000102239 001__ 102239 000102239 005__ 20221004075834.0 000102239 0247_ $$2doi$$a10.1016/j.cma.2020.113136 000102239 0248_ $$2sideral$$a118121 000102239 037__ $$aART-2020-118121 000102239 041__ $$aeng 000102239 100__ $$aMora-Macías, J. 000102239 245__ $$aA multiscale data-driven approach for bone tissue biomechanics 000102239 260__ $$c2020 000102239 5060_ $$aAccess copy available to the general public$$fUnrestricted 000102239 5203_ $$aThe data-driven methodology with application to continuum mechanics relies upon two main pillars: (i) experimental characterization of stress–strain pairs associated to different loading states, and (ii) numerical elaboration of the elasticity equations as an optimization (searching) algorithm using compatibility and equilibrium as constraints. The purpose of this work is to implement a multiscale data-driven approach using experimental data of cortical bone tissue at different scales. First, horse cortical bone samples are biaxially loaded and the strain fields are recorded over a region of interest using a digital image correlation technique. As a result, both microscopic strain fields and macroscopic strain states are obtained by a homogenization procedure, associated to macroscopic stress loading states which are considered uniform along the sample. This experimental outcome is here referred as a multiscale dataset. Second, the proposed multiscale data-driven methodology is implemented and analyzed in an example of application. Results are presented both in the macroscopic and microscopic scales, with the latter considered just as a post-process step in the formulation. The macroscopic results show non-smooth strain and stress patterns as a consequence of the tissue heterogeneity which suggest that a preassumed linear homogeneous orthotropic model may be inaccurate for bone tissue. Microscopic results show fluctuating strain fields – as a consequence of the interaction and evolution of the microconstituents – an order of magnitude higher than the averaged macroscopic solution, which evidences the need of a multiscale approach for the mechanical analysis of cortical bone, since the driving force of many biological bone processes is local at the microstructural level. Finally, the proposed multiscale data-driven technique may also be an adequate strategy for the solution of intractable large size multiscale FE2 computational approaches since the solution at the microscale is obtained as a postprocessing. As a main conclusion, the proposed multiscale data-driven methodology is a useful alternative to overcome limitations in the continuum mechanical study of the bone tissue. This methodology may also be considered as a useful strategy for the analysis of additional biological or technological hierarchical multiscale materials. 000102239 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DPI2014-58233-P$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2017-82501-P$$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-097257-B-C31 000102239 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000102239 590__ $$a6.756$$b2020 000102239 591__ $$aMECHANICS$$b7 / 135 = 0.052$$c2020$$dQ1$$eT1 000102239 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b2 / 108 = 0.019$$c2020$$dQ1$$eT1 000102239 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b6 / 91 = 0.066$$c2020$$dQ1$$eT1 000102239 592__ $$a2.529$$b2020 000102239 593__ $$aComputational Mechanics$$c2020$$dQ1 000102239 593__ $$aComputer Science Applications$$c2020$$dQ1 000102239 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1 000102239 593__ $$aMechanics of Materials$$c2020$$dQ1 000102239 593__ $$aMechanical Engineering$$c2020$$dQ1 000102239 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000102239 700__ $$0(orcid)0000-0003-2564-6038$$aAyensa-Jiménez, J.$$uUniversidad de Zaragoza 000102239 700__ $$aReina-Romo, E. 000102239 700__ $$0(orcid)0000-0003-0088-7222$$aDoweidar, M.H.$$uUniversidad de Zaragoza 000102239 700__ $$aDomínguez, J. 000102239 700__ $$0(orcid)0000-0001-8741-6452$$aDoblaré, M.$$uUniversidad de Zaragoza 000102239 700__ $$aSanz-Herrera, J.A. 000102239 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est. 000102239 773__ $$g368 (2020), 113136 [22 pp]$$pComput. methods appl. mech. eng.$$tComputer Methods in Applied Mechanics and Engineering$$x0045-7825 000102239 8564_ $$s2044640$$uhttps://zaguan.unizar.es/record/102239/files/texto_completo.pdf$$yPostprint 000102239 8564_ $$s1317189$$uhttps://zaguan.unizar.es/record/102239/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000102239 909CO $$ooai:zaguan.unizar.es:102239$$particulos$$pdriver 000102239 951__ $$a2022-10-03-13:23:10 000102239 980__ $$aARTICLE