000102248 001__ 102248
000102248 005__ 20250619084223.0
000102248 0247_ $$2doi$$a10.1063/5.0004826
000102248 0248_ $$2sideral$$a118743
000102248 037__ $$aART-2020-118743
000102248 041__ $$aeng
000102248 100__ $$0(orcid)0000-0002-8306-221X$$aBauza, F.$$uUniversidad de Zaragoza
000102248 245__ $$aFear induced explosive transitions in the dynamics of corruption
000102248 260__ $$c2020
000102248 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102248 5203_ $$aIn this article, we analyze a compartmental model aimed at mimicking the role of imitation and delation of corruption in social systems. In particular, the model relies on a compartmental dynamics in which individuals can transit between three states: honesty, corruption, and ostracism. We model the transitions from honesty to corruption and from corruption to ostracism as pairwise interactions. In particular, honest agents imitate corrupt peers while corrupt individuals pass to ostracism due to the delation of honest acquaintances. Under this framework, we explore the effects of introducing social intimidation in the delation of corrupt people. To this aim, we model the probability that an honest delates a corrupt agent as a decreasing function of the number of corrupt agents, thus mimicking the fear of honest individuals to reprisals by those corrupt ones. When this mechanism is absent or weak, the phase diagram of the model shows three equilibria [(i) full honesty, (ii) full corruption, and (iii) a mixed state] that are connected via smooth transitions. However, when social intimidation is strong, the transitions connecting these states turn explosive leading to a bistable phase in which a stable full corruption phase coexists with either mixed or full honesty stable equilibria. To shed light on the generality of these transitions, we analyze the model in different network substrates by means of Monte Carlo simulations and deterministic microscopic Markov chain equations. This latter formulation allows us to derive analytically the different bifurcation points that separate the different phases of the system.
000102248 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102248 590__ $$a3.642$$b2020
000102248 591__ $$aPHYSICS, MATHEMATICAL$$b4 / 55 = 0.073$$c2020$$dQ1$$eT1
000102248 591__ $$aMATHEMATICS, APPLIED$$b13 / 265 = 0.049$$c2020$$dQ1$$eT1
000102248 592__ $$a0.97$$b2020
000102248 593__ $$aApplied Mathematics$$c2020$$dQ1
000102248 593__ $$aMathematical Physics$$c2020$$dQ1
000102248 593__ $$aStatistical and Nonlinear Physics$$c2020$$dQ1
000102248 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000102248 593__ $$aMedicine (miscellaneous)$$c2020$$dQ1
000102248 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102248 700__ $$0(orcid)0000-0002-6388-4056$$aSoriano-Panos, D.$$uUniversidad de Zaragoza
000102248 700__ $$0(orcid)0000-0001-5204-1937$$aGomez-Gardenes, J.$$uUniversidad de Zaragoza
000102248 700__ $$0(orcid)0000-0003-4479-8360$$aFloria, L.M.$$uUniversidad de Zaragoza
000102248 7102_ $$12004$$2398$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física de la Tierra
000102248 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000102248 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000102248 773__ $$g30, 6 (2020), 063107 [11 pp.]$$pChaos$$tCHAOS$$x1054-1500
000102248 8564_ $$s2793362$$uhttps://zaguan.unizar.es/record/102248/files/texto_completo.pdf$$yVersión publicada
000102248 8564_ $$s2594174$$uhttps://zaguan.unizar.es/record/102248/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102248 909CO $$ooai:zaguan.unizar.es:102248$$particulos$$pdriver
000102248 951__ $$a2025-06-19-08:41:25
000102248 980__ $$aARTICLE