of new or improved biomedical applications. We show how, by joining forces, bioorthogonal chemistry and nanotechnology can overcome some of the key current limitations in the field of nanomedicine, providing better, faster and more sensitive nanoparticle-based bioimaging and biosensing techniques, as well as therapeutic nanoplatforms with superior efficacy.
000102158 536__ $$9info:eu-repo/grantAgreement/EC/H2020/657215/EU/Cell-surface immobilized vs. internalized magnetic nanoparticles for magnetic hyperthermia studies/OUTstandINg$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 657215-OUTstandINg$$9info:eu-repo/grantAgreement/ES/MECD/FPU17-02024$$9info:eu-repo/grantAgreement/EUR/M-ERA.NET/COFUND-MagicCellGene-PCIN-2017-060$$9info:eu-repo/grantAgreement/ES/MINECO/BIO2017-84246-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-096016-B-I00$$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2015-17640
000102158 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000102158 590__ $$a5.598$$b2021
000102158 592__ $$a1.043$$b2021
000102158 594__ $$a5.7$$b2021
000102158 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b56 / 180 = 0.311$$c2021$$dQ2$$eT1
000102158 593__ $$aAtomic and Molecular Physics, and Optics$$c2021$$dQ1
000102158 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b111 / 345 = 0.322$$c2021$$dQ2$$eT1
000102158 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000102158 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b55 / 109 = 0.505$$c2021$$dQ3$$eT2
000102158 593__ $$aEngineering (miscellaneous)$$c2021$$dQ1
000102158 593__ $$aBioengineering$$c2021$$dQ1
000102158 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000102158 700__ $$0(orcid)0000-0002-8223-3267$$aMoreno Antolín, E.
000102158 700__ $$0(orcid)0000-0003-1081-8482$$aFuente, J.M. de la
000102158 700__ $$0(orcid)0000-0001-5559-8757$$aFratila, R.M.
000102158 773__ $$g3, 5 (2021), 1261-1292$$tNanoscale Advances$$x2516-0230
000102158 8564_ $$s3185110$$uhttps://zaguan.unizar.es/record/102158/files/texto_completo.pdf$$yVersión publicada
000102158 8564_ $$s3015562$$uhttps://zaguan.unizar.es/record/102158/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102158 909CO $$ooai:zaguan.unizar.es:102158$$particulos$$pdriver
000102158 951__ $$a2023-05-18-14:29:06
000102158 980__ $$aARTICLE