000102159 001__ 102159
000102159 005__ 20230519145439.0
000102159 0247_ $$2doi$$a10.1039/d0dt04300a
000102159 0248_ $$2sideral$$a124100
000102159 037__ $$aART-2021-124100
000102159 041__ $$aeng
000102159 100__ $$aDriscoll, E.H.
000102159 245__ $$aRaman spectroscopy insights into the a- and d-phases of formamidinium lead iodide (FAPbI3)
000102159 260__ $$c2021
000102159 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102159 5203_ $$aSolar perovskites have received phenomenal attention and success over the past decade, due to their high power conversion efficiencies (PCE), ease of fabrication and low cost which has enabled the prospect of them being a real commercial contender to the traditional silicon technology. In one of the several developments on the archetypal MAPbI3perovskite absorber layer, FAPbI3was found to obtain a higher PCE, likely due to its more optimum band gap, with doping strategies focusing on the inclusion of MA+/Cs+cations to avoid the unfavourable phase transformation to a photoinactive phase. To better understand the phase change from the photoactive cubic (Pm3¯m) black (a) phase to the unwanted photoinactive (P63/mmc) yellow (d) phase, we make use of variable temperature Raman spectroscopy to probe the molecular species and its relationship to the inorganic framework. We show for the first time there to be no Raman active modes for the a phase up to 4000 cm-1, which can be correlated to thePm3¯mcubic symmetry of that phase. Our detailed studies suggest that previous reports of the observation of Raman peaks for this phase are likely associated with degradation reactions from the localised laser exposure and the formation of Raman active lead oxide. In addition, we have identified water as a contributing factor to the transformation, and observed a corresponding signal in the Raman spectra, although confirmation of its exact role still remains inconclusive.
000102159 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/RYC-2018-025553-I
000102159 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102159 590__ $$a4.569$$b2021
000102159 592__ $$a0.864$$b2021
000102159 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b7 / 46 = 0.152$$c2021$$dQ1$$eT1
000102159 593__ $$aInorganic Chemistry$$c2021$$dQ1
000102159 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102159 700__ $$0(orcid)0000-0001-8751-0983$$aOrera, A.$$uUniversidad de Zaragoza
000102159 700__ $$aAnderson, P.A.
000102159 700__ $$0(orcid)0000-0002-5793-2058$$aSanjuán, M.L.
000102159 700__ $$aSlater, P.R.
000102159 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000102159 773__ $$g50, 9 (2021), 3315-3323$$pDalton Trans.$$tDalton Transactions$$x1477-9226
000102159 8564_ $$s2327897$$uhttps://zaguan.unizar.es/record/102159/files/texto_completo.pdf$$yVersión publicada
000102159 8564_ $$s2882672$$uhttps://zaguan.unizar.es/record/102159/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102159 909CO $$ooai:zaguan.unizar.es:102159$$particulos$$pdriver
000102159 951__ $$a2023-05-18-14:29:10
000102159 980__ $$aARTICLE