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Abstract. Let P be a set of n points in the plane. We consider a variation of the classical
Erd\H os--Szekeres problem, presenting efficient algorithms with O(n3) running time and O(n2) space
complexity that compute (1) a subset S of P such that the boundary of the rectilinear convex hull
of S has the maximum number of points from P , (2) a subset S of P such that the boundary of the
rectilinear convex hull of S has the maximum number of points from P and its interior contains no
element of P , (3) a subset S of P such that the rectilinear convex hull of S has maximum area and
its interior contains no element of P , and (4) when each point of P is assigned a weight, positive or
negative, a subset S of P that maximizes the total weight of the points in the rectilinear convex hull of
S. We also revisit the problems of computing a maximum area orthoconvex polygon and computing
a maximum area staircase polygon, amidst a point set in a rectangular domain. We obtain new and
simpler algorithms to solve both problems with the same complexity as in the state of the art.
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1. Introduction. Let P be a point set in general position in the plane. A subset
S of P with k elements is called a convex k-gon if the elements of S are the vertices
of a convex polygon, and it is called a convex k-hole of P if the interior of the convex
hull of S contains no element of P . The study of convex k-gons and convex k-holes
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146 GONZ\'ALEZ-AGUILAR ET AL.

of point sets started in a seminal paper by Erd\H os and Szekeres [9] in 1935. Since
then, numerous papers about both the combinatorial and the algorithmic aspects of
convex k-gons and convex k-holes have been published. The reader can consult the
two survey papers about so-called Erd\H os--Szekeres type problems [7, 11].

There are recent papers studying the existence and number of convex k-gons
and convex k-holes for finite point sets in the plane [1, 2, 3]. Papers dealing with
the algorithmic complexity of finding largest convex k-gons and convex k-holes are,
respectively, Chv\'atal and Kincsek [8] and Avis and Rappaport [5], which solve these
problems in O(n3) time.

Erd\H os--Szekeres type problems have also been studied for colored point sets. Let
P be a point set such that each of its elements is assigned a color, say red or blue.
Bautista-Santiago et al. [6] studied the problem of finding a monochromatic subset S
of P of maximum cardinality such that all of the elements of P contained in the con-
vex hull of S have the same color. As a generalization, they also studied the problem
in which each element of P has assigned a (positive or negative) weight. In this case,
the goal is to find a subset S of P that maximizes the total weight of the points of P
contained in the convex hull of S. Each of these problems was solved in O(n3) time
and O(n2) space. In addition, their algorithm can easily be adapted to find a subset
S of P such that the convex hull of S is empty and of maximum area in O(n3) time
and O(n2) space.

In this paper, we study Erd\H os--Szekeres type problems under a variation of con-
vexity known as rectilinear convexity, or orthoconvexity : Let P = \{ p1, . . . , pn\} be a
set of n points in the plane in general position. A quadrant of the plane is the in-
tersection of two open half-planes whose supporting lines are parallel to the x- and
y-axes, respectively. We say that a quadrant Q is P -free if it does not contain any
point of P . The rectilinear convex hull of P , denoted as RCH(P ), initially defined
by Ottmann, Soisalon-Soininen, and Wood [14], is defined as

RCH(P ) = \BbbR 2  - 
\bigcup 

Q is P -free

Q.

The rectilinear convex hull of a point set might be a simply connected set, yielding
an intuitive and appealing structure (see Figure 1(a)). However, in other cases the

a

b

c

d

1− staircase

2− staircase

3− staircase4− staircase

(a)

a = d

b

c

u

(b)

Fig. 1. (a) A point set with a connected rectilinear convex hull. (b) A point set whose rectilinear
convex hull is disconnected; two of its components are pinched points.
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MAXIMUM RECTILINEAR CONVEX SUBSETS 147

rectilinear convex hull can have several connected components (see Figure 1(b)), some
of which might be single points which we call pinched points. The size of RCH(P ) is
the number of elements of P on the boundary of RCH(P ). The sizes of the rectilinear
convex hulls in Figures 1(a) and 1(b) are, respectively, thirteen and twelve.

Alegr\'{\i}a-Galicia et al. [4] gave an optimal \Theta (n log n)-time and O(n)-space algo-
rithm to compute the orientation of the coordinate axes such that the rectilinear
convex hull of a set P of n points in the plane has minimum area. The reader can
refer to the literature for other results related to rectilinear convexity [4, 10, 16]. In
this paper, we present efficient algorithms for the following geometric optimization
problems:

MaxRCH: Given a set P of n points in the plane, find a subset S \subseteq P such that
the size of RCH(S) is maximized.

MaxEmptyRCH: Given a set P of n points in the plane, find a subset S \subseteq P
such that the interior of RCH(S) contains no point of P and the size of RCH(S) is
maximized.

MaxAreaRCH: Given a set P of n points in the plane, find a subset S \subseteq P such
that the interior of RCH(S) contains no point of P and the area of RCH(S) is
maximized.

MaxWeightRCH: Given a set P of n points in the plane, such that each p \in P is
assigned a (positive or negative) weight w(p), find a subset S \subseteq P that maximizes\sum 

p\in P\cap RCH(S) w(p).

In section 3, we give an O(n3)-time O(n2)-space algorithm to solve the MaxRCH
problem. Then, in section 4 we show how to adapt this algorithm to solve the other
three problems, each in O(n3) time and O(n2) space. The complexities of our algo-
rithms are the same as the complexities of the best-known algorithms to solve these
problems with the usual definition of convexity.

Besides presenting the first algorithms to solve the problems MaxRCH, MaxEmp-
tyRCH, MaxAreaRCH, and MaxWeightRCH, we show that our techniques can be used
to provide new algorithms to solve two additional problems, considered by Nandy,
Mukhopadhyaya, and Bhattacharya [13] and Nandy and Bhattacharya [12].

MaxOrthoconvexPolygon: Given a set P of n points in the plane, contained in an
axis-aligned rectangle \scrR called the domain, find an orthoconvex polygon of maximum
area that is contained in \scrR and its interior contains no point of P , where a polygon
is orthoconvex if its sides are axis-parallel and its intersection with any horizontal or
vertical line is empty, or a line segment [16].

MaxStaircasePolygon: Given a set P of n points in the plane contained in an
axis-aligned rectangle \scrR , find a staircase polygon of maximum area contained in \scrR 
whose interior contains no point of P , where an orthoconvex polygon contained in \scrR 
is called a staircase polygon if it contains two opposite corners of \scrR .

We show in section 5 how to solve the MaxOrthoconvexPolygon problem in O(n3)
time and O(n2) space, and we give in section 6 an O(n2)-time and O(n2)-space
algorithm to solve the MaxStaircasePolygon problem. The algorithms by Nandy,
Mukhopadhyaya, and Bhattacharya [13] and Nandy and Bhattacharya [12] have the
same time and space complexities as ours, but we believe that our solutions are simpler
and easier to understand. Orthoconvex polygons (and in general isothetic polygons)
have different applications in areas such as VLSI layout design or robotic visibility
(see the references in [12] for more information regarding applications).

2. Some notation and definitions. A summary of the main notation used
can be found at the end of the paper. For the sake of simplicity, we assume that all
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148 GONZ\'ALEZ-AGUILAR ET AL.

p = v1

q = vk

v2

vk−1

(a)

p

Q1(p)Q2(p)

Q3(p) Q4(p)

(b)

M1(P )

(c)

Fig. 2. (a) A 1-staircase. (b) The definition of the sets Qi(p). (c) A 7-point set P and the
set M1(P ). The vertices of the boundary of M1(P ) in P are the 1-extremal points of P . The thick
polygonal line is the 1-staircase associated with P .

point sets P considered in this paper are in general position, which means that no two
points of P share the same x- or y-coordinate. Using a O(n log n)-time preprocessing
step, we can also assume when necessary that the points of a point set P are ordered
by x-coordinate or y-coordinate. Given a point set P in the plane, we will use a,
b, c, and d to denote the leftmost, bottommost, rightmost, and topmost points of
P , respectively, unless otherwise stated. Note that a, b, c, and d are not necessarily
different. In Figure 1(b), we have a = d.

Given a point p of the plane, let px and py denote the x- and y-coordinates of p,
respectively.

Definition 2.1. For p, q \in \BbbR 2, p \not = q, we write p \prec q to denote that px < qx and
py < qy, and p \prec \prime q to denote that px < qx and py > qy.

Definition 2.2. Let p, q \in \BbbR 2, and consider a set S = \{ v1, . . . , vk\} of k points
such that v1 = p, vk = q, and vi \prec \prime vi+1 for i = 1, 2, . . . , k  - 1. A 1-staircase joining
p to q is an orthogonal polygonal chain, such that two consecutive elements of S are
joined by an elbow consisting of a horizontal segment followed by a vertical segment.
For an illustration, see Figure 2(a).

A 3-staircase joining p to q is defined in a similar way, but using elbows whose
first segment is vertical. Analogously, we define 2- and 4-staircases, except that we
require vi \prec vi+1. The first segment is vertical in the 2-staircase and horizontal in
the 4-staircase. Points of S are called the vertices of the staircase.

Any point p in the plane defines four open axis-aligned quadrants Qi(p), i =
1, 2, 3, 4, as follows (see Figure 2(b)): Q1(p) = \{ q \in \BbbR 2 | p \prec q\} , Q2(p) = \{ q \in \BbbR 2 | 
q \prec \prime p\} , Q3(p) = \{ q \in \BbbR 2 | q \prec p\} , and Q4(p) = \{ q \in \BbbR 2 | p \prec \prime q\} . Given a point set
P in the plane, for i = 1, 2, 3, 4, let

Mi(P ) =
\bigcup 
p\in P

Qi(p),

where Qi(p) denotes the closure of Qi(p).

Definition 2.3. Given a point set P in the plane, the elements of P that belong
to the boundary of Mi(P ), are called the (rectilinear) i-extremal points of P (see
Figure 2(c)).

Note that the i-extremal points of P are the vertices of a i-staircase connecting all
of them. This i-staircase, that we call the i-staircase associated with P , is the part of
the boundary of Mi(P ) that connects all the i-extremal points of P (see Figure 2(c)).
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MAXIMUM RECTILINEAR CONVEX SUBSETS 149

Definition 2.4. Given a point set P in the plane, for every J \subseteq \{ 1, 2, 3, 4\} , we
say that p \in P is J-extremal if p is j-extremal for every j \in J .

Definition 2.5. Given a point set P in the plane, the rectilinear convex hull of
P is the set1

RCH(P ) =
\bigcap 

i=1,2,3,4

Mi(P ).

Figure 1 shows some examples of rectilinear convex hulls. The boundary of
RCH(P ) is (a part of) the union of the 1-, 2-, 3-, and 4-staircases associated with
P . Observe that the endpoints of these four staircases are a, b, c, and d, a is \{ 1, 4\} -
extremal, b is \{ 1, 2\} -extremal, c is \{ 2, 3\} -extremal, and d is \{ 3, 4\} -extremal. In Fig-
ure 1(b), as a = d, then a is \{ 1, 3, 4\} -extremal and the 4-staircase associated with P
consists of only point a.

Also observe that RCH(P ) is disconnected when either the intersection of the
complements \BbbR 2 \setminus M1(P ) and \BbbR 2 \setminus M3(P ) is not empty, as shown in Figure 1(b), or
the intersection of the complements \BbbR 2 \setminus M2(P ) and \BbbR 2 \setminus M4(P ) is not empty. In
other words, when either the 1- and 3-staircases associated with P cross or the 2- and
4-staircases associated with P cross.

Definition 2.6. Given a point set P in the plane, a pinched point u of RCH(P )
occurs when u is either \{ 1, 3\} -extremal, as shown in Figure 1(b), or \{ 2, 4\} -extremal.

Definition 2.7. Given a point set P in the plane, the size of RCH(P ) is the
number of points of P which are i-extremal for at least one i \in \{ 1, 2, 3, 4\} .

From the definition of the staircases for P , the following observation is straight-
forward.

Observation 2.8. Assume that the concatenation of the four i-staircases associ-
ated with P is traversed counterclockwise. For two consecutive i-extremal points p and
p\prime , Qi+2(o) contains no element of P , where i+ 2 is taken modulo 4 and o = (p\prime x, py)
for i = 1, 3 or o = (px, p

\prime 
y) for i = 2, 4.

Definition 2.9. Given two points u \not = v in the plane and a point set P , B(u, v)
and P (u, v) = P \cap B(u, v) will denote the smallest open axis-aligned rectangle con-
taining u and v, and the set of points in P that belong to B(u, v), respectively. If
u = v, then we define B(u, u) as point u.

Note that u and v are two opposed corners of B(u, v).

Definition 2.10. Given a point set P in the plane, we say that RCH(P ) is
vertically separable if rectangles B(a, d) and B(b, c) are separated by a vertical line.
The two examples shown in Figure 1 are vertically separable.

Given a point set S, and a horizontal line \ell , let S\prime be the image of S under a
reflection around \ell . The following lemma is key for our algorithms.

Lemma 2.11. Let P be a point set in the plane. For all S \subseteq P , | S| \geq 2, either
RCH(S) or RCH(S\prime ) is vertically separable.

Proof. Note that dx < bx is necessary and sufficient for vertical separability of
B(a, d) and B(b, c), that is, RCH(S) is vertically separable. Suppose then that bx <
dx, and let \ell be a horizontal line. It is straightforward to see that, if we reflect the
point set S around \ell , then S becomes S\prime and we have that RCH(S\prime ) is vertically
separable.

1The notation \scrR \scrH (P ) is also used for the rectilinear convex hull [4].

D
ow

nl
oa

de
d 

02
/0

2/
21

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

150 GONZ\'ALEZ-AGUILAR ET AL.

p

q

Rp\q

Rq\p

Rp,q

q

R′q\p

p
R′p,qR′p\q

p

q

Cp,q

Fig. 3. Left: Sets Rp\setminus q, Rq\setminus p, Rp,q, R\prime 
p\setminus q, R

\prime 
q\setminus p, and R\prime 

p,q. Right: Example of \scrC p,q.

In each of the problems MaxRCH, MaxEmptyRCH, MaxAreaRCH, and
MaxWeightRCH, we will assume that the optimal subset S \subseteq P is such that RCH(S)
is vertically separable.

To finish this section, we give one more definition.

Definition 2.12. Given a point set P in the plane, for every p, q \in P such that
p \prec q, we define Rp\setminus q, Rq\setminus p, and Rp,q as the subsets of P in the regions Q4(p)\setminus Q4(q),

Q4(q) \setminus Q4(p), and Q4(p)\cap Q4(q), respectively (see Figure 3, left). For every p, q \in P
such that q \prec \prime p, we define R\prime 

p\setminus q, R
\prime 
q\setminus p, and R\prime 

p,q as the subsets of P in the regions

Q4(q) \cap Q3(p), Q4(q) \cap Q1(p), and Q4(p), respectively.

Observe that if r \in Rp\setminus q, then r \prec q, if r \in Rq\setminus p, then p \prec r, and if r \in Rp,q,
then r \not \prec q and p \not \prec r.

3. Rectilinear convex hull of maximum size. In this section, we solve the
MaxRCH problem. Given P , our goal is to combine four staircases in order to obtain
a subset S of P whose rectilinear convex hull is of maximum size. All of this has to
be done carefully, since the occurrence of pinched points may lead to overcounting.

Our algorithm to solve the MaxRCH problem proceeds in three steps: In the first
step, we compute the 2-staircases of maximum size for every p, q \in P such that p \prec q.
In the second step, we compute what we call a triple 1-staircase and a triple 3-staircase
of maximum sizes (yet to be defined). In the third and last step, we show how to
combine a triple 1-staircase and a triple 3-staircase to solve the MaxRCH problem. In
this step, we will make sure that the solution thus obtained is vertically separable.
Our algorithm will run in O(n3) time and O(n2) space. We describe now in detail
the steps of our algorithm.

The first step: For every p, q \in P such that p \prec q or p = q, let \scrC p,q be a 2-staircase
with endpoints p and q of maximum size; see Figure 3, right. Let Cp,q be the number
of elements of P in \scrC p,q. Note that Cp,q equals the maximum number of 2-extremal
points over all S\cup \{ p, q\} with S \subseteq P (p, q). We can easily calculate Cp,q for all p, q \in P
with p \prec q or p = q in O(n3) time and O(n2) space, using dynamic programming
with the following recurrence:

(3.1) Cp,q =

\biggl\{ 
1 if p = q,
max\{ 1 + Cr,q\} over all r \in P (p, q) \cup \{ q\} if p \not = q.

Using the elements Cp,q, it is a routine matter to determine \scrC p,q, for any p \prec q.2

Definition 3.1. Given a point set S \subseteq P , we define the triple 1-staircase (resp.,
triple 3-staircase) associated with S as the concatenation of the 1-, 2-, and 3-staircases
(resp., the 3-, 4-, and 1-staircases) associated with S.

2We note that using not so trivial methods, we can calculate all of the Cp,q 's in O(n2 logn) time.
However, this yields no improvement on the overall time complexity of our algorithms.

D
ow

nl
oa

de
d 

02
/0

2/
21

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAXIMUM RECTILINEAR CONVEX SUBSETS 151

p

q

p

q

p

q

p = q

p

q

p

q

Cp,q

u u u

u u

Fig. 4. Examples of triple 1-staircases \scrT p,q.

The second step: In this step, our goal is to obtain a triple 1-staircase and a triple
3-staircase of maximum cardinality, starting and ending at some pairs of points of P .
Triple staircases allow us to conveniently manage pinched points and disconnections
of the rectilinear convex hull. Notice that the boundary of M1(S) \cap M2(S) \cap M3(S)
(except for its two infinite rays) always belongs to the triple 1-staircase associated
with S.

Definition 3.2. Consider p, q \in P such that p \prec q or p = q. We use Z(p, q) =
Q4(u) to denote the fourth quadrant associated with u, where u = (px, qy), and
z(p, q) = Z(p, q) \cap P to denote the points of P in this quadrant.

Let \scrT p,q be the triple 1-staircase of maximum cardinality among all subsets S \cup 
\{ p, q\} with S \subseteq z(p, q). If S\prime \subseteq z(p, q) is the set associated with \scrT p,q, observe that
M1(S

\prime \cup \{ p, q\} ) \cap M2(S
\prime \cup \{ p, q\} ) \cap M3(S

\prime \cup \{ p, q\} ) may contain points in P (p, q), it
may be disconnected, and it may have pinched points (see Figure 4). Note that p
and q are always the endpoints of \scrT p,q. Let Xp,q denote the set of extreme vertices of
\scrT p,q (that is, the set of 1-, 2- and 3-extremal points of S\prime \cup \{ p, q\} ), and let Tp,q be the
cardinality of Xp,q.

We calculate all of the Tp,q's by dynamic programming using (3.2) and (3.3). We
store all of the Tp,q's in a table T . If \alpha p,q = 1 when p = q, and \alpha p,q = 2 when p \not = q,
then

(3.2) Tp,q = max

\left\{               

Cp,q (A),

1 + Tr,q over all r \in Rp\setminus q (B),

1 + Tp,r over all r \in Rq\setminus p (C),

\alpha p,q + Tr,r over all r \in Rp,q (D),

\alpha p,q + Up,r over all r \in Rp,q (E),

where for every pair p, r \in P such that p \prec \prime r

(3.3) Up,r = max\{ Tr,s\} over all s \in R\prime 
p\setminus r.

Values Up,r are stored in a table U . The next lemma shows the correctness of this
recurrence.

D
ow

nl
oa

de
d 

02
/0

2/
21

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

152 GONZ\'ALEZ-AGUILAR ET AL.

p

q

r

p

q

r

r
p

q

r

p

q

s

(B) (C) (D) (E)

Tr,q
Tp,r

Tr,r
Tr,s

Up,r

Fig. 5. Cases in the recursive computation of Tp,q.

Lemma 3.3. The recurrence (3.2) correctly calculates Tp,q, the size of Xp,q, in
O(n3) time and O(n2) space.

Proof. Let \scrT p,q be an optimal triple 1-staircase for a pair of points p, q \in P such
that p \prec q and let S\prime \subseteq z(p, q) be the point set associated with \scrT p,q. In the counter-
clockwise traversal of the triple 1-staircase, let p - and q - be the elements of P that
follow and precede p and q, respectively. Hence, \scrT p,q can be obtained as an extension
of \scrT p,q - , \scrT p - ,q, or \scrT p - ,q - .

If p - , q - \in B(p, q), -essarily \scrT p,q is a 2-staircase (the 1- and 3-staircases of \scrT p,q
consist of only points p and q, resp.), so Tp,q = Cp,q and case (A) is used to set Tp,q.
Thus, we assume in the rest of the proof that at least one of p - and q - is not in
B(p, q). See Figure 5 for the cases.

If p - \in Rp\setminus q, then we have p - \prec q and p - is not 3-extremal in \scrT p - ,q. We use
case (B) to find a point r that plays the role of p - to compute the value of Tp,q. If
q - \in Rq\setminus p, then we have p \prec q - and q - is a point that is not 1-extremal in \scrT p,q - . We
use case (C) to find a point r that plays the role of q - to compute the value of Tp,q.

Suppose now that p - is in Rp,q (a similar reasoning applies if q - is in Rp,q). In
this case, q - cannot be in B(p, q) and if q - \in Rq\setminus p, then we use case (C). If q - \in Rp,q,
there are two cases to analyze: p - = q - and p - \not = q - . If p - = q - , then we can use
case (D) to find a point r that plays the role of p - to compute the value of Tp,q.
When p - \not = q - , we prove that p - \prec q - , and then case (E) can be used to find a
pair of points r and s playing the roles of p - and q - , both in Rp,q, with maximum
value Tr,s. By Observation 2.8, as p and p - are consecutive 1-extremal points, then
Q3(o) contains no element in S\prime , where o = (p - x , py). In particular, since q - is in
Rp,q, this implies that q - cannot be in either Q2(p

 - ) or Q3(p
 - ). Moreover, as q and

q - are consecutive 3-extremal points, then Q1(o
\prime ) contains no element in S\prime again by

Observation 2.8, where o\prime = (qx, q
 - 
y ). As a consequence, q - cannot be in Q4(p

 - ), so
we conclude that q - \in Q1(p

 - ).
To compute tables T and U , we scan the elements of P from right to left. Each

time an element p \in P is encountered, we scan all of the q \in P such that px < qx,
again from right to left. When p \prec q we compute Tp,q, and when p \prec \prime q we compute
Up,q. Each entry of T and U is determined in O(n) time. Thus, U and T can be
computed in overall O(n3) time and O(n2) space. Cases (A) to (D) are in O(n). We
charge the work done in case (E) to constructing table U , which can be done in O(n)
time per entry. Thus the entire complexity is in O(n3) time and O(n2) space.

In a totally analogous way, we can calculate triple 3-staircases of maximum size.
For p \prec q or p = q, let T \prime 

p,q be the size of the triple 3-staircase \scrT \prime 
p,q of maximum

cardinality among all subsets S\prime \cup \{ p, q\} , where S\prime is now a subset of points of P in
the quadrant Q2(v) with v = (qx, py). After rotating the coordinates by \pi , observe
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cTr,s

a

d

p

r

s

b

cTr,s
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T ′p,q
qT ′p,q
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p r = s

b

cTs,s

qT ′p,q

p = q = a = d

r

s

b

c
Tr,s

T ′
p,p = {p}

Fig. 6. Examples of 4-separators (p, q, r, s).

that the triple 3-staircase \scrT \prime 
p,q is the triple 1-staircase \scrT q,p. Thus, by symmetry with

the Tp,q's, all the T \prime 
p,q's can also be calculated in O(n3) time and O(n2) space.

The third step: In this step, we show how to combine a triple 1-staircase and
a triple 3-staircase to solve the MaxRCH problem. Recall that the solution must be
vertically separable. Next we give the definition of a 4-separator and then we show
that it is equivalent to vertical separability.

Definition 3.4. Let S \subseteq P be any subset with | S| \geq 2. Given four (not nec-
essarily distinct) extremal points p, q, r, s \in S, we say that the tuple (p, q, r, s) is a
4-separator of RCH(S) if the following five conditions are satisfied: (1) p \prec q or
p = q; (2) q \prec \prime r; (3) r \prec s or r = s; (4) p and r are consecutive points in the
1-staircase of S; and (5) s and q are consecutive points in the 3-staircase of S (see
Figure 6).

The following lemma shows the equivalence between the existence of 4-separators
and vertical separability.

Lemma 3.5. RCH(S) is vertically separable if and only if RCH(S) has a 4-
separator.

Proof. Let us first assume that RCH(S) is vertically separable, that is, rectangles
B(a, d) and B(b, c) are separated by a vertical line. Recall that a, b, c, and d are the
leftmost, bottommost, rightmost, and topmost points of S, respectively. Then, we
can argue the following: If a \prec d, then S has at least one 1-extremal point to each side
of the vertical line through d. Otherwise, if a = d, then S has at least one 1-extremal
point to the right side. Thus, covering both cases, let p and r be the two consecutive
1-extremal points of S such that px \leq dx < rx. Now, given that dx < rx, we have
that if r is also 3-extremal, thus a pinched point, then S has at least one 3-extremal
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point to the left side of the vertical line through r. Otherwise, if r is not 3-extremal,
then S has at least one 3-extremal point to each side of this line. Thus, we can define
s and q as the two consecutive 3-extremal points of S such that qx < rx \leq sx. It
is straightforward to see now that (p, q, r, s) is a 4-separator of RCH(S). Note that,
when p = a = d, then necessarily q = p = a = d.

Assume now that (p, q, r, s) is a 4-separator of RCH(S). We then have that d \prec \prime q
or d = q, and r \prec \prime b or r = b. These conditions, together with q \prec \prime r, directly imply
that rectangles B(a, d) and B(b, c) are separated by a vertical line, thus RCH(S) is
vertically separable.

Using 4-separators, we show how to find an optimal solution that is vertically
separable. Among all subsets S of P such that RCH(S) is vertically separable, let
S0 be a subset of P such that RCH(S0) has maximum size. Let (p, q, r, s) be a 4-
separator of RCH(S0). The key observation is that the vertices of \scrT \prime 

p,q \cup \scrT r,s are the
set of extremal points of S0. Note that \scrT \prime 

p,q \cap \scrT r,s = \emptyset and | RCH(S0)| , the size of
RCH(S0), is T

\prime 
p,q + Tr,s.

Thus, we proceed as follows: For given p, s \in P such that px < sx, let \scrS p,s be
the rectilinear convex hull of maximum size, among all subsets S \subseteq P containing p
and s such that there exist two points q, r \in S with (p, q, r, s) being a 4-separator of
RCH(S). Let Sp,s be the size of \scrS p,s. Note that Sp,s = T \prime 

p,q+Tr,s for some 4-separator
(p, q, r, s). Then, the following equations allow us to calculate | RCH(S0)| in O(n3)
time and O(n2) space, as Theorem 3.6 proves:

(3.4) | RCH(S0)| = max\{ Sp,s\} over all p, s \in P such that px < sx,

where for each pair of points p, s \in P with px < sx

(3.5) Sp,s = max\{ T \prime 
p,q + Tr,s\} over all q, r \in P such that (p, q, r, s) is a 4-separator.

Theorem 3.6. The MaxRCH problem can be solved in O(n3) time and O(n2)
space.

Proof. According to (3.4) and (3.5), we only need to show how to compute Sp,s

in linear time, for given p and s. Let Qp be the set of all points q \in P such that
q \prec \prime s, and p \prec q or p = q. Let Qs be the set of all points r \in P such that p \prec \prime r,
and r \prec s or r = s. Note that Qp \cap Qs = \emptyset and that p and s belong to Qp and
Qs, respectively, only when py > sy. Let Lp,s be the list of the elements of Qp \cup Qs

sorted by x-coordinate. Observe that if (p, q, r, s) is a 4-separator of RCH(Sp,s), then
r \in Qs, q \in Qp, and q is the point q\ast \in Qp from the beginning of Lp,s to r such that
T \prime 
p,q\ast + Tr,s = max\{ T \prime 

p,q\prime + Tr,s\} over all q\prime \in Qp from the beginning of Lp,s to r.
We calculate Sp,s by processing the elements of Lp,s in order. For an element

t in Lp,s, let q\ast t be the point in Qp maximizing T \prime 
p,q\prime over all q\prime \in Qp from the

beginning of Lp,s to t (including t). When processing a point t, observe that if
t \in Qp, then q\ast t is either t or q\ast t - 1. Otherwise, if t \in Qs, then q\ast t = q\ast t - 1. Moreover, if
t \in Qs, then we set q = q\ast t and r = t, and consider (p, q, r, s) as a feasible 4-separator
of \scrS p,s. After processing the last element of Lp,s, among all the (linear number)
feasible separators, we return the solution Sp,s induced by the feasible separator that
maximizes T \prime 

p,q + Tr,s. Thus, Sp,s can be calculated in O(n) time, once tables T and
T \prime have been constructed.

4. Maximum size/area empty rectilinear convex hulls and maximum
weight rectilinear convex hull. In this section, we show how to adapt the algor-
ithm of section 3 to solve theMaxEmptyRCH, theMaxAreaRCH, and theMaxWeightRCH
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u

Fig. 7. Left: Example of \scrC p,q when the 2-staircases must be empty. Right: Third step of the
algorithm when the interior must be empty of elements of P .

problems. The first observation is that, as the optimal solution for any of these prob-
lems is the rectilinear convex hull of a subset S of P , then Lemmas 2.11 and 3.5
hold. This implies that we can assume that rectangles B(a, d) and B(b, c) are sepa-
rated by a vertical line, so a 4-separator exists for the optimal solution in any of the
problems. As a consequence, the algorithms to solve these three problems follow the
same scheme as the algorithm described in the previous section, and we only need to
show how to adapt in each problem the calculation of the 2-staircases, the triple 1-
and 3-staircases, and the rectilinear convex hulls \scrS p,s to fulfill the requirements on
emptiness, area, or weight.

We start by solving theMaxEmptyRCH problem, we continue with theMaxAreaRCH
problem, and we finish with the MaxWeightRCH problem.

4.1. Maximum size empty rectilinear convex hull. To solve the MaxEmp-
tyRCH problem in O(n3) time and O(n2) space, we modify the steps of our previous
algorithm. These modifications ensure that the ``interiors"" of the triple 1- and 3-
staircases and the rectilinear convex hulls are empty. Recall that in this problem we
are looking for a subset S \subseteq P such that RCH(S) has maximum size and there is no
element of P in the interior of RCH(S).

The first step: For a pair of points p, q \in P such that p \prec q or p = q, we say that
the 2-staircase associated with a subset S of P (p, q) is empty (recall that P (p, q) is
the set of points in P that belong to the rectangle (B(p, q)) if no point of P is in the
interior of B(p, q) \cap M2(S \cup \{ p, q\} ); see Figure 7, left.

Let \scrC p,q be the empty 2-staircase of maximum cardinality over all subsets S\cup \{ p, q\} 
with S \subseteq P (p, q), and let Cp,q be the size of \scrC p,q. Observe that if u is the point (px, qy)
and r \in P is the vertex of the 2-staircase that follows p, then P (r, u) = \emptyset . Thus, values
Cp,q can be computed using the following recurrence:
(4.1)

Cp,q =

\biggl\{ 
1 if p = q,
max\{ 1 + Cr,q\} over all r \in P (p, q) \cup \{ q\} such that P (r, u) = \emptyset if p \not = q.

As q and u are on the same horizontal line, P (q, u) is not defined. In this case, we
assume that P (q, u) is the empty set. Using standard range counting techniques [15],
we can preprocess the grid G generated by the vertical and horizontal lines through
the elements of P in O(n2) time and space, so that for every pair of vertices u, v of
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G we can query the number of points in P (u, v) in O(1) time. Thus, we can decide
whether P (u, v) = \emptyset in O(1) time. Therefore, values Cp,q can be calculated in O(n3)
time and O(n2) space.

The second step: For every p, q \in P such that p \prec q or p = q, we say that
the triple 1-staircase \scrT corresponding to a subset S of z(p, q) is empty (recall that
z(p, q) is the set of points in P that belong to Z(p, q), the fourth quadrant associated
with point (px, qy)) if the (disconnected) region \scrO \scrT = Z(p, q) \cap M1(S \cup \{ p, q\} ) \cap 
M2(S \cup \{ p, q\} ) \cap M3(S \cup \{ p, q\} ) associated with \scrT contains no element of P . Please
refer to Figure 4, where the shaded areas correspond to \scrO \scrT . Let \scrT p,q be the empty
triple 1-staircase of maximum size among all subsets S \cup \{ p, q\} with S \subseteq z(p, q). Let
E(p, q, r) denote the interior of B(p, q)\cap Q2(r) if p \not = q, and the empty set if p = q. In
Figure 5 examples of open rectangles E(p, q, r) are shown as shaded rectangles. We
show how to compute Tp,q, the cardinality of the set of extreme vertices of \scrT p,q, using
the following equations that are similar to (3.2) and (3.3):

(4.2) Tp,q = max

\left\{               

Cp,q (A),

1 + Tr,q over all r \in Rp\setminus q : P \cap E(p, q, r) = \emptyset (B),

1 + Tp,r over all r \in Rq\setminus p : P \cap E(p, q, r) = \emptyset (C),

\alpha p,q + Tr,r over all r \in Rp,q : P \cap E(p, q, r) = \emptyset (D),

\alpha p,q + Up,r over all r \in Rp,q : P \cap E(p, q, r) = \emptyset (E),

where for every pair p, r \in P such that p \prec \prime r

(4.3) Up,r = max\{ Tr,s\} over all s \in R\prime 
p\setminus r.

In case (A), \scrO \scrT p,q is empty as \scrC p,q is an empty 2-staircase. Equation (4.2) is
obtained from (3.2) by further constraining r in the cases from (B) to (E) to satisfy
P \cap E(p, q, r) = \emptyset . This guarantees that the interior of \scrO p,q is empty of elements of
P for all p, q. Verifying that P \cap E(p, q, r) = \emptyset can be decided in O(1) time by using
a range counting query. The proof of correctness of (4.2) and (4.3) follows the same
steps as in Lemma 3.3. Hence, computing the new table T can be done in O(n3)
time and O(n2) space. By symmetry, values in T \prime 

p,q, the sizes of the empty triple
3-staircases \scrT \prime 

p,q, can also be calculated in O(n3) time and O(n2) space.
The third step: For given p, s \in P such that px < sx, let \scrS p,s be the empty

rectilinear convex hull of maximum size, among all subsets S \subseteq P containing p and
s such that RCH(S) is empty and there exist two points q, r \in S with (p, q, r, s)
being a 4-separator of RCH(S). Let Sp,s denote the size of \scrS p,s. To compute Sp,s

we have to distinguish whether p \prec \prime s or p \prec s. If p \prec \prime s (see Figure 6, top-right,
or any in the bottom), then Sp,s = max\{ T \prime 

p,q + Tr,s\} over all 4-separators (p, q, r, s).
Otherwise, if p \prec s (see Figure 7, right), then we must ensure that each 4-separator
(p, q, r, s) satisfies the emptiness of the rectangle B(u, v) (that is, P (u, v) = \emptyset ), where
u = (rx, sy) and v = (qx, py).

If S0 is a subset of P such that RCH(S0) is empty, vertically separable, and of
maximum size, the new equations to compute | RCH(S0)| are

(4.4) | RCH(S0)| = max\{ Sp,s\} over all p, s \in P with px < sx,

where for each pair of points p, s \in P such that px < sx
(4.5)

Sp,s =

\biggl\{ 
max\{ T \prime 

p,q + Tr,s\} : (p, q, r, s) is a 4-separator, p \prec \prime s,
max\{ T \prime 

p,q + Tr,s\} : (p, q, r, s) is a 4-separator, P (u, v) = \emptyset , p \prec s.
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Theorem 4.1. The MaxEmptyRCH problem can be solved in O(n3) time and
O(n2) space.

Proof. Again, we only need to show that given points p and s Sp,s can be com-
puted in linear time. When p \prec \prime s, we argue as in the proof of Theorem 3.6. How-
ever, when p \prec s, we need to only consider 4-separators such that P (u, v) = \emptyset . Let
Qp,s = \{ t \in P : p \prec t \prec s\} , which satisfies Qp,s \cap Qp = \emptyset and Qp,s \cap Qs = \emptyset .
Recall that Qp \cap Qs = \emptyset and that, when p \prec s, Qp = \{ q \in P : p \prec q, q \prec \prime s\} and
Qs = \{ r \in P : r \prec s, p \prec \prime r\} . Let Lp,s be the list of the points of Qp \cup Qs \cup Qp,s

sorted by x-coordinate. Assuming that we have already sorted P by x-coordinate,
Lp,s is obtained in O(n) time.

As before, we calculate Sp,s by processing the elements of Lp,s in order. For an
element t in Lp,s, let q

\ast 
t be the point in Qp maximizing T \prime 

p,q\prime over all q
\prime \in Qp from the

beginning of Lp,s to t (including t) subject to there being no elements of Qp,s in Lp,s

from q\prime to t. When processing a point t \in Qp,s, we set q\ast t = nil denoting that q\ast t is
undefined. Observe that, when processing a point t \in Qp, if q

\ast 
t - 1 = nil, then q\ast t = t,

and if q\ast t - 1 \not = nil, then q\ast t is either t or q\ast t - 1. When processing a point t \in Qs, then
q\ast t = q\ast t - 1, and if q\ast t - 1 \not = nil, then we set q = q\ast t and r = t, and consider (p, q, r, s)
as a feasible 4-separator of \scrS p,s. Note that for this 4-separator we have P (u, v) = \emptyset .
After processing all elements in Lp,s, Sp,s is determined by a feasible 4-separator that
maximizes T \prime 

p,q + Tr,s.

4.2. Maximum area empty rectilinear convex hull. In the MaxAreaRCH
problem, we determine an empty rectilinear convex hull of maximum area. To solve
this problem, we proceed as in the previous subsection. The only difference is that
we sum areas in all of our recurrences, instead of counting points. Given a bounded
set Z \subset \BbbR 2, we denote the area of Z as Area(Z).

Now, \scrC p,q, \scrT p,q, \scrT \prime 
p,q, and \scrS p,q are as described in section 4.1, with the difference

that they maximize area instead of maximizing size. The areas are defined as follows.
If S = \{ p, v2, . . . , vk - 1, q\} is the set of vertices of an empty 2-staircase, we define the
area of this staircase as Area(B(p, q) \cap M2(S)). For an empty triple 1-staircase or an
empty triple 3-staircase \scrT , its area is the area of its associated region \scrO \scrT . The area
of a rectilinear convex hull is the area of its interior.

The first step: For a pair of points p, q \in P such that p \prec q or q = p, we
compute Cp,q, the area of \scrC p,q, using the following recurrence, which is a variant of
(4.1) maximizing area:

(4.6) Cp,q =

\biggl\{ 
0 if p = q,
maxr\in P (p,q)\cup \{ q\} \{ Area(B(r, u)) + Cr,q\} : P (r, u) = \emptyset if p \not = q,

where u = (px, qy). As B(q, u) is not defined, we set Area(B(q, u)) = 0.
The second step: For every p, q \in P such that p \prec q or p = q, let Tp,q be the area

of \scrT p,q. All Tp,q's can be calculated in O(n3) time and O(n2) space using the following
equations, which are variants of (4.2) and (4.3) maximizing area (recall that if p = q,
then rectangle E(p, q, r) = \emptyset , so its area is 0):
(4.7)

Tp,q = max

\left\{               

Cp,q (A),

Area(E(p, q, r)) + Tr,q over all r \in Rp\setminus q : P \cap E(p, q, r) = \emptyset (B),

Area(E(p, q, r)) + Tp,r over all r \in Rq\setminus p : P \cap E(p, q, r) = \emptyset (C),

Area(E(p, q, r)) + Tr,r over all r \in Rp,q : P \cap E(p, q, r) = \emptyset (D),

Area(E(p, q, r)) + Up,r over all r \in Rp,q : P \cap E(p, q, r) = \emptyset (E),
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158 GONZ\'ALEZ-AGUILAR ET AL.

where for every pair p, r \in P such that p \prec \prime r

(4.8) Up,r = max\{ Tr,s\} over all s \in R\prime 
p\setminus r.

The areas T \prime 
p,q for the empty triple 3-staircases \scrT \prime 

p,q can be calculated in a similar
way.

The third step: Let Sp,s be the area of \scrS p,s. Recall that, for given p, s \in P such
that px < sx, \scrS p,s is the empty rectilinear convex hull of maximum area, among all
subsets S \subseteq P containing p and s such that RCH(S) is empty and there exist two
points q, r \in S with (p, q, r, s) a 4-separator of RCH(S). Observe that if p \prec \prime s, then
Sp,s = T \prime 

p,q + Tr,s for some 4-separator (p, q, r, s). Otherwise, if p \prec s, then Sp,s =
Area(B(u, v)) + T \prime 

p,q + Tr,s for some 4-separator (p, q, r, s), subject to P (u, v) = \emptyset ,
where u = u(r) = (rx, sy) and v = v(q) = (qx, py) (see Figure 7, right).

Given that Area(B(u, v)) depends on both r and q, using the inclusion/exclusion
principle, we can then calculate Sp,s as

Sp,s = T \prime 
p,q + Area(B(v, s)) + Tr,s + Area(B(p, u)) - Area(B(p, s)).

Since p and s are fixed, note that U(p, q, s) = T \prime 
p,q +Area(B(v(q), s)) depends only on

q and V (p, r, s) = Tr,s + Area(B(p, u(r))) - Area(B(p, s)) depends only on r. Each of
these two values can be computed in O(1) time, once T and T \prime have been computed
in the second step. If S0 is a subset of P such that RCH(S0) is empty, vertically
separable and of maximum area, the new equations to compute RCH(S0) are

(4.9) | RCH(S0)| = max\{ Sp,s\} over all p, s \in P with px < sx,

where for each pair of points p, s \in P such that px < sx
(4.10)

Sp,s =

\biggl\{ 
max\{ 4-separators (p, q, r, s)\} \{ T \prime 

p,q + Tr,s\} , p \prec \prime s,
max\{ 4-separators (p, q, r, s)\} \{ U(p, q, s) + V (p, r, s))\} : P (u(r), v(q)) = \emptyset , p \prec s.

Theorem 4.2. The MaxAreaRCH problem can be solved in O(n3) time and O(n2)
space.

Proof. The proof follows the proof of Theorem 4.1. The only difference is that,
when processing an element t in Lp,s, q\ast t is the point in Qp maximizing T \prime 

p,q\prime +
Area(B(v(q\prime ), s)), instead of maximizing T \prime 

p,q\prime . After processing all elements in Lp,s,
Sp,s is determined by a feasible 4-separator that maximizes T \prime 

p,q + Area(B(v, s)) +
Tr,s + Area(B(p, u)) - Area(B(p, s)).

4.3. Maximum weight rectilinear convex hull. In theMaxWeightRCH prob-
lem, each input point p of P comes with a (positive or negative) weight w(p). We
determine a subset S \subseteq P such that RCH(S) has maximum weight, that is, such that\sum 

p\in P\cap RCH(S) w(p) is maximized.
The algorithm to solve this problem combines the ideas of the previous algorithms

and follows the same steps, however, now we add weights. We define Weight(Z) =\sum 
p\in P\cap Z w(p) as the weight of a region Z \subset \BbbR 2. Using the same range counting

techniques [15] as in section 3, we can preprocess the grid G generated by the vertical
and horizontal lines through the elements of P in O(n2) time and space, so that for
every pair of vertices u, v of G we can query Weight(B(u, v)) =

\sum 
p\in P (u,v) w(p) in

O(1) time, for any rectangle B(u, v).
Now, \scrC p,q, \scrT p,q, \scrT \prime 

p,q, and \scrS p,q are as described in section 3, except that weight is
maximized. The weights are defined as follows. If S = \{ p, v2, . . . , vk - 1, q\} is the set of
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vertices of a 2-staircase, its weight is defined as w(p)+w(q)+Weight(B(p, q)\cap M2(S)).
Note that the weights of all points in S are included in this formula. For a triple 1-
staircase or a triple 3-staircase \scrT , its weight is the addition of the weights of the points
of P that appear on the boundary or in the interior of \scrO \scrT , the region associated with
\scrT . Finally, the weight of a rectilinear convex hull is the addition of the points of P
on the boundary or the interior of the rectilinear convex hull.

The first step: If Cp,q is the weight of \scrC p,q, for a pair of points p, q \in P such that
p \prec q or q = p, all Cp,q's can be computed in O(n3) time and O(n2) space using the
following recurrence:

(4.11) Cp,q =

\biggl\{ 
w(p) if p = q,
w(p) + maxr\in P (p,q)\cup \{ q\} \{ Weight(B(r, u)) + Cr,q\} if p \not = q,

where u = (px, qy). We set Weight(B(q, u)) = 0 as B(q, u) is not defined.
The second step: If Tp,q is the weight of \scrT p,q, for every p, q \in P such that p \prec q

or p = q, then all Tp,q's (and, by symmetry, all T \prime 
p,q's) can be calculated in O(n3)

time and O(n2) space using the following equations, where \alpha p,q = w(p) if p = q, and
\alpha p,q = w(p) + w(q) if p \not = q:

(4.12) Tp,q = max

\left\{               

Cp,q (A),

w(p) +Weight(E(p, q, r)) + Tr,q over all r \in Rp\setminus q (B),

w(q) +Weight(E(p, q, r)) + Tp,r over all r \in Rq\setminus p (C),

\alpha p,q +Weight(E(p, q, r)) + Tr,r over all r \in Rp,q (D),

\alpha p,q +Weight(E(p, q, r)) + Up,r over all r \in Rp,q (E),

where for every pair p, r \in P such that p \prec \prime r

(4.13) Up,r = max\{ Tr,s\} over all s \in R\prime 
p\setminus r.

The third step: For given p, s \in P such that px < sx, let Sp,s be the weight of
\scrS p,s. Using similar reasoning as in the previous subsection, one can show that, if S0

is a subset of P such that RCH(S0) is vertically separable of maximum weight, the
following equations calculate | RCH(S0)| :

(4.14) | RCH(S0)| = max\{ Sp,s\} over all p, s \in P such that px < sx,

where for each pair of points p, s \in P such that px < sx

(4.15) Sp,s =

\biggl\{ 
max\{ 4-separators (p, q, r, s)\} \{ T \prime 

p,q + Tr,s\} , p \prec \prime s,
max\{ 4-separators (p, q, r, s)\} \{ U(p, q, s) + V (p, r, s))\} , p \prec s.

Now U(p, q, s) is defined as T \prime 
p,q + Weight(B(v(q), s)), and V (p, r, s) is defined as

Tr,s +Weight(B(p, u(r)))  - Weight(B(p, s)) with u = u(r) = (rx, sy) and v = v(q) =
(qx, py).

The proof of the next theorem is a straightforward adaptation of the previous
arguments.

Theorem 4.3. The MaxWeightRCH problem can be solved in O(n3) time and
O(n2) space.
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a

d

b

c

R

c3 c4

c1c2

1− staircase

3− staircase

Fig. 8. The maximum area orthoconvex polygon.

5. Maximum area orthoconvex polygon. Let \scrR be an axis-aligned rectangle
in the plane (usually called domain) and let P \subset \scrR be a set of n points in general
position. In the MaxOrthoconvexPolygon problem, we look for an orthoconvex poly-
gon \scrO \scrC \subset \scrR of maximum area containing no element of P in its interior. Recall
that a polygon is orthoconvex if its sides are axis-parallel and its intersection with
any horizontal or vertical line is empty, or a line segment. \scrO \scrC is bounded by four
staircases, determined by some points of P (see Figure 8). Observe the differences
between an optimal solution for the MaxAreaRCH problem and an optimal solution
for the MaxOrthoconvexPolygon problem (see Figures 6 and 8). In both cases, the
boundary of the solutions is defined by four staircases, but in the second case the 1-
and the 3-staircases (and the 2- and the 4-staircases) interchange their roles. Thus,
the techniques previously explained must be adapted to this new situation.

As in the previous sections, our algorithm to solve the MaxOrthoconvexPolygon
problem is divided into three steps. In the first step, the algorithm calculates empty
staircases. In the second step, the algorithm computes empty orthoconvex polygons
of maximum area bounded by three staircases. Finally, in the third step, we combine
some of these empty orthoconvex polygons to find an optimal solution. The two main
differences in relation to the previous algorithms are that we use 2-separators (yet to
be defined) instead of 4-separators in the third step, and that the empty orthoconvex
polygons used to find the optimal solution must also be defined for the orthogonal
projections of the points of P onto the sides of \scrR . This results in recurrences that are
a bit more elaborate in the two first steps. We give some definitions, before describing
the algorithm.

Definition 5.1. We use c1, c2, c3, and c4 to denote the top-right, top-left,
bottom-left, and bottom-right vertices of \scrR , respectively. Let \=Pt (resp., \=P\ell , \=Pb, \=Pr) be
the orthogonal projections of the points in P onto the top (resp., left, bottom, right)
side of \scrR , and let \=P = \=Pt \cup \=P\ell \cup \=Pb \cup \=Pr \cup \{ c1, c2, c3, c4\} .

Observe that for an optimal solution \scrO \scrC , the boundary of \scrO \scrC always shares four
segments with \scrR , each of them on one different side of \scrR (see Figure 8). Let d (resp.,
a, b, c) be the leftmost (resp., topmost, rightmost, bottommost) vertex of \scrO \scrC on the
top (resp., left, bottom, right) side of \scrO \scrC , as shown in Figure 8. Since these four
points belong to \=P , we have to define structures whose endpoints belong to \=P in the
different steps of our algorithm, as we explain later.
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p′

p = x(p′)

q
u

p′

q

p = x(p′)

u

p′

q

p = x(p′)

u

p

qu

c4 c4 c4

c4 c4 c4

p

q u

q

p

u

y(q) y(q)

y(q)

y(q) y(q)

y(q) = c1

x(p) x(p) x(p)

Fig. 9. Examples of Dp,q.

Definition 5.2. For a point p \in P , let x(p) and y(p) be the orthogonal projec-
tions of p onto the bottom and right sides of \scrR , respectively. Note that x(p) \in \=Pb and
y(p) \in \=Pr.

For an optimal solution \scrO \scrC , Lemma 2.11 also holds. Therefore, we can assume
again that rectangles B(a, d) and B(b, c) are separated by a vertical line, so \scrO \scrC is
vertically separable. We now describe how to find an optimal solution of the Max-
OrthoconvexPolygon problem that is vertically separable.

The first step: In this step, we build a table D whose entries Dp,q contain areas
that are associated with some empty 4-staircases. Let p and q be a pair of points such
that p \in P \cup \=Pb and q \in P \cup \=Pt \cup \{ c2\} . If p \in P and q \not \prec p, then Dp,q is the area
of the set B(x(p), y(q)) \setminus M4(P (x(p), y(q))). If p \in \=Pb, p

\prime is the point of P such that
x(p\prime ) = p and q \not \prec p\prime , then Dp,q is the area of the set B(p, y(q))\setminus M4(P (p, y(q)))\cup \{ p\prime \} .
Figure 9 shows some examples of Dp,q.

For every pair p, q, M4(P (x(p), y(q)) (or M4(P (p, y(q))) \cup \{ p\prime \} ) can easily be
calculated in O(n) time, so also Dp,q. Therefore, table D can be filled in O(n3) time.3

The second step: Let p \in P \cup \=Pb \cup \{ c4\} , q \in P \cup \=Pt \cup \{ c2\} , and u = (px, qy).
We define the table O with entries Op,q equal to the area of the orthoconvex empty
polygon \scrO p,q of maximum area, with some restrictions on p, q, and u. Let us suppose
first that p \in P . The value Op,q is the area of a maximum orthoconvex empty polygon

with input points P \cap Q4(u) and domain \scrR \cap Q4(u) such that the polygon contains
p, q, and u if p \prec q (see Figure 10, top-left), contains p and u if q \prec \prime p (see Figure 10
top-middle), and contains q and u if p \prec \prime q (see Figure 10 top-right). As we will
see in Lemma 5.3, we can calculate each entry Op,q with p \in P , using the following
recurrence:

(5.1) Op,q = max

\left\{     
Dp,q (A),

Area(B(u, r)) +Or,q over all r \in Np,q (B),

Area(B(u, r)) +Op,r over all r \in Nq,p (C),

3This approach of defining the area as B(x(p), y(q)) \setminus M4(P (x(p), y(q))) can also be used in the
first step of sections 4.1 and 4.2, as an alternative way to compute table C.
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p

q

q
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p−

Op,q

u

u
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p−

Op,q
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u
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p

q
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p′

Op,q

u

p

q

p−

q−
Op,q

u

Fig. 10. Examples of \scrO p,q.

where

Np,q =

\biggl\{ 
r \in P \cap Q4(p) : P (u, r) = \emptyset if p \prec q or q \prec \prime p,
r \in P \cap Q4(u) : P (u, r) = \emptyset if p \prec \prime q,

and

Nq,p =

\biggl\{ 
r \in P \cap Q4(q) : P (u, r) = \emptyset if p \prec q or p \prec \prime q,
r \in P \cap Q4(u) : P (u, r) = \emptyset if q \prec \prime p.

Suppose that p \in \=Pb and let p\prime be the point of P such that x(p\prime ) = p. In this
case, Op,q is the area of a maximum orthoconvex empty polygon with input points

P \cap Q4(u) \cap Q1(p
\prime ) and domain \scrR \cap Q4(u) \cap Q1(p\prime ), such that the polygon contains

p\prime , q, and u if p\prime \prec q (see Figure 10 bottom-middle) and contains p\prime and u if q \prec \prime p\prime 

(see Figure 10 bottom-right). We calculate each entry Op,q with p \in \=Pb, using the
following recurrence:

(5.2) Op,q = max

\Biggl\{ 
Dp,q (A),

Area(B(u, r)) +Op,r over all r \in N \prime 
q,p (C),

where

N \prime 
q,p =

\Biggl\{ 
r \in P \cap Q4(q) \cap Q1(p

\prime ) : P (u, r) = \emptyset if p\prime \prec q,

r \in P \cap Q4(u) \cap Q1(p
\prime ) : P (u, r) = \emptyset if q \prec \prime p\prime .

Finally, suppose that p = c4. For any point q, an orthoconvex polygon in region
\scrR \cap Q4(u) that contains p and u degenerates to the segment up. Thus, we define
Op,q = 0 in this case. The following lemma proves the correctness of (5.1) and (5.2).

Lemma 5.3. The previous recurrences correctly calculate all the Op,q values in
O(n3) time and O(n2) space.

Proof. Assume first that p \in P . Given \scrO p,q, let p
 - \in P \cup \=Pb be the vertex of \scrO p,q

that follows p (or u when p /\in \scrO p,q) in the anticlockwise traversal of the boundary
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Fig. 11. Some cases in the recursive computation of Op,q, p \in P .

of \scrO p,q (see Figure 10). Similarly, let q - \in P \cup \=Pr \cup \{ c1\} be the vertex of \scrO p,q that
precedes q (or u when q /\in \scrO p,q) in the counterclockwise traversal of the boundary of
\scrO p,q (see Figure 10). Note that we are excluding the points of \=Pt in the definition
of q - , although some of them could be a vertex of \scrO p,q when q \in \=Pt (see Figure 10
bottom-left). Also note that q - can be c1 only if q \in \=Pt.

If p - \in \=Pb and q - \in \=Pr \cup \{ c1\} , then Op,q = Dp,q, and this fits into case (A)

of (5.1). Otherwise, p - or q - (or both) belongs to P . Note that if p - \in P , then
necessarily p - \in Np,q, as P (u, r) = \emptyset and p - is in either Q4(p) (if p \prec q or q \prec \prime p)
or Q4(u) (if p \prec \prime q). Similarly, if q - \in P , then q - \in Nq,p. In the first case we have
Op,q = Area(B(u, p - )) +Op - ,q, and letting r = p - this fits into case (B) of (5.1) (see
Figure 11). In the second case we have Op,q = Area(B(u, q - )) + Op,q - , and letting
r = q - this fits into case (C) of (5.1).

The case in which p \in \=Pb is similar to prove, only using point q - . If q - \in \=Pr\cup \{ c1\} ,
then Op,q = Dp,q. If q - \in P , then q - \in N \prime 

q,p and Op,q = Area(B(u, q - )) + Op,q - .
Letting r = q - this fits into case (C) of (5.2). Hence, (5.1) and (5.2) correctly calculate
all the Op,q's.

To finish this step, let \scrO \prime 
p,q denote the orthoconvex polygon \scrO q,p after rotating

the coordinates by \pi . Let O\prime 
p,q denote the area of \scrO \prime 

p,q. Note that by symmetry, all
the O\prime 

p,q values can also be calculated in O(n3) time.
The third step: We show now that by combining some orthoconvex polygons \scrO p,q

and\scrO \prime 
p,q, we can find a vertically separable orthoconvex polygon\scrO \scrC \subset \scrR of maximum

area, whose interior does not contain elements of P . To this end, we next define a
2-separator. Let p \in P \cup \=Pb \cup \{ c4\} and q \in P \cup \=Pt \cup \{ c2\} .

Definition 5.4. We say that (p, q) is a 2-separator of \scrO \scrC if (1) p belongs to the
3-staircase of \scrO \scrC ; (2) q belongs to the 1-staircase of \scrO \scrC ; (3) q \prec \prime p; and (4) \scrO \scrC is the
union of the pairwise interior-disjoint polygons, \scrO \prime 

p,q, B(p, q) and \scrO p,q, where B(p, q)
is the closure of the open rectangle B(p, q) (see Figure 12).
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a

d

p

q

b

c
Op,q

c3 c4

c1

a

q = d

p
Op,q

c

b

a

d

p = c4 = b = c

q

c2

c3 c4

c1c2

c3

c1c2

O′p,q

O′p,q

O′p,q

Op,q = 0

a

q = d

Op,q
c

p = b
c3 c4

c1c2

O′p,q

Fig. 12. Third step of the algorithm: 2-separators (p, q).

This definition implies that if the optimal solution \scrO \scrC has a 2-separator (p, q),
then

Area(\scrO \scrC ) = O\prime 
p,q + Area(B(p, q)) +Op,q.

The next lemma establishes the equivalence between vertical separability and 2-
separators.

Lemma 5.5. \scrO \scrC is vertically separable if and only if \scrO \scrC has a 2-separator.

Proof. Let \scrO \scrC \subset \scrR be an orthoconvex polygon of maximum area that is vertically
separable, i.e., rectangles B(a, d) and B(b, c) are separated by a vertical line. If there
exist elements of P to the right of the vertical line \ell d through d that are vertices of
the 3-staircase of \scrO \scrC , then let p be the leftmost of them. Otherwise, let p = b. If
there exist elements of P between \ell d and the vertical line through p that are vertices
of the 1-staircase of \scrO \scrC , then let q be the rightmost of them. Otherwise, let q = d.
For the definitions of p and q, refer to Figure 12. It is easy to see that (p, q) is a
2-separator of \scrO \scrC .

Let (p, q) be a 2 separator of \scrO \scrC . Since p belongs to the 3-staircase, we have p = b
or p \prec \prime b. Similarly, since q belongs to the 1-staircase, we have q = d or d \prec \prime q. Given
that q \prec \prime p, we have by transitivity that d \prec \prime b, which implies dx < bx. Therefore,
rectangles B(a, d) and B(b, c) are separated by a vertical line, so \scrO \scrC is vertically
separable.

Following Lemma 5.5, the algorithm to find \scrO \scrC is simple: For every p \in P \cup \=Pb \cup 
\{ c4\} and q \in P \cup \=Pt \cup \{ c2\} , we compute the orthoconvex polygon \scrO \scrC p,q of maximum
area (equal to O\prime 

p,q +Area(B(p, q)) +Op,q), such that (p, q) is a 2-separator of \scrO \scrC p,q.
The optimal solution \scrO \scrC will be one of these \scrO \scrC p,q values. Summarizing over all
2-separators (p, q) with p \in P \cup \=Pb \cup \{ c4\} and q \in P \cup \=Pt \cup \{ c2\} ,

(5.3) Area(\scrO \scrC ) = max\{ O\prime 
p,q + Area(B(p, q)) +Op,q\} .
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a = d = c2

b = c = c4

R

p

q

x

y

q

x

p

y

p

x

q y
u u

u

Fig. 13. A maximum area empty staircase polygon, and the three cases for Dp,q.

This last step requires O(n2) time, once all the Op,q values and all the O\prime 
p,q

values have been calculated. Thus, we have obtained a new O(n3) time and O(n2)
space algorithm for the MaxOrthoconvexPolygon problem which is simpler than the
one obtained by Nandy, Mukhopadhyaya, and Bhattacharya [13].

Theorem 5.6 (Nandy, Mukhopadhyaya, and Bhattacharya [13]). The Max-
OrthoconvexPolygon problem can be solved in O(n3) time and O(n2) space.

6. Empty staircase polygon with the largest area. In this section, we fur-
ther extend the applications of our techniques above to show that finding an empty
staircase polygon with the largest area amidst the n-point set P \subset \scrR (i.e., the
MaxStaircasePolygon problem) can be done in O(n2) time and space. Recall that
given a domain \scrR and a point set P \subset \scrR , a maximum area empty staircase polygon
is an orthoconvex polygon contained in \scrR with no point of P in the interior, that
includes two opposed corners of \scrR as vertices. See Figure 13, left.

The algorithm in this section consists of two steps only: In the first step, some
empty rectangles are defined. In the second step, we build some empty staircase
polygons of maximum area for some pairs of points. One of these polygons will be
the optimal solution for the MaxStaircasePolygon problem.

The first step: Let \^P = P \cup \{ c2\} . For every p, q \in \^P such that q \not \prec p, we redefine
Dp,q to denote the Area(B(x(p), y(q))) when the open rectangle B(x(p), y(q)) does
not contain elements of P (see Figure 13, right) and Dp,q =  - \infty otherwise. Recall
that u = (px, qy). Let D be the table containing all of the values Dp,q. Note that we
do not need to explicitly compute D, since each entry can be computed in O(1) time
on demand.

The second step: Consider a new table O, whose entry Op,q is the area of a
maximum area empty staircase polygon \scrO p,q defined for (1) p = q = c2; (2) p, q \in P ,

p \prec q, P (p, q) = \emptyset ; and (3) p, q \in \^P , q \prec \prime p or p \prec \prime q. Recall that these empty
staircase polygons \scrO p,q are built with input points P \cap Q4(u) and domain \scrR \cap Q4(u)
such that the polygon contains p, q, and u if p \prec q, contains p and u if q \prec \prime p, and
contains q and u if p \prec \prime q. See Figure 14 for some examples.

When p \prec q, note that \scrO p,q always contains B(p, q) in its interior, hence neces-
sarily P (p, q) = \emptyset so that \scrO p,q is defined. This is the reason why condition P (p, q) = \emptyset 
was added to item (2) in the definition. This condition has more implications when
calculating all the values \scrO p,q. Suppose that p \prec q and take a point r \in Rp\setminus q (see
Figure 15(b), where rp in the figure plays the role of r). If \scrO p,q is obtained from
\scrO r,q and B(u, r), then necessarily P (u, r) = \emptyset , implying that P (p, r) = \emptyset . On the
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p

q

p

q

q

p

Op,q
Op,q

uu

u

Op,q

Fig. 14. Some examples of \scrO p,q.

other hand, in \scrO r,q the set P (q, r) must be necessarily empty. By adding these two
restrictions P (u, r) = P (q, r) = \emptyset when calculating \scrO p,q, we reduce the number of
points r to consider, as there exists only one point r in Rp\setminus q such that P (p, r) and
P (q, r) are empty at the same time.

Using a detailed case analysis, the following recurrence including restrictions on
the emptiness of several subsets, allows us to calculate all the values Op,q in O(n2)
time:

(6.1) Op,q = max

\left\{     
Dp,q (A),

Area(B(u, r)) +Or,q over all r \in Mp,q (B),

Area(B(u, r)) +Op,r over all r \in Mq,p (C),

where

Mp,q =

\left\{   r \in P \cap Q4(p) : P (u, r) = P (q, r) = \emptyset if p \prec q,
r \in P \cap Q4(p) : P (u, r) = \emptyset if q \prec \prime p,
r \in P \cap Q4(u) : P (u, r) = P (q, r) = \emptyset if p \prec \prime q

and

Mq,p =

\left\{   r \in P \cap Q4(q) : P (u, r) = P (p, r) = \emptyset if p \prec q,
r \in P \cap Q4(u) : P (u, r) = P (p, r) = \emptyset if q \prec \prime p,
r \in P \cap Q4(q) : P (u, r) = \emptyset if p \prec \prime q.

We remark that item (2) p, q \in P , p \prec q, P (p, q) = \emptyset could be replaced by (2) p, q \in P ,
p \prec q, as the previous recurrence assigns the value  - \infty to Op,q (meaning that \scrO p,q

does not exist) when p \prec q and P (p, q) \not = \emptyset . In the definition of Mp,q and Mq,p when
p \prec q, observe that for a point r \in Mp,q \cup Mq,p we have P (u, r) = P (q, r) = P (p, r) =
P (p, q) = \emptyset . In particular, this implies that if P (p, q) \not = \emptyset , then Mp,q \cup Mq,p = \emptyset .
Thus, when applying (6.1) to the pair p \prec q with P (p, q) \not = \emptyset , only case (A) applies,
as Mp,q \cup Mq,p = \emptyset . Since B(x(p), y(q)) contains points of P , then Oq,p = Dq,p =  - \infty 
by definition.

The correctness of (6.1) follows in a similar way as (5.1): If a point p - \in P follows
p (or u) in the 3-staircase of \scrO p,q, then \scrO p,q is obtained from \scrO p - ,q and B(u, p - ) (case
(B)). In the same way, if a point q - \in P precedes q (or u) in the 1-staircase of \scrO p,q,
then \scrO p,q is obtained from \scrO p,q - and B(u, q - ) (case (C)). If such points do not belong
to P , then \scrO p,q is B(x(p), y(p)) (case (A)).

Observe that Oc2,c2 is the area of the maximum-area empty staircase polygon
amidst P , so we only need to show that (6.1) calculates all the values Op,q in O(n2)
time, to solve the MaxStaircasePolygon problem with this complexity.

For every p \in \^P , let Li(p), i \in \{ 1, 2, 3, 4\} , be the sequence of the points t \in 
\^P \cap Qi(p) sorted by increasing x-coordinate such that P (p, t) = \emptyset . Since P is already
sorted by x-coordinate, the sequence Li(p) can be computed in O(n) time for each
point p, thus Li(p) is computed in O(n2) time and space.
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p

q

t = first(p, q)

q

p

u

t = first(p, q)

p

q
u

t = first(p, q)

p ≺ q q ≺′ p p ≺′ q

R′
q\p

R′
q\p

u

(a)

p

q

rp = next3(q, p)

rq = next1(p, q)

t1 = first(p, q)

t4

t2

t3

u

(b)

p

rq = first(p, q)

t1

t4

t2

t3

uq

(c)

Fig. 15. (a) The definition of fi\sansr \sanss \sanst (p, q). (b) The case p \prec q in the proof of Lemma 6.1, where
rp \not = nil and rq \not = nil: The points of L4(p) that are in Rp,q are t1 = fi\sansr \sanss \sanst (p, q), t2, t3, and t4, and
Rp,q\cap Mp,q = Rp,q\cap Mq,p = \{ t1, t2, t3\} . Note that t4 is not present in this set because rq \in P (q, t4).
(c) The case q \prec \prime p in the proof of Lemma 6.1, where rq \not = nil: The points of L4(p) that are in
Rp,q \cap Mp,q = Rp,q \cap Mq,p are \{ t1, t2, t3\} .

Let K \subset \^P \times \^P be the set of point pairs (p, q) such that the entry Op,q is defined.
The next lemma shows that for a pair (p, q) \in K, the complexity of calculating the
sets Mp,q and Mq,p is linear in their size, after an O(n2)-time preprocessing.

Lemma 6.1. For each (p, q) \in K, the sets Mp,q and Mq,p can be computed, re-
spectively, in O(| Mp,q| ) and O(| Mq,p| ) time, after an O(n2)-time preprocessing.

Proof. We give an O(n2)-time preprocessing to compute some special points that
we call first(p, q). For every t \in Li(p), let nexti(p, t) be the point that goes after t in
Li(p). If t is the last element, then nexti(p, t) = nil. We define first(p, q) for the next
pairs p, q \in \^P as follows (see Figure 15(a)):

\bullet p \prec q and P (p, q) = \emptyset : Let first(p, q) be the leftmost point t in L4(p) such
that q \prec \prime t and P (q, t) = \emptyset . Note that q is in L1(p) and, by simultaneously
traversing L1(p) and L4(p), we can compute first(p, q) in O(n) time for fixed
p and all q such that p \prec q.

\bullet q \prec \prime p: Let first(p, q) be the leftmost point t in R\prime 
q\setminus p, which ensures P (u, t) =

P (p, t) = \emptyset . Recall that when q \prec \prime p, R\prime 
q\setminus p is the subset of P in the region

Q4(q) \cap Q1(p). Note that t is in L1(p) and, by simultaneously traversing the
y-ordering of \^P and L1(p), we can compute first(p, q) in O(n) time for fixed
p and all q \prec \prime p.

\bullet p \prec \prime q: Let first(p, q) be the topmost point t in R\prime 
q\setminus p, which ensures P (u, t) =

P (q, t) = \emptyset . Recall that when p \prec \prime q, R\prime 
q\setminus p is the subset of P in the region

Q4(p) \cap Q3(q). Note that t is in L3(q) and, by simultaneously traversing the
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x-ordering of \^P and L3(q), we can compute first(p, q) in O(n) time for fixed
q and all p \prec \prime q.

In any of the above three cases, if the point t does not exist, then first(p, q) = nil.
Observe that we can compute first(p, q) for all p, q such that first(p, q) is defined in
O(n2) time overall.

We now show how to compute Mp,q and Mq,p in O(| Mp,q| ) and O(| Mq,p| ) time,
respectively. Consider the case where p \prec q, in which P (p, q) = \emptyset . Recall that for
a point r \in Mp,q \cup Mq,p, we have P (u, r) = P (q, r) = P (p, r) = P (p, q) = \emptyset . Let
rp = next3(q, p) and rq = next1(p, q), and assume without loss of generality that
rp \not = nil and rq \not = nil (see Figure 15(b)).

If there exists a point r \in Rp\setminus q \cap Mp,q, then the condition P (p, r) = P (q, r) = \emptyset 
implies r = rp. Similarly, r \in Rq\setminus p \cap Mq,p implies r = rq. Now, observe that
P (u, r) = \emptyset also implies that Rp,q \cap Mp,q = Rp,q \cap Mq,p. Moreover, if there are
elements in these two equal sets, then they appear in L4(p) as consecutive elements,
from first(p, q) to the right, until the last element in L4(p) to the left of the vertical
line passing through rq. Then, all of the observations together with the fact that we
check P (u, r) = P (p, r) = P (q, r) = \emptyset in O(1) time, allow us to calculate Mp,q and
Mq,p in O(| Mp,q| ) and O(| Mq,p| ) time, respectively. Note that rp and first(p, q) are
consecutive in L4(p).

Suppose now that q \prec \prime p; see Figure 15(c). Let rq = first(p, q) and assume
without loss of generality that rq \not = nil. If there exists a point r \in R\prime 

q\setminus p \cap Mq,p,

then the condition P (u, r) = P (p, r) = \emptyset implies r = rq. Furthermore, the condition
P (u, r) = \emptyset implies R\prime 

p,q \cap Mp,q = R\prime 
p,q \cap Mq,p, where the elements of this set form a

prefix of L4(p) until the last element in L4(p) to the left of the vertical line passing
through rq. Hence, we can calculate Mp,q and Mq,p in O(| Mp,q| ) and O(| Mq,p| ) time,
respectively. The case p \prec \prime q is symmetric.

The following lemma proves that the number of triples (p, q, r) such that Op,q is
defined and that r \in Mp,q \cup Mq,p is O(n2).

Lemma 6.2.
\sum 

(p,q)\in K (| Mp,q| + | Mq,p| ) \in O(n2).

Proof.
\sum 

(p,q)\in K (| Mp,q| + | Mq,p| ) counts the number of triples (p, q, r) such that

Op,q is defined and r \in Mp,q \cup Mq,p. If p \prec q with P (p, q) = \emptyset , then we have (1)
if r \in Rp\setminus q \cap Mp,q, then p and r are consecutive in L3(q); (2) if r \in Rp,q \cap Mp,q =
Rp,q \cap Mq,p, then p and q are consecutive in L2(r); (3) if r \in Rq\setminus p \cap Mq,p, then q and
r are consecutive in L1(p). Since there are n choices for a point s \in P , and for each
s there are at most O(n) choices for two consecutive points in any Li(s), there are at
most O(n2) triples (p, q, r) with p \prec q.

Consider q \prec \prime p, and define U = \{ (s, t) \in \^P \times P | s \prec \prime t\} . If r \in R\prime 
q\setminus p \cap Mq,p, we

charge the triplet (p, q, r) to (q, p) \in U . Condition P (u, r) = P (p, r) = \emptyset implies that
r is unique for the combination q, p. Otherwise, if r \in R\prime 

p,q \cap Mp,q = R\prime 
p,q \cap Mq,p, then

we charge the triplet (p, q, r) to (q, r) \in U , where P (u, r) = \emptyset implies that p is unique
for the combination q, r. Then, each element of U is charged to at most two triples,
and this ensures that there are at most O(| U | ) = O(n2) triples for q \prec \prime p. Counting
for the case p \prec \prime q is symmetric. Thus the lemma follows.

The combination of (6.1) and Lemmas 6.1 and 6.2 allows us to calculate table
O in O(n2) time. We can also find an empty staircase polygon with the largest area
Oc2,c2 in O(n2) time and space. Thus, we have given a new and simpler algorithm for
the MaxStaircasePolygon problem.
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Theorem 6.3 (Nandy and Bhattacharya [12]). The MaxStaircasePolygon prob-
lem can be solved in O(n2) time and space.

To conclude, we remark that the approach given in this section cannot be applied
to the MaxOrthoconvexPolygon problem described in section 5. For example, when
p \prec q, necessarily P (p, q) = \emptyset in an empty staircase polygon. However, in an empty
orthoconvex polygon this property is not true anymore, as the 4-staircase of the poly-
gon can cross B(p, q) using points belonging to P (p, q). Therefore, the conditions
P (u, r) = P (q, r) = \emptyset and P (u, r) = P (p, r) = \emptyset cannot be added to the definition
of Np,q and Nq,p, respectively, because otherwise they would imply that P (p, q) =
\emptyset .

Summary of notation. The following table summarizes the main notation used.
Horizontal lines denote a change of (sub)section implying a change on the meaning of
a notation.

Notation Description Page
P Point set in general position in the plane 145
a, b, c, d Leftmost, bottommost, rightmost, and topmost points of P 148
px, py x- and y-coordinates of a point p 148
p \prec q Denotes that px < qx and py < qy 148
p \prec \prime q Denotes that px < qx and py > qy 148
Q1(p) Open axis-aligned quadrant \{ q \in \BbbR 2 | p \prec q\} 148
Q2(p) Open axis-aligned quadrant \{ q \in \BbbR 2 | q \prec \prime p\} 148
Q3(p) Open axis-aligned quadrant \{ q \in \BbbR 2 | q \prec p\} 148
Q4(p) Open axis-aligned quadrant \{ q \in \BbbR 2 | p \prec \prime q\} 148

Mi(P ) Union
\bigcup 

p\in P Qi(p) 148

RCH(P ) Rectilinear convex hull of P , defined as
\bigcap 

i=1,2,3,4 Mi(P ) 149

B(u, v) Smallest open axis-aligned rectangle containing u and v 149
P (u, v) Set of points in P that belong to B(u, v), i.e., P \cap B(u, v) 149

Rp\setminus q For p \prec q, subset of P in the region Q4(p) \setminus Q4(q) 150

Rq\setminus p For p \prec q, subset of P in the region Q4(q) \setminus Q4(p) 150
Rp,q For p \prec q, subset of P in the region Q4(p) \cap Q4(q) 150
R\prime 

p\setminus q For q \prec \prime p, subset of P in the region Q4(q) \cap Q3(p) 150

R\prime 
q\setminus p For q \prec \prime p, subset of P in the region Q4(q) \cap Q1(p) 150

R\prime 
p,q For q \prec \prime p, subset of P in the region Q4(p) 150

\scrC p,q For p \prec q or p = q, a 2-staircase with endpoints p and q of maximum size 150
Cp,q Number of elements of P in \scrC p,q 150
Z(p, q) Fourth quadrant associated with u = (px, qy) 151
z(p, q) Points of P in Z(p, q), i.e., = Z(p, q) \cap P 151
\scrT p,q Triple 1-staircase of maximum cardinality among all S \cup \{ p, q\} with S \subseteq 

z(p, q)
151

Xp,q Set of extreme vertices of \scrT p,q 151
Tp,q Cardinality of Xp,q 151
T Table storing values Tp,r 151
Up,r max\{ Tr,s\} over all s \in R\prime 

p\setminus r 151

U Table storing values Up,r 151
\scrT \prime 
p,q Triple 3-staircase of maximum cardinality 152

T \prime 
p,q Size of \scrT \prime 

p,q 152
\scrS p,s For px < sx, rectilinear convex hull of maximum size 154
Sp,s Size of \scrS p,s 154

\scrC p,q Empty 2-staircase of maximum cardinality 155

\scrO \scrT Region Z(p, q) \cap M1(S \cup \{ p, q\} ) \cap M2(S \cup \{ p, q\} ) \cap M3(S \cup \{ p, q\} ) 156
\scrT p,q Empty triple 1-staircase of maximum size 156
E(p, q, r) Interior of B(p, q) \cap Q2(r) if p \not = q, the empty set if p = q 156
Tp,q Cardinality of the extreme vertices of \scrT p,q 156
\scrT \prime 
p,q Empty triple 3-staircase 156

\scrS p,s For px < sx, empty rectilinear convex hull of maximum size 156
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\scrC p,q As in the previous appearance, but maximizing area instead of size 157
\scrT p,q As in the previous appearance, but maximizing area instead of size 157
\scrT \prime 
p,q As in the previous appearance, but maximizing area instead of size 157

\scrS p,q As in the previous appearance, but maximizing area instead of size 157
Tp,q Area of \scrT p,q 157
Sp,s Area of \scrS p,s 158
\scrC p,q As in the first appearance, but maximizing weight 158
\scrT p,q As in the first appearance, but maximizing weight 158
\scrT \prime 
p,q As in the first appearance, but maximizing weight 158

\scrS p,q As in the first appearance, but maximizing weight 158
Cp,q Weight of \scrC p,q 159
Tp,q Weight of \scrT p,q 159
Sp,s Weight of \scrS p,s 159
\scrR Axis-aligned rectangle in the plane 160
c1, c2, c3, c4 Top-right, top-left, bottom-left, and bottom-right vertices of \scrR , respec-

tively
160

\=Pt, \=P\ell , \=Pb,
\=Pr

Orthogonal projections of P onto the (resp.) top, left, bottom, right side
of \scrR 

160

\=P Union \=Pt \cup \=P\ell \cup \=Pb \cup \=Pr \cup \{ c1, c2, c3, c4\} 160
Dp,q Areas associated with some empty 4-staircases 161
\scrO p,q Orthoconvex empty polygon of maximum area 161
Op,q Area of \scrO p,q 161
\scrO p,q Maximum-area empty staircase polygon 165

Li(p) Sequence of the points t \in \^P \cap Qi(p) such that P (p, t) = \emptyset 166
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