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Abstract 12 

Reconstituted polyphenolic and aromatic fractions (PAFs) from 33 different Grenache 13 

and Tempranillo grapes were incubated in strict anoxia (75ºC x 24 h). Obtained 14 

hydrolyzates were characterized by sensory analysis, gas chromatography-olfactometry 15 

(GC-O) and gas chromatography-mass spectrometry (GC-MS). 16 

Five different aroma categories emerged. Grenache may develop specific tropical 17 

fruit/citric, kerosene and floral and Tempranillo toasty-woody and red-fruit 18 

characteristics. Those notes seem to mask alcoholic and fruit-in-syrup descriptors and 19 

the common vegetal background. Twenty-seven odorants were detected by GC-O. GC-20 

MS data showed a clustering closely matching the one found by sensory analysis, 21 

suggesting the existence of 5 specific metabolomic profiles behind the 5 specific 22 

sensory profiles. Overall results suggest that 3-mercaptohexanol is responsible for 23 

tropical fruit/citric, TDN for kerosene, volatile phenols for woody/toasty, -24 

damascenone and massoia lactone, likely with Z-1,5-octadien-3-one for fruit-in-syrup 25 

and alcoholic notes. Nine lipid-derived unsaturated aldehydes and ketones may be 26 

responsible for the vegetal background.  27 
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1. Introduction 34 

The aroma of wine is the result of perceptual interactions between a relatively wide 35 

array of aroma compounds. While major wine volatiles are byproducts of yeast 36 

fermentation, it has been recently suggested that up to 27 relevant wine aroma 37 

compounds have direct origin in grape specific precursors (Ferreira & Lopez, 2019). 38 

These specific precursors are mainly glycosides (Gunata, Bitteur, Brillouet, Bayonove, 39 

& Cordonnier, 1988; Hjelmeland, Zweigenbaum, & Ebeler, 2015; Williams, Strauss, 40 

Wilson, & Massy-Westropp, 1982) and glutathionyl and cysteinyl conjugates (Darriet, 41 

Tominaga, Lavigne, Boidron, & Dubourdieu, 1993; Fedrizzi, Pardon, Sefton, Elsey, & 42 

Jeffery, 2009; Peyrot des Gachons, Tominaga, & Dubourdieu, 2002), but there are also 43 

other types of grape non-volatile molecules able to act as wine aroma precursors. 44 

Relevant examples are S-methylmethionine which is the main specific precursor of 45 

dimethyl sulfide (DMS) (Loscos, Segurel, Dagan, Sommerer, Marlin, & Baumes, 2008), 46 

different polyols which after different dehydrations and chemical rearrangements can 47 

rend terpenols (Williams, Strauss, & Wilson, 1980) or nor-isoprenoids
 
(Winterhalter, 48 

1991), and also acids or hydroxyacids which during aging will form ethyl esters or 49 

lactones (Ferreira & Lopez, 2019). Aroma molecules derive from these specific 50 

precursors at different rates depending on the number and difficulty of the chemical 51 

changes required to form the aroma molecule from the precursor. For instance, linalool 52 

and geraniol are released from their glycosidic precursors very fast, because only the 53 

glycosidic bond between glucose and the aroma molecule has to be broken since the 54 

aroma molecule is directly the “aglycone” (Strauss, Wilson, Gooley, & Williams, 1986; 55 

Wilson, Strauss, & Williams, 1984). Consequently, these aroma molecules are more 56 

easily found in young wines, while aged wines contain decreased levels of these two 57 

aroma compounds. In an intermediate category there is, among others, β-damascenone. 58 



Its release takes more time because the formation of the aroma molecule requires, at 59 

least, a dehydration and a chemical rearrangement, in addition to the cleavage of the 60 

glycosidic precursor. This aroma molecule tends to reach maxima levels after some 61 

aging (Slaghenaufi & Ugliano, 2018; Waterhouse, Sacks, & Jeffery, 2016). The extreme 62 

case is constituted by some other aroma molecules, such as TDN, DMS, guaiacol or 63 

vanillin, whose levels increase continuously with aging. In the case of DMS this 64 

happens because the cleavage of the precursor is very slow at wine pH. In all the other 65 

cases, it seems that there is a complex net of chemical reactions required to form the 66 

aroma molecules.  67 

In any case, the assessment of this aroma potential is not straightforward and 68 

researchers have used strategies combining either enzymatic hydrolysis, harsh acid 69 

hydrolysis or both simultaneously (Delfini, Cocito, Bonino, Schellino, Gaia, & 70 

Baiocchi, 2001; Loscos, Hernández-Orte, Cacho, & Ferreira, 2009). Enzymatic 71 

hydrolysis using glycolytic enzymes is the most efficient strategy at breaking aglycones 72 

(Hampel, Robinson, Johnson, & Ebeler, 2014; Liu, Zhu, Ullah, & Tao, 2017), but some 73 

of the most relevant wine odorants, such as β-damascenone, β-ionone or TDN are not 74 

even formed (Loscos, Hernández-Orte, Cacho, & Ferreira, 2009). Precursors other than 75 

glycosides cannot be either determined using this type of hydrolysis. On its side, harsh 76 

acid hydrolysis makes it possible to assess β-damascenone, β-ionone, TDN and different 77 

types of precursors, but labile molecules such as linalool or geraniol, are nearly 78 

completely degraded (Loscos, Hernández-Orte, Cacho, & Ferreira, 2009). Levels of 79 

volatile phenols released are also very low and often unrelated to those found by 80 

enzymatic hydrolysis. Best results, at least from the sensory point of view, are obtained 81 

by slow acid hydrolysis mimicking wine aging (Francis, Sefton, & Williams, 1992; 82 

Loscos, Hernandez-Orte, Cacho, & Ferreira, 2010; Sefton, Francis, & Williams, 1993). 83 



The problem of this strategy is that takes long time, since aroma development can take 84 

as long as 7 aging weeks (Alegre, Arias-Pérez, Hernández-Orte, & Ferreira, 2020). 85 

Furthermore, often aroma notes related to oxidation or to the degradation of carotenoids 86 

are noted, suggesting that results are far from optimal. 87 

Recently, it has been observed that if the aging is carried out in complete anoxia and in 88 

the presence of grape polyphenols (polyphenolic and aroma fractions or PAFs), there is 89 

an intense aroma development which includes sensory nuances closely related to some 90 

typical wine aroma nuances. Most remarkably, the aroma development observed after 91 

24h at 75ºC was relatively similar to that observed after seven weeks at 45ºC, both from 92 

the sensory, olfactometric and chemical points of view (Alegre, Arias-Pérez, 93 

Hernández-Orte, & Ferreira, 2020).  94 

In this context, the main hypothesis of the present work is that the accelerated anoxic 95 

aging of reconstituted PAFs extracted from different lots of Tempranillo and Grenache 96 

grapes, will produce intense aroma fractions of different sensory characteristics 97 

integrated by aroma molecules derived from the different specific aroma precursors 98 

contained in grapes. For that, the PAFs-based strategy will be applied to Grenache and 99 

Tempranillo winemaking grapes from different origins and states of ripeness. The 100 

aroma developed will characterized by sensory analysis, GC-Olfactometry and 101 

quantitative GC in order to obtain a first assessment about the diversity of the aroma 102 

nuances developed and of the nature of the aroma compounds responsible for those 103 

grape-derived aroma nuances. 104 

2. Materials and methods 105 

2.1. Chemicals 106 



ACS quality absolute ethanol was obtained from Panreac (Barcelona, Spain), pure water 107 

was purchased from a Milli-Q purification system (Millipore, USA) and LiChrosolv 108 

quality Methanol and HPLC quality dichloromethane were obtained from Merck 109 

(Darmstadt, Germany). 110 

Sep Pak C18 silica, prepacked in 10 g cartridges were obtained from Waters (Ireland). 111 

LiChrolut EN resins cartridges were purchased from Merck (Darmstadt, Germany). A 112 

VAC ELUT 20 station supplied by Varian (Walnut, Creek, USA) was used to carry out 113 

a semiautomated solid phase extraction. L-tartaric acid, sodium chloride, NaHCO3 and 114 

ammonium sulfate were supplied by Panreac (Barcelona, Spain). The Internal Standard 115 

solution contained 3-octanone, 2-octanol and 3,4-dimethylphenol. 116 

Samples. The study was carried out with Grenache and Tempranillo grapes from 117 

different high quality Spanish producers (Dominio Pingus, Bodegas Ramón Bilbao, 118 

Bodega Vega Sicilia, Bodega Viñas del Vero, and Bodega Ilurce) belonging to 3 119 

winemaking areas (Ribera del Duero: D, Somontano: S, and Rioja: R). Samples were 120 

coded with three identifiers. The first refers to the degree of ripening: unripe (u) 121 

samples were taken one week before vintage, ripe (r) samples were harvested at the 122 

optimal point of ripeness, and overripe (o) were collected one week after optimal 123 

ripeness. The optimal moment of harvest was determined based on Cromonenos
®
 124 

methodology (Kontoudakis, Esteruelas, Fort, Canals, & Zamora, 2010).  The second 125 

identifier refers to the variety (T=Tempranillo, G=Grenache), and the third to the 126 

regional origin and specific vineyard plot: D1-D4 for DO Ribera del Duero, S1-S4 for 127 

DO Somontano and R1-R9 for DOCa Rioja vineyard plots. 128 

2.2. Preparation of ethanolic musts (mistelles)  129 



Ten kilograms of grapes were taken from different areas of north Spain, from two 130 

varieties (Grenache and Tempranillo) at one, two or three ripeness states in relation to 131 

the optimal date of vintage and depending on climate conditions and vine state. A total 132 

number of 33 different lots of grapes were collected (Table 1). Grapes were kept at 5 ºC 133 

during the transport from the vineyard to the experimental cellar in the Institute of 134 

Grapevine and Wine Sciences (ICVV, Logroño, La Rioja). Grapes were first 135 

destemmed and crushed in the presence of 5 g/hL of potassium metabisulfite and 15% 136 

(w/w) of ethanol to prevent oxidation and fermentative processes, and to accelerate 137 

extraction. After seven days macerating at 13 ºC, the ethanolic must (mistelle) was 138 

pressed, filtered and stored at 5 ºC in the dark.  139 

2.3. Extraction of phenolic and aromatic fractions (PAFs) 140 

The extraction of the phenolic and aromatic fractions (PAFs) was carried out as 141 

described by Alegre et al. (Alegre, Arias-Pérez, Hernández-Orte, & Ferreira, 2020). 142 

Attending to the procedure, 750 mL of ethanolic must (mistelle) were dealcoholized in a 143 

rotatory evaporator at 23 ºC and a pressure of 20 mbar, to a final volume of around 410 144 

mL containing less than 3% (v/v) ethanol. This volume was percolated through a 10 g 145 

prepacked Sep Pak C18 cartridge (previously conditioned with 44 mL of methanol 146 

followed by 44 mL of milli-Q water with 2% of ethanol). Sugars, amino acids, acids 147 

and ions were removed by washing with 88 mL of milli-Q water at pH 3.5. The 148 

cartridge was then dried by letting air pass through and the polyphenolic and aroma 149 

precursor fractions (PAFs) were recovered by elution with 100 mL of absolute ethanol. 150 

2.4. Accelerated hydrolysis 151 

PAFs were then reconstituted to their original volume (750 mL) with water containing 5 152 

g/L of tartaric acid to form a model wine (rPAF) containing 13.3% (v/v) ethanol and pH 153 



adjusted to 3.5. Then, 180 mL of these rPAFs were introduced into the anoxic chamber 154 

and distributed into three-60 mL WIT
TM

 (wine-in-tube) tubes which were closed within 155 

the chamber and were further bagged into two consecutive thermo-sealed plastic bags. 156 

The bags were of certified oxygen permeability and contained an activated charcoal 157 

with an oxygen scavenger (AnaeroGen from Thermo Scientific Waltham, 158 

Massachusetts, United States) as described by Vela et al. (Vela, Hernandez-Orte, 159 

Franco-Luesma, & Ferreira, 2018). The bagged rPAFs were then taken out of the anoxic 160 

chamber and put into an oven for incubation at 75 °C for 24 hours to form arPAFs. 161 

Released aroma compounds were then analyzed by sensory analysis, gas 162 

chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry 163 

(GC-MS). 164 

2.5. Sensory characterization of hydrolysates 165 

The hydrolysates obtained from rPAFs (arPAFs) were submitted to two different 166 

sensory tasks. In the first, the 33 arPAFs were subjected to a sorting task in which 167 

judges were asked to group samples according to odor similarities. Then, one arPAF 168 

was selected out of each one of the formed groups as the most representative one. These 169 

five arPAFs were submitted to a more complete sensory description via flash profile 170 

methodology by semi-trained panelists. Both sensory tasks were conducted between 171 

October and December 2018. In all cases, samples were taken out of the fridge at 5 °C 172 

one hour before the sensory tasks. Ten-mL samples were poured 30 minutes prior to the 173 

session and served in normalized (German Institute for Normalisation, DIN) dark wine 174 

glasses (Sensus, Schott Zwiesel, Germany) labeled with random three-digit codes and 175 

covered with plastic Petri dishes. The order of presentation of samples was different for 176 

each participant attending to a randomized order. Samples were served at room 177 

temperature and evaluated in a ventilated and air-conditioned tasting room at around 20 178 



°C under ambient light. Participants were not informed about the nature of the samples 179 

nor the objective of the study. 180 

2.5.1. Sorting task 181 

Participants: a volunteer sensory panel comprised of 22 wine-science researchers and 182 

established winemakers (27% men and 73% women ranging in age from 25 to 63, with 183 

an average of 37 years old) participated. They had extended experience in wine 184 

production and tasting (average of 13 years) and were considered to be experts 185 

according to Parr, Heatherbell, and White (2002).  186 

Procedure: Participants were presented simultaneously with 35 samples: 33 arPAFs plus 187 

2 replicate samples (R_uGS4 and R_rTR1) to assess the reproducibility of the panel. 188 

Panelists were then asked to sort the arPAFs based on odor similarity by grouping 189 

glasses on the table. Participants could form as many groups as they wished (minimum 190 

of two groups and maximum of 34). Upon completion, they recorded the three-digit 191 

codes of the samples belonging to each group on a paper sheet and were asked to 192 

describe the groups they formed with their own words (maximum of two terms per 193 

group). At this step, participants were allowed to smell again, but not to modify the 194 

groups they had already established in the previous task. 195 

Data analysis: Results from each panelist were pooled into an individual similarity 196 

matrix (arPAFs × arPAFs) in which 0 meant that two arPAFs were sorted in different 197 

groups and 1 that were in the same group. Individual matrices from all judges were 198 

summed to form the global similarity matrix. A multidimensional scaling (MDS) 199 

analysis was carried out with this global similarity matrix to get a spatial representation 200 

of the samples (Schiffman, Reynolds, & Young, 1981). Further hierarchical cluster 201 

analysis (HCA) with the Ward criteria was performed on the MDS coordinates. The five 202 



clusters identified by truncating the tree diagram were consolidated by aggregation 203 

around mobile centers. The sample closest to the gravity center of the cluster was 204 

selected as the most representative for each cluster. Analyses were carried out using 205 

XLSTAT software (version 2014.2.02).  206 

For the terms derived from the description of the groups, an initial list was built with all 207 

the terms elicited by participants. This list was first reduced by omitting words with 208 

hedonic or emotional character (e.g. pleasant, easy, classic, different…) and adverbs 209 

(e.g., very, barely, extremely…). For remaining words, a lemmatization process was 210 

performed, i.e., words sharing the same lemma or root (e.g., sour, sourness) were 211 

grouped in the same category. Finally, all terms were grouped in categories according to 212 

semantic similarities. This process was performed individually by three experienced 213 

researchers, who through a triangulation task (Abric, 2003) achieved a final consensual 214 

list of terms. The frequency of quotation of each term was calculated and only terms 215 

cited by at least 23% of the panel (>4 participants) were considered. 216 

2.5.2. Flash profile 217 

Participants: a sensory panel comprised of 12 participants (25% men and 75% women 218 

ranging in age from 25 to 63, with an average of 35 years old) attended the sessions. 219 

They were all stuff members of the Laboratorio de Analisis del Aroma y Enología 220 

(LAAE, Universidad de Zaragoza) with extended experience in wine aroma description 221 

(average of 10 years) and considered to be experts according to (Parr, Heatherbell, & 222 

White, 2002). 223 

Procedure: The five arPAFs selected in the sorting task (-I uGS1, uGR3, rTR1rTR5, 224 

andoD2) were sensory characterized by flash profile in duplicate. The methodology 225 

followed involved three different steps: 1) generation of descriptors, 2) panel training, 226 



and 3) description of samples. Therefore, panelists were firstly asked to provide 227 

descriptors that differentiate the five samples. They could give as many attributes as 228 

they wanted. Then, during an inter-session, all the descriptors were pooled to create a 229 

global list. The panel coordinator created aroma references for the descriptors in the list 230 

in order to train the panelists (Table A.1 of supplementary material).  References were 231 

prepared in ethanolic solutions (15% v/v) and different arPAF matrices to simulate the 232 

sensory space studied. During the training, panelists were asked to associate the 233 

references to the descriptors in the global list. Panelists were qualified when they were 234 

able to correctly identify at least 80% of the references. Finally, they were given the 235 

global list of descriptors, not intending to reach a consensus, but to allow them to refine 236 

or complete the list they provided in the first step. Panelists were asked to score the five 237 

samples on each of the descriptors they had chosen. Each descriptor was rated in a non-238 

structured 10-cm length scale anchored with the words ‘absence’ on the left end, and 239 

‘high intensity’ on the right end. For each panelist, all arPAFs were presented 240 

simultaneously in a different and random order in duplicate in two sessions held in 241 

different days (one replicate by session). Data from each panelist was compiled in an 242 

individual data matrix (attribute in columns and arPAFs in rows), and pooling the 24 243 

individual matrices (responses of 12 panelists in duplicate), a global data matrix was 244 

formed. This was further submitted to generalized procruster analysis (GPA). In order 245 

to visualize the relationships between attributes and arPAFs, only attributes cited by at 246 

least five panelists (20% of the panel) were used. GPA analyses was performed with 247 

XLSTAT software (version 2014.2.02; Addinsoft, NY, USA). 248 

2.6. Quantification of aroma compounds  249 

Volatile compounds released from precursors were extracted using a solid phase 250 

extraction (SPE) cartridge, as described by López et al., (Lopez, Aznar, Cacho, & 251 



Ferreira, 2002). The SPE bed consisted on 65 mg of LiChrolut EN resins packed in a 252 

one mL polypropylene SPE cartridge. The sorbent was conditioned with two mL of 253 

dichloromethane, two mL of methanol and two mL of milli-Q water containing 12% 254 

(v/v) of ethanol. Then, 15 mL of the arPAF, to which 100 µL of ethanolic internal 255 

standard solution (2-octanol, 3-octanone, 3.4-dimrthylphenol and 2-octanol) had been 256 

added, were passed through the cartridges at 2 mL/min. The bed was then washed with 257 

1.5 mL of an aqueous solution 30% in methanol and 1% in NaHCO3. After this, the 258 

resins were dried by letting air pass through them and aroma compounds were finally 259 

eluted with 600 µL of dichloromethane containing 5% methanol (v/v).  260 

Two µL of this extract were injected in a QP2010 gas chromatograph equipped with a 261 

quadrupole mass spectrometer detector from Shimadzu (Japan) following the method 262 

proposed by Oliveira et al., (Oliveira, 2019). The column, a DB-WAXetr (30 m x 0.25 263 

mm with 0.5 µm film thickness), was from Agilent (USA). Helium (1.26 mL/min) was 264 

the carrier gas. The initial oven temperature was 40 °C, kept for 5 min, then raised at 265 

1°C/min to 65ºC, then at 2 °C/min to 220 °C and finally hold for 50 min. Injection was 266 

made in splitless mode at 250ºC, splitless time was 1.5 min, and during the injection a 267 

pressure pulse of 4 bar was applied. The mass analyzer was set in single ion monitoring 268 

mode (SIM) and the complete list of m/z ratios selected for each compound as well as 269 

their retention time are shown in Table A.2 of supplementary material. The 270 

quantification was performed by interpolating the SI-normalized peak area in the 271 

calibration straight lines containing at least three different concentration levels of each 272 

compound. 273 

GC-MS data and sensory data (frequency of citation of each attribute) were merged in a 274 

matrix and a two-dimensional principal component analysis (PCA) was carried out. 275 

Sensory data were considered simple illustrative variables, but did not take any role in 276 



the factorization process. XLSTAT software (version 2014.2.02; Addinsoft, NY, USA) 277 

was used. 278 

2.7. Gas chromatography- olfactometry (GC-O) 279 

The aroma compounds present in the arPAFs samples selected in the sorting task were 280 

isolated and preconcentrated using a dynamic headspace sampling technique producing 281 

extracts representative of orthonasal olfaction (San-Juan, Pet’ka, Cacho, Ferreira, & 282 

Escudero, 2010). For this, 80 mL of sample were transferred to a specifically designed 283 

bubbler flask, where without agitation nor bubbling, the headspace was purged by a 100 284 

mL/min stream of pure N2 for 200 min. Volatiles were trapped in a 400 mg LiChrolut 285 

EN SPE bed contained in a three mL polypropylene SPE cartridge installed on top of 286 

the bubbler flask. Then, the SPE cartridge was removed from the system, dried with N2 287 

and volatiles were eluted with 3.2 mL of dichloromethane containing 5% methanol. The 288 

extract was concentrated to 100 µL under a stream of pure nitrogen and 1 µL was 289 

further injected in the GC-O system. This was a Trace GC gas chromatograph 290 

(ThermoQuest, Milan, Italy) with a sniffing port ODO-I (SGE, Ringwood, Australia) 291 

and a flame ionization detector (FID). The column was a DB-WAX (30 m x 0.32 mm 292 

i.d. x 0.5 mm film thickness) from J&W (Folsom, CA, USA), preceded by a deactivated 293 

precolumn (3 m x 0.32 mm i.d.) supplied by Supelco (Bellefonte, PA). The carrier gas, 294 

hydrogen, was used at a constant flow rate of 3.5 mL/min. Injection was in splitless 295 

mode (60 s splitless time). Detector and injector temperatures were 250 ºC. The sniffing 296 

port was heated to prevent the condensation of high boiling point compounds, and it 297 

was equipped with a humidifier filled with deionized water. The temperature program 298 

used was 40 ºC for 5 min, increased by 4 ºC/min to 100 ºC and then 6 ºC/min to 220 ºC, 299 

keeping this temperature during 10 min. The olfactometry signal was obtained by using 300 

a panel of 6 trained judges (83% women and 17% men from 25 and 34 years, median = 301 



28 years) from the laboratory staff. The sniffers annotated the time, odor description and 302 

odor intensity (0 = not detected; 1 = weak odor, 2 = clear odor; 3 = extremely strong 303 

odor, half values allowed) when they detected an aroma. Identification was carried out 304 

by comparing odor descriptors, chromatographic retention indexes in the DB-Wax and 305 

DB5 columns and Mass Spectra with those of pure reference compounds. 306 

GC-O data from the six panelists were compiled and, for each detected odorant, a GCO 307 

score was obtained by calculation of the modified frequency in percentage (% MF), 308 

using the formula proposed by Dravnieks (Dravnieks, 1985): 309 

              

where F (%) is the aromatic attribute detection frequency expressed as a percentage and 310 

I (%) is the average intensity expressed as a percentage of the maximum intensity. 311 

Those odorants not reaching a maximum %MF of 40 % in any of the studied samples 312 

were considered noise and were eliminated.  313 



3. Results and discussion 314 

Phenolic and aromatic fractions (PAFs) extracted from 33 different lots of grapes from 315 

Grenache and Tempranillo were reconstituted in synthetic wine and further submitted to 316 

accelerated hydrolysis at 75 ºC for 24h in strict anoxic conditions. Most samples 317 

developed strong aromatic nuances. The aroma developed by the different samples was 318 

characterized by sensory analysis, GC-O and GC-MS. 319 

3.1. Sensory characterization  320 

The first sensory study consisted of a sorting task aimed at grouping samples attending 321 

to their odor properties. Results of the sorting task are summarized in the dendrogram 322 

shown in Figure 1. The labels (descriptors) most frequently used by the judges to 323 

describe the clusters created in the sorting task are also given. It can be first observed 324 

that the replicate samples introduced as controls (R_uGS4; and R_rTR1) are plotted 325 

together in the dendrogram, supporting the consistency of the panel. It can be also 326 

observed that the sensory task identified five different sensory categories split into two 327 

major groups (group A: clusters 1-2 and group B: clusters 3-5), each one containing 328 

samples predominantly from a single variety. Thirteen out of the 16 samples belonging 329 

to clusters 1 and 2 are from Grenache, while 16 out of 19 in the other three clusters are 330 

from Tempranillo. The two clusters integrated in the main group A (cluster 1+2) were 331 

described as “tropical fruit/citrus” and “floral” for cluster 1 and as “floral” and “fruit in 332 

syrup” for cluster 2, suggesting that “floral” is an attribute more specific of Grenache. 333 

For group B (clusters 3-5), containing mainly Tempranillo, three other sensory 334 

categories were identified. Cluster 3 was mainly described as “woody-toasty”, “red 335 

fruit” and “black fruit”, and “fruit in syrup”; cluster 4 as “vegetal”; and cluster 5 as 336 

“vegetal” and “fruit in syrup”. Remarkably, the cluster does not reveal any relevant 337 

effect of geographic precedence or of the degree of ripeness. 338 



One sample per sensory category was selected as the most representative for each 339 

cluster (from cluster 1: uGS1; from cluster 2: uGR3; from cluster 3: oTD2; from cluster 340 

4: rTR5; and from cluster 5: rTR1) for a deeper sensory characterization using flash 341 

profile. Results of this study are summarized in the GPA maps given in Figure 2. The 342 

two first components accumulate 35% and 29% of the original variance, respectively. A 343 

first observation from the distribution of samples observed in Figure 2a is that the 344 

varietal distribution obtained in the previous sensory task, is not identified here. In fact, 345 

the two samples from Grenache are plotted in extreme positions in the first component. 346 

This apparent contradictory result should be attributed to the complementary nature of 347 

this second sensory task, which aims quantifying sensory descriptors in dissimilar 348 

samples, while the sorting task aims to classify samples. Nevertheless, most descriptors 349 

used in the sorting task in Figure 1 were further cited in the flash profile (Figure 2) and 350 

the sensory profiles obtained are relatively equivalent as will be seen.  351 

In the task, eight descriptors emerged as the most relevant to describe the samples. In 352 

order of use: “alcoholic” (cited by 70% of panelists), “fruit in syrup” (63%), “vegetal” 353 

(50%), “kerosene” (40%), “tropical fruit/citrus” (40%), “woody/toasty” (29%), “red 354 

fruit” (29%) and floral (21%). Attributes differ attending to their ability to discriminate 355 

samples, as can be observed in the GPA planes shown in Figures 2b, 2c and 2d. The 356 

most discriminant attributes are those occupying narrow areas of the plane, since 357 

specifically define one or two samples. By contrast, those more widely distributed in the 358 

plane are similarly used to define all the samples, indicating that represent common 359 

attributes. Attending to this criterion, attributes can be ranked into three categories: 360 

highly discriminant, discriminant and common. Highly discriminant attributes are 361 

characteristic of only one sample and occupy a quite narrow area of the plane. This is 362 

the case of “Tropical fruit/ citrus”, “woody/toasty” (Figure 2b), and “kerosene” (Figure 363 



2c).  Discriminant attributes are found in one of the halves of the plane, as can be 364 

observed in the cases of “alcoholic” (upper half, Figure 2d), “floral” (right half, Figure 365 

2c), and “red fruit” (down half, Figure 2d). The attribute “Fruit in syrup” is slightly less 366 

discriminant, since 73% of the times is found in the left half (Figure 2c) while the 367 

attribute “vegetal” is not discriminant at all. As can be seen in Figure 2b, it is evenly 368 

distributed within the plane, indicating that it is a common characteristic of all the 369 

samples. 370 

The sample uGS1, which was representative of the first cluster, is projected on the right 371 

part of the plot in Figure 2a, indicating that it was described mainly with the terms 372 

"tropical fruit/citrus", and " kerosene", which are exclusive attributes for this sample, 373 

and as “floral”, and “red fruit”, which are attributes shared with other samples. The 374 

sample uGS1 is also the single one lacking the attribute “fruit in syrup”, and scores very 375 

low in “alcoholic”. This is mostly in agreement with results from the sorting task. The 376 

sample oTD2, the representative of the third cluster in Figure 1, is identified as the 377 

second most different in this task. This sample is mainly described with terms such as 378 

toasty-woody (exclusive attribute), “red fruit” (shared with the previous one) and “fruit 379 

in syrup” (shared with all samples in the left plane). Samples rTR1, representative of 380 

cluster 5, and uGR3, representative of cluster 2 were mainly described as “alcoholic” 381 

and “fruit in syrup”. Finally, rTR5, representative of the cluster 4 was described with 382 

“alcoholic” and “vegetal” notes. 383 

It is remarkable that the attribute “alcoholic” is present in the three samples which do 384 

not have specific sensory notes (uGR3, rTR1 and rTR5). Since these wine models did 385 

not contain major fermentation volatiles, such as higher alcohols, this attribute was 386 

likely an exclusive characteristic of ethanol which was similarly present in all the 387 

samples. This suggests, that only some of the odorants present in samples uGS1and 388 



oTD2, likely also those ones responsible for their exclusive sensory characteristics, are 389 

able to mask the aroma (sweet, alcohol) and chemesthesic (pungent, harsh, hot) notes of 390 

alcohol. Furthermore, it can be hypothesized, that the “fruit in syrup” character is at 391 

least in part the result of the interaction between alcohol and odorants of fruity 392 

character, and that only the odorants specifically present in uGS1, likely the ones 393 

contributing to its exclusive “tropical fruit/citric” character, can mask. A similar 394 

observation was made when the addition of a small amount (1 ng/L) of a green odorant 395 

(4-methyl-4-mercaptopentanone) to an aromatic reconstitution reproducing the aroma of 396 

a white wine from Macabeo changed the aroma from sweet, alcoholic, synthetic to fresh 397 

fruit (Escudero, Gogorza, Melus, Ortin, Cacho, & Ferreira, 2004). 398 

Therefore, from the sensory point of view, grapes from Tempranillo and Grenache 399 

contain aroma precursors able to develop a common vegetal character, general fruity 400 

characteristics at quite different levels of intensity and a differential set of sensory 401 

descriptors. Fruity notes likely become integrated with ethanol into the “fruit in syrup” 402 

aroma descriptor. The differential set of sensory descriptors, includes terms such as 403 

“tropical fruit/citric”, “kerosene”, “toasty-woody”, “floral”, and “red fruit”. Some of 404 

these sensory descriptors were at levels enough to mask the sensory characteristics of 405 

ethanol and are likely implied in the specific aromatic profiles of the varieties. 406 

Acknowledging the preliminary character of this study, Grenache grapes seem to be 407 

able to specifically develop “tropical fruit/citric” and maybe also “floral” 408 

characteristics, while Tempranillo grapes seem to be able to develop a specific “woody-409 

toasty” character.   410 

3.2.GC-O analysis 411 

In order to identify the odorants responsible for the distinctive descriptions between 412 

clusters, the 5 arPAFs studied by flash profiling were also submitted to GC-O. Data 413 



from the study are summarized in Table 2, which shows the 27 different odor zones 414 

detected by the panel. Twenty-five odorants were identified as responsible for those 415 

odor zones with different levels of certainty. In 21 of the cases a single odorant seems to 416 

be responsible for the odor zone; in two others, marked with a 1 superscript in the table, 417 

there remains some doubts about the presence of additional odorants in the odor zone, 418 

since the odor descriptors of the identified odorants do not completely explain the odor 419 

descriptors given by the panel. In one of the odor zones, two odorants were identified. 420 

Additionally, no odorants could be identified in the odor zones with polar retention 421 

indexes at 1012, 1109 and 1779. 422 

The 25 identified odorants can be classified attending to their biochemical origin into 5 423 

different categories: lipid-derivatives with 11 members, phenol-derivatives (5 424 

members), terpenes (4 members), nor-isoprenoids (2 members) and miscellaneous (3 425 

members). Within the lipid-derivatives category there are 7 unsaturated aldehydes, 2 426 

unsaturated ketones and 2 lactones. Lipid derivatives are molecules with either 9 (six of 427 

them), 8 (two of them), 10 (two of them) or 6 (just one) carbon atoms. Within the 428 

phenol-derivatives category, there are 4 volatile phenols and ethyl cinnamate. Among 429 

terpenes, linalool, linalool oxide, dihydromyrcenol and -terpineol were identified. The 430 

two nor-isoprenoids are -ionone and -damascenone, and among the miscellaneous 431 

category, phenylacetaldehyde, 3-mercaptohexanol and furaneol were found. The former 432 

is an amino acid derivative, the second one is the product of the hydrolysis of different 433 

glutathionyl- and cysteinyl precursors, and the third one is a sugar derivative.  434 

Odorants in the table are ranked attending to the difference between the maxima and 435 

minima scores. This parameter, given in the last column, is an indication of the potential 436 

ability of an odorant to introduce sensory differences, so that most discriminant should 437 

be ranked first. Nevertheless, it should be noted that in those cases in which GC-O 438 



scores are close to saturation, such as Z-2-nonenal, this parameter can underestimate the 439 

discriminating ability of the odorant. In any case, attending to this criterion, the table 440 

reveals that the odorants potentially most discriminant between the five representative 441 

samples are poorly known compounds which in fact could not be quantified, two even 442 

identified, in the present study. Three out of the four most discriminant odorants are 443 

maxima in the sample representative of cluster 1 and, on the basis of their sensory 444 

descriptors, the two first odor zones in the table should be responsible for the specific 445 

tropical fruit and citrus character of samples in this cluster. The first odorant is 3-446 

mercaptohexanol, which is an extremely powerful and well-known grape-derived 447 

odorant. Its presence, however, was not expected because the hydrolysis of the different 448 

precursors is assumed to occur exclusively via specific -lyase activities of yeast 449 

(Roland, Schneider, Razungles, & Cavelier, 2011). It can be argued that it is an artifact 450 

formed by the relatively high temperatures at which the hydrolysis took place, but it was 451 

also found when the hydrolysis was carried out at 45ºC (Alegre, Arias-Pérez, 452 

Hernández-Orte, & Ferreira, 2020) and in earlier studies, Darriet et al showed that it 453 

could be released by acid catalysis in the presence of ascorbic acid (Darriet, Tominaga, 454 

Demole, & Dubourdieu, 1993). On the other hand, it is known that its precursors can be 455 

present in Grenache at mg/L levels
 
(Concejero, Peña-Gallego, Fernandez-Zurbano, 456 

Hernández-Orte, & Ferreira, 2014), so that less 0.1% cleavage would suffice for its 457 

detection. The odor zone eluting at IR1464 also had a grapefruit and citrus character, 458 

and two odorants compatible with this odor were identified: linalool oxide and 459 

dihydromyrcenol. A third potentially discriminant odorant, the strawberry smelling 460 

compound eluting at 1109, was also maxima in this sample. The table also reveals the 461 

presence of two discriminant odorants maxima in the sample representative of cluster 4 462 

(vegetal odor) and scoring high also in the representative of cluster 5 (vegetal and fruit). 463 



These two odorants are the unidentified solvent-smelling with IR 1012 and the 464 

mushroom-blood-metal smelling Z-1,5-octadien-3-one. This last compound has been 465 

recently shown to play a role in the perception of dry fig and geranium nuances in musts
 

466 

(Allamy, Darriet, & Pons, 2017). Both compounds may play a role in the perception of 467 

vegetal notes most clearly identified in clusters 4 and 5. Another discriminant odorant 468 

was identified as phenylacetaldehyde, and scored maxima in the sample representative 469 

of cluster 2 (floral). Other floral smelling odorants also scored high in this sample, such 470 

as linalool, ethyl cinnamate or -ionone. On the other hand, many of the lipid 471 

derivatives, such as E,E-2,4-decadienal, E-2-nonenal, Z-2-decenal, E,E-2,4-nonadienal 472 

or Z-3-hexenal, have quite limited ranges of variability in the GCO scores, which 473 

suggests that these odorants derived from lipids are a common constitutional 474 

background in all samples contributing to vegetal notes.  475 

3.3. Quantitative data 476 

The 33 samples were also analyzed quantitatively by GC-MS. Targeted compounds 477 

included those found relevant in previous studies (Loscos, Hernandez-Orte, Cacho, & 478 

Ferreira, 2010; Oliveira & Ferreira, 2019) and belonged to five different chemical 479 

categories: norisoprenoids, terpenoids, lactones, volatile phenols, vanillin derivatives 480 

and ethyl esters. Unfortunately, some remarkable odorants identified by GC-O in Table 481 

2 could not be quantified, well because of the low concentration at which they are 482 

found, well because they require specific analytical procedures involving chemical 483 

derivatization or selective isolation. Overall, 30 different aroma compounds could be 484 

quantified. Results are summarized in Table 3 and the complete set of results is given as 485 

supplementary material. Quantitative data were processed by one-way ANOVA 486 

considering as factors the sensory cluster, grape variety, geographical precedence and 487 

degree of ripeness. The most influential factor was the sensory cluster for which all 488 



aroma compounds except furaneol, varied significantly with differences in many cases 489 

of large magnitude, as can be seen in Table 3. The second most influential factor was 490 

grape variety, for which 24 out of the 30 aroma compounds varied significantly, in 491 

some cases also with large differences, as can be also seen in the table. By contrast, the 492 

factor with smallest influence in the dataset was the degree of ripeness, for which only 493 

one compound reached significance (supp. material). The factor geographical origin, 494 

had a small but significant influence on the levels of 16 aroma compounds (supp. 495 

material). Nevertheless, the real influence of this factor cannot be well assessed since 496 

the experiment was not adequately balanced, but results in any case suggest that its 497 

influence is much smaller than that of the variety.  498 

These observations are further supported by the PCA carried out with quantitative data, 499 

as can be seen in the plot in Figure 3. Samples are distributed in the plane following 500 

exactly the same five clusters identified in the sensory sorting task. This close similarity 501 

between the sensory and chemical spaces is quite infrequent in wine flavor chemistry, 502 

and decidedly suggests that the sensory classes identified in the sorting task, are the 503 

consequence of quite specific profiles of volatiles. Since some aroma relevant molecules 504 

detected in the GC-O experiment have not been quantified, it seems that those profiles 505 

of volatiles reflect the existence of specific metabolic patterns. Additionally, and 506 

comparing to the difficulties found in wine to correlate sensory and chemical spaces, it 507 

can be hypothesized that major fermentation volatiles largely complicate and distort the 508 

relationship between the chemical and the sensory spaces.  509 

In order to facilitate the discussion of results and, in particular, in order to focus the 510 

discussion on the odorants most relevant from the sensory point of view, the two last 511 

columns in Table 3 contain the odor thresholds of the quantified odorants and the ratios 512 

OAVmax/OAVmin. Such ratios are indicative of the potentiality of the odorant to 513 



introduce sensory differences within the pool of samples. If such ratios are calculated 514 

including only those OAVs>1 (strict criterion), the odorants potentially responsible for 515 

higher sensory variability are -damascenone, TDN, linalool, limonene, furaneol and 4-516 

vinylphenol, whose ratios are higher than 2. If the ratios are calculated including all 517 

those OAVs>0.2 (conservative criterion), then massoia lactone also shows a high 518 

discriminating potential reaching a 5.2 ratio. Odorants with some ability (ratio <2 but 519 

>1.3) to introduce sensory differences attending to these ratios are also -ionone, 520 

geraniol, 1,8-cineole, guaiacol and 4-vinylphenol. The highest ratios measured for 521 

furaneol are due to spurious very large concentration values registered in some 522 

individual samples. This is the most polar and difficult to extract compound in the list, 523 

so that such extreme behavior could be attributed to limitations of the analytical 524 

method. 525 

The plot in Figure 3 basically states that Grenache samples are found at the far-right 526 

part of the plane, split into two major groups, one at the North (coinciding with cluster 2 527 

in the sorting task) and a second at the South (cluster 1), two other samples (uGR4 and 528 

uGR3) more centered and a single odd sample (uGS3) in the left part of the plane. 529 

Samples from Tempranillo are all of them but three (uTD2, rTD2 and oTR5), at the left 530 

part of the plane, split into three groups corresponding to the clusters 3, 4 and 5 531 

identified in the sorting task (Figure 1). Then, considering Figure 3 and data in Table 3, 532 

it can be said that samples from Grenache are richest in norisoprenoids (except 533 

ionones), terpenoids (except limonene) and vanillin derivatives, while those of 534 

Tempranillo are richest in most volatile phenols. This has to be relevant from the 535 

sensory point of view, first because differences affect to relatively large number of 536 

compounds having similar aroma properties (terpenols, vanillins, volatile phenols) 537 

whose sensory effects will be cooperative; second because some of the components 538 



have high OAVmax/OAVmin ratios, in particular -damascenone, TDN, linalool and 539 

massoia lactone, which are maxima in Grenache and 4-vinylphenol which is maxima in 540 

Tempranillo.  541 

Going into more detail with the help of Table 3, the two Grenache clusters clearly differ 542 

because cluster 2 contains highest levels of -ionone, -damascenone, linalool, 543 

limonene (second highest) and of massoia lactone, while cluster 1 contains highest 544 

levels of TDN. The high contents of TDN in Grenache has been recently observed 545 

(Oliveira & Ferreira, 2019). These compositional differences explain the floral and fruit 546 

in syrup character of samples in cluster 2, and the specific kerosene attribute of samples 547 

in cluster 1 (Figure 2), but cannot explain the tropical fruit and citrus character of 548 

samples in cluster 1. Attending to the olfactometric study in Table 2, these should be 549 

attributed to 3-mercaptohexanol, linalool oxide and dihydromyrcenol which were not 550 

quantified. Among the Tempranillo clusters, cluster 4, is characterized by its minima 551 

contents in most aroma compounds. It contains highest levels of guaiacol, eugenol, and 552 

2,6-dimethoxyphenol, but only the former is barely above threshold. This would explain 553 

that samples in this cluster were characterized only by vegetal and alcoholic notes, 554 

which are the general background notes, as was seen in Figure 2. Samples in cluster 5 555 

also have close to minima contents in most aroma components, but have higher levels 556 

than those of cluster 4 in  and -ionones, and in -damascenone. This, together with 557 

the presence of Z-1,5-octadien-3-one could explain their fruit in syrup character, in 558 

addition to the vegetal and alcoholic notes.  559 

Finally, samples in cluster 3 have an intermediate composition to those of clusters 2 and 560 

5. They have higher levels of volatile phenols, particularly of vinylphenols, and smaller 561 

levels of terpenes, vanillin derivatives, massoia lactone and -damascenone than those 562 

of samples in cluster 2. They also have, except for most volatile phenols, higher levels 563 



of aroma compounds than samples in cluster 5. The higher levels of volatile phenols 564 

would explain the woody/toasty character of samples in cluster 3. Attending to previous 565 

results
 
(San Juan, Ferreira, Cacho, & Escudero, 2011), it can be hypothesized that the 566 

red fruit character and the lack of alcoholic character would be the consequence of a 567 

smaller fruit in syrup character, because of the smaller levels of massoia lactone, -568 

damascenone than samples in cluster 2 and smaller levels of Z-1,5-octadien-3-one and 569 

higher levels of fruity odorants than samples in cluster 5. 570 

4. Conclusions 571 

Hydrolyzates obtained from PAFs extracted from grapes from Tempranillo and 572 

Garnacha have aromas classified into five different sensory categories with a common 573 

vegetal background character. Grenache-related categories may have specific tropical 574 

fruit/citric, kerosene and floral characteristics, while Tempranillo-related may develop 575 

specific toasty-woody and red fruit sensory notes. Specific sensory notes seem to mask 576 

alcoholic and fruit in syrup aroma descriptors which would be also common. 577 

The GC-O profiling of representative samples revealed that 3-mercaptohexanol, linalool 578 

oxide and dihydromyrcenol, two unidentified odorants, phenylacetaldehyde and Z-1,5-579 

octadien-3-one are potentially the most discriminant odorants of the data set. A large 580 

group of powerful lipid-derivatives including 7 unsaturated aldehydes, 2 unsaturated 581 

ketones and 2 lactones, having 9 (6 of them), 10, 8 (2 of them each) or 6 (just 1) carbon 582 

atoms, may be responsible for the vegetal background and have also implications in the 583 

fruit in syrup perception. Other identified odorants were 4 volatile phenols, ethyl 584 

cinnamate, -ionone and -damascenone, linalool and -terpineol and furaneol. 585 

The PCA derived from quantitative data (30 odorants, including only 12 out of the 27 586 

detected by GC-O) showed a clustering perfectly matching the one found by sensory 587 



analysis, which suggests the existence of 5 specific metabolomic profiles behind the 5 588 

specific sensory profiles. Quantitative data confirm that Grenache is richest in 589 

norisoprenoids (except ionones), terpenoids (except limonene) and vanillin derivatives, 590 

while those of Tempranillo are richest in most volatile phenols. 591 

The integration of all data suggests that 3-mercaptohexanol, maybe together with 592 

linalool oxide and dihydromyrcenol, would be responsible for the tropical fruit/citrus 593 

character, that TDN is responsible for kerosene notes and that volatile phenols, notably 594 

guaiacol and 4-vinylphenol, would be responsible for the woody/toasty character. It is 595 

also suggested that -damascenone and massoia lactone, likely with Z-1,5-octadien-3-596 

one would be main contributors to fruit in syrup and alcoholic notes and would mask 597 

red fruit character.  598 

  599 

  600 
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Figure captions: 727 

Figure 1. Dendrogram showing the classes derived from the sorting task carried out on 728 

the 35 hydrolyzates obtained from 33 PAFs (plus two replicates, marked with R_).  729 

Samples in bold are those selected for further flash profiling. Codes: u, r or o, refers to 730 

underripe, ripe or overripe; T or G, refers to Tempranillo or Grenache; R, S or D, refers 731 

to Rioja, Somontano or Duero (geographical origin); the last number refers to the 732 

specific vineyard within the region. 733 



Figure 2. Projections of samples (Figure 2a) or of the different variables (Figures 2b, 2c 734 

and 2d) in the plane formed by the two first dimensions obtained in the generalized 735 

procruster analysis (GPA) carried out on the sensory data obtained in the Flash 736 

profiling. Only attributes cited by at least 20% on the panelist were used. 737 

Figure 3. Projection of samples and variables in the PCA plane obtained from 738 

exclusively GC-MS quantitative data. Sensory variables are projected as illustrative 739 

variables but did not take part in the analysis. The superimposed circles delimit the 740 

clusters identified in the sensory sorting task shown in Figure 1. 741 



1. Phenolic and Aromatic Fractions (PAFs) from grapes develop strong aromas 

2. 5 different sensory categories of hydrolyzates. 27 odorants detected by GCO 

3. Grenache: tropical fruit, kerosene, floral. Tempranillo: toasty/woody, red-fruit 

4. Excellent fitting of sensory and chemical spaces. Main odorants:  

5. 3-mercaptohexanol, nor-isoprenoids, lipid derivatives, volatile phenols, 

terpenes 

 

*Highlights (for review)
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Table 1. Thirty-three different lots of grapes collected at three different moments (underripe: u. ripe: r. and overripe: 

o). two different varieties (Tempranillo: T and Grenache: G) and from three different regions (Ribera del Duero: D. 

Rioja: R and Somontano. S) and 17 different vineyard plots (D1-D4. R1-R9. S1-S4) 

 

 

Codes Ripeness state Variety Denomination of Origin Vineyard plot 

uTD1 underripe Tempranillo DO Ribera del Duero D1 

rTD1 ripe Tempranillo DO Ribera del Duero D1 

oTD1 overripe Tempranillo DO Ribera del Duero D1 

uTD2 underripe Tempranillo DO Ribera del Duero D2 

rTD2 ripe Tempranillo DO Ribera del Duero D2 

oTD2 overripe Tempranillo DO Ribera del Duero D2 

rTD3 ripe Tempranillo DO Ribera del Duero D3 

rTD4 ripe Tempranillo DO Ribera del Duero D4 

uTR1 underripe Tempranillo DOCa Rioja R1 

rTR1 ripe Tempranillo DOCa Rioja R1 

oTR1 overripe Tempranillo DOCa Rioja R1 

uTR2 underripe Tempranillo DOCa Rioja R2 

rTR2 ripe Tempranillo DOCa Rioja R2 

uGR3 underripe Grenache DOCa Rioja R3 

rGR3 ripe Grenache DOCa Rioja R3 

oGR3 overripe Grenache DOCa Rioja R3 

uGR4 underripe Grenache DOCa Rioja R4 

rGR4 ripe Grenache DOCa Rioja R4 

rTR5 ripe Tempranillo DOCa Rioja R5 

oTR5 overripe Tempranillo DOCa Rioja R5 

rTR6 ripe Tempranillo DOCa Rioja R6 

oTR6 overripe Tempranillo DOCa Rioja R6 

rTR7 ripe Tempranillo DOCa Rioja R7 

rGR8 ripe Grenache DOCa Rioja R8 

rGR9 ripe Grenache DOCa Rioja R9 

uGS1 underripe Grenache DO Somontano S1 

rGS1 ripe Grenache DO Somontano S1 

uGS2 underripe Grenache DO Somontano S2 

rGS2 ripe Grenache DO Somontano S2 

uGS3 underripe Grenache DO Somontano S3 

rGS3 ripe Grenache DO Somontano S3 

uGS4 underripe Grenache DO Somontano S4 

rGS4 ripe Grenache DO Somontano S4 

Table(s)
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Table 2. Summary of the GC-O experiment carried out on the five PAF-derived hydrolyzates selected as representative of each of the clusters found in the sensory sorting task. Retention 

indexes in polar (DB-Wax) and non polar (DB-5) stationary phases, odor description, identity and GC-O scores (modified frequency in %) ranked attending to the difference between the 

maxima and minima scores. 

 

RI polar RI non polar description Compound* 
uGS1 

cluster 1 

uGR3 

cluster 2 

oTD2 

cluster 3 

rTR5 

cluster 4 

rTR1 

Cluster 5 
max-min 

1859 1131 Grapefruit, tropical, guava, green 3-mercaptohexanolb 92..8 69.7 71.4 16.7 76.1 76.1 

1464 1070 Grapefruit, citrus, floral, sweet 
linalool oxidea + 

dihydromyrcenolc 
67.7 21.5 25.5 0 25.5 67.7 

1012  Solvent, ketone n.i. 1012 9.6 28.9 58.9 73.6 63.6 64 

1109  Strawberry, acid, caramel, strawberry-cream n.i. 1109 50.9 28.9 33.3 16.7 0 50.9 

1675 1049 Citrus, bitter almond, green, flower, nuts, cardboard Phenylacetaldehyde1b 37.3 60.9 19.2 6.8 43 54.1 

1381 986 Mushroom, blood, metal, iron Z-1.5-octadien-3-oneb 0 0 26.4 40.8 50 50 

1958 1488 Floral, spicy, strawberry candy, rose β-iononea 26.4 41.9 10.8 0 21.5 41.9 

1593 1159 Vegetable, green, cucumber, peas, flower E.Z-2.6-nonadienala 60.8 19.2 49.1 62.7 53.8 43.5 

1562 1095 Floral, paint, herbal, citrus linaloola 31.2 44.1 0 0 6.8 44.1 

1779 
 

citrus, floral, grapefruit, fruity, sweet n.i. 1779 32.3 48.1 16.7 6.8 6.8 41.3 

2147 
 

floral, toasted, hand cream ethyl cinnamatea 13.6 43.0 9.6 13.6 0 43 

1873 
 

spices, clove, smoked, bacon guaiacola 38..2 66.7 74.5 41.9 62.7 36.3 

1307 979 mushroom, humidity 1-octen-3-onea 58.9 57.9 70.7 36.3 49.1 34.4 

2007 
 

rubber, plastic, dust, earth o-cresola 38.5 23.6 23.6 15.2 50.5 35.3 

2053 1058 caramel, strawberry candy, sugar cotton furaneola 54.9 67.7 35.4 33.3 40.8 34.4 

2020 
 

grilled meat, butter, cream, fried, rubber y-nonalactone1a 31.2 45.6 9.6 20.4 13.6 36 

2287 1359 barbecue, fried corn, spicy, toasted 2.6-dimethoxyphenola 19.2 31.2 41.9 9.6 11.8 32.3 

1822 1332 rancid, oily, toasted, spicy E.E-2.4-decadienalb 66.7 58.9 58.9 40.8 45.1 25.9 

2099 1077 stable, horses, manure, animal pee, leather m/ρ-cresola 58.9 66.3 47.1 33.3 45.1 33 

1835 1388 apple compote, raspberry jam β-damascenonea 88.2 88.2 90.5 65.4 82.5 25.1 

1543 1165 cucumber, fatty, rancid, carmine E-2-nonenala 68.0 78.2 69.7 66.3 56.1 22.1 

1734 1192 floral, sweet, anise, green, citrus α-terpineola 38.5 40.8 26.4 21.5 24.5 19.3 

1621 1253 rancid, paper, cucumber, plastic, mat Z-2-decenalb 56.9 60.9 60.9 47.1 66.3 19.2 

1710 1224 fat, raw bread, wood, toasted, fried, wax E.E -2.4-nonadienalb 52.7 43 50 40.8 43 11.9 

2260 1484 coconut, fruity, toasted, spicy, lactic massoia lactonea 68.0 86 86 79.1 80.5 18 

1147 800 grass, stem, plant, green Z-3-hexenala 75.5 73.6 83.3 72.6 75.5 10.7 

1513 1150 rancid, paper, cardboard, fatty, cucumber Z-2-nonenala 91.3 89.8 92.2 87.4 95 7.6 

n.i.. not identified.*Reliability of the identification. aretention indexes, odor and mass spectrometry equal to those of the pure standard; bas a but Mass Spectrum could not be properly recorded; cas a but data 

were obtained from literature (pure standard not available). 1 indicates that a second unidentified odorant may be also present within the odor zone 
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Table 3. Average (±standard deviation) concentrations of compounds (expressed in µg L-1) found in hydrolyzated reconstituted PAFs. Data are segregated attending to the sensory clusters identified by sorting task or to grape 

variety. F quotients found in the corresponding one-way ANOVAs. Different letters indicate significant differences between sensory clusters according to Fischer post-hoc test. The two last columns of the table Sensory 

thresholds and potential sensory discrimination abilities are also given as the ratios OAVmax/OAVmin with the condition OAV>1 and between brackets with the condition OAV > 0.2. 

 Sensory Cluster Variety Sensory relevance 

 
cluster 1 

(5G+1T) 

cluster 2 

(7G +2T) 

cluster 3 

(4T + 2 G) 

cluster 4 

(4T) 

cluster 5 

(7T + 1G) 

F Grenache 

(15 samples) 

Tempranillo 

(18 samples) 

F Sensory 

 threshold 

OAVmax/ 

OAVmin1 

NORISOPRENOIDS            

β-ionone  1.16±0.05a 1.57±0.09c 1.41±0.13b 1.15±0.19ª 1.56±0.10c 20.6* 1.46±0.18 1.37±0.22 0.0 0.09 1.6 

α-ionone  0.40±0.02b 0.45±0.02c 0.41±0.02b 0.34±0.04ª 0.48±0.02d 27.0* 0.43±0.04 0.43±0.06 0.0 2.6 0 

β -Damascenone 25.10±0.07d 30.85±1.1e 21.13±2.2c 11.19±1.4ª 17.59±1.7b 153.5* 25.80±5.97b 19.64±6.12a 20.5* 0.05 3.3 

TDN  51.59±9.6d 33.78±5.4c 20.07±4.4b 14.32±1.3ab 11.82±2.4ª 56.7* 30.34±11.52a 23.93±17.92a 17.8* 2 9.2 

Riesling Acetal 0.43±0.05d 0.36±0.05c 0.22±0.03b 0.14±0.00a 0.17±0.02ª 67.1* 0.32±0.11b 0.24±0.11a 34.6* na n.a. 

TERPENES            

β -citronellol  1.83±0.06d 2.02±0.17e 1.58±0.09c 0.90±0.09ª 1.13±0.08b 111.0* 1.79±0.40b 1.36±0.36a 32.9* 100 0 

geraniol 3.56±0.20c 3.90±0.90c 2.54±0.63d 1.00±0.05ª 1.13±0.12ª 38.2* 3.34±1.32b 1.93±0.98a 49.2* 20 0 (1.4) 

linalool  9.56±0.95c 11.29±1.3d 7.37±1.6b 5.52±0.58ª 6.27±0.77ab 30.8* 10.12±2.26b 6.88±1.49a 73.5* 6 2.1 (2.7) 

α -terpineol 30.34±2.5c 27.25±5.0c 15.22±6.6b 3.08±0.05b 5.56±1.9ª 57.7* 24.01±1.09b 11.96±10.0a 66.6* 250 0 

nerol 0.94±0.06b 1.12±0.20c 0.83±0.11b 0.00±0.00a 0.00±0.00a 139.4* 0.88±0.48b 0.42±0.44a 28.9* 300 0 

1.8-cineole 1.30±0.03c 1.26±0.06c 1.08±0.09b 1.15±0.06b 1.02±0.11ª 16.2* 1.22±0.13b 1.12±0.13a 17.1* 1.1 1.2 (1.5) 

r-limonene  11.50±1.8ª 22.80±2.3b 22.22±3.6b 24.26±1.1b 28.45±4.5c 26.3* 21.72±5.35a 22.58±7.21a 6.1# 15 2.5 (3.8) 

linalool oxide 3.74±0.18c 3.48±0.40c 1.96±0.52b 1.41±0.11ª 1.41±0.25ª 72.3* 3.06±0.95b 2.03±0.97a 48.2* na n.a. 

LACTONES            

furaneol  11.34±25 3.00±3.8 1.14±0.31 21.09±42 3.37±8.8 1.0 9.33±21.78 4.07±14.65 0.2 5 17 (84) 

massoia lactone 3.52±0.67ª 10.12±2.6b 4.67±1.4ª 3.38±0.34a 3.79±0.70a 25.6* 7.00±4.22b 4.39±1.28a 7.0# 10 1.4 (5.2) 

VOLATILE 

PHENOLS      

    

  

guaiacol 8.15±0.46ª 9.39±0.57bc 10.27±1.4cd 11.30±1.0d 9.12±1.3ab 7.3* 9.32±0.96 9.63±1.58 4.1 9.5 1.3 (1.7) 

eugenol  0.26±0.02ª 0.32±0.05ª 0.53±0.09b 0.73±0.05c 0.59±0.06b 63.5* 0.38±0.14a 0.54±0.17b 41.8* 6 0 

E-isoeugenol 0.45±0.04ª 0.28±0.04ª 0.40±0.10b 0.53±0.04b 0.79±0.17c 28.8* 0.40±0.14a 0.56±0.24b 8.9# 6 0 

methoxyeugenol 1.52±0.19ª 1.94±0.49ª 3.26±1.1b 4.60±0.64bc 4.62±1.8c 12.0* 2.16±0.99a 3.84±1.72b 34.8* 1200 0 

2.6-dimethoxyphenol 64.83±2.1ª 78.56±3.9b 97.46±8.2d 120.96±4.7e 88.57±5.5c 82.1* 80.89±13.94a 92.21±18.58a 19.3* 570 0 (1.1) 

m-cresol  0.47±0.02e 0.42±0.04d 0.26±0.02c 0.13±0.00a 0.18±0.02b 183.7* 0.37±0.12b 0.25±0.12a 39.1* 68 0 

o-cresol  0.59±0.03d 0.54±0.02c 0.44±0.02b 0.33±0.02ª 0.44±0.02b 95.3* 0.51±0.08b 0.45±0.09a 18.8* 31 0 

4-ethylguaiacol 0.11±0.01b 0.09±0.01ª 0.09±0.00a 0.09±0.02ª 0.09±0.01ª 7.9* 0.09±0.01 0.10±0.01 0.9 33 0 

4-vinylguaicol 8.40±0.72b 8.61±0.72b 9.95±0.56c 6.17±0.96ª 6.74±0.60ª 27.2* 8.46±1.31a 7.74±1.50a 7.3# 40 0 (1.4) 

4-vinylphenol  102.73±14a 91.41±18a 256.52±82c 191.81±14b 187.04±27b 20.7* 115.85±43.41a 194.66±74.26b 26.0* 180 2.1 (6.0) 

VANILLIN 

DERIVATIVES      

    

  

acetovanillone  23.19±1.9c 26.44±2.8d 20.03±2.9b 14.08±0.77ª 17.45±2.5b 24.3* 24.03±4.66b 18.49±3.51a 48.0* 1000 0  

vanillin  92.71±7.2d 98.22±9.8d 76.55±11c 45.47±3.3ª 57.48±8.7b 40.9* 89.43±19.96b 66.65±16.96a 51.8* 995 0 

syringaldehyde  178.17±2.0c 256.64±27d 200.23±36c 64.55±20ª 116.95±15b 63.9* 210.28±68.02b 145.54±57.32a 20.7* 50000 0 

MISCELLANEOUS            

ethyl cinnamate 0.12±0.00c 0.14±0.02d 0.09±0.02b 0.18±0.01e 0.05±0.00a 63.0* 0.12±0.04 0.10±0.05 2.3 1.1 0 

ethyl 2-hydroxy-4-

methylpentanoate 
0.06±0.01bc 0.05±0.01ab 0.04±0.00ab 0.07±0.03c 0.04±0.01a 4.8# 0.05±0.02 0.05±0.01 0.0 51 0 

*Significant at P<0.0005; #Significant at P<0.05                na: not available 
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Figure 1. 
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Table A.1. 

descriptor odor references 

alcohol solution of 15% (v/v) absolute ethanol in water 

dried fruit, fruit in syrup β-damascenone (0.05 µg L
-1

) + methional (0.5 µg L
-1

) + phenylacetaldehyde (1 µg L
-1

) + furfural (14.1 mg L
-1

) 

fresh fruit (tropical fruit, citrus) mercaptohexyl acetate (25 ng L
-1

), 3-mercaptohexanol (60 ng L
-1

)  

black fruit (blackberry, blueberry) pool ethyl esters+β-ionone (0.09 µg L
-1

) + 4-methyl-4-mercaptopentanone (0.8 ng L
-1

) 

red fruit (strawberry, raspberry) ɣ-decalactone (10 µg L
-1

) + furaneol (5 µg L
-1

) 

nuts (almond, wallnut)* reference nº 50 of Nez du vin  

floral (white flowers, acacia) linalool (25 µg L
-1

) + ethyl cinnamate (1.1 µg L
-1

) + phenylethyl acetate (250 µg L
-1

) 

vegetal-herbaceous (cut grass, green pepper) 3-isobutyl-2-metoxipyrazine (2 ng L
-1

); Z-3-hexenal (0.25 µg L
-1

) 

vegetal-dried herbs (hay, tobacco)* reference nº 50 of Aromabar of wine scents (premium edition) 

methol-balsamic 1,8-cineole 

lactic (yoghurt, cheese, cream) diacetyl (100 µg L
-1

) 

toasted (caramel, roasted coffee) furfurylthiol (0.4 ng L
-1

) + furaneol (5 µg L
-1

); benzylmercaptan (0.3 µg L
-1

) + acetylpyrazine (62 µg L
-1

) 

animal (leather, broth) 4-ethylphenol (35 µg L
-1

) 

kerosene 1,1,6-trimethyl-1,2-dihydronaftalen (TDN)  (2 µg L
-1

) 

moldy 1-octen-3-one (15 ng L
-1

) 

oxidation (backed potato, honey, rotten apple) acetaldehyde (500 µg L
-1

) + methional (0.5 µg L
-1

) + phenylacetaldehyde (1 µg L
-1

) 

*references obtained from commercial aroma kits.  
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Table A.2. 

 

Compounds RT m/z 

NORISOPRENOIDS 
  

β-ionone 74.27 177
a
 , 192 

α-ionone 69.67 121
a
, 93, 192 

β-damascenone 67.89 69
a
, 19 

TDN 63.45 157
a
, 142, 172 

riesling acetal
*1 

57.05 138
a
, 125, 133 

TERPENOIDS 
  

β-citronellol 65.51 69
a
, 81, 123 

geraniol 69.90 69
a
, 123 

linalool 52.43 71
a
, 93, 121 

α-terpineol 61.00 93
a
, 121, 136 

nerol 67.30 93
a
, 68 

1,8-cineole 20.96 108
a
, 81 

r-limonene 
20.81 93

a
, 67 

Cis-linalool oxide 44.50 94
a
, 59, 111 

Trans-linalool oxide 46.65 94
a
, 59, 111 

LACTONES 
  

furaneol 78.98 57
a
, 128, 85 

massoia lactone 88.50 97
a
, 68 

VOLATILE PHENOLS 
 

guaiacol 70.32
 

109
a
, 124 

eugenol 85.49 164
a
, 149 

E-isoeugenol 93.58 164
a
, 149 

methoxyeugenol 101.67 194
a
, 119 

2,6-dimethoxyphenol 90.05 154
a
, 139 

m-cresol 81.98 108
a
, 79 

o-cresol 77.83 108
a
, 79 

4-ethylguaiacol 79.00 137
a
, 152 

4-vinylguaicol 86.77 150
a
, 135 

4-vinylphenol 95.57 120
a
, 91 

VANILLIN DERIVATIVES 
 

acetovanillone 105.43 166
a
, 123 

vanillin 402.46 155
a
, 152, 123 

syringaldehyde 120.38 182
a
, 181, 167 

MISCELLANEOUS 
 

ethyl cinnamate 83.76 131
a
, 176 

ethyl 2-hydroxy-4-methylpentanoate 51.93 87
a
, 69 

aQuantitative fragments m/z 

*Compounds tentatively quantified using alkanes to determine the retention index 
1relative area 
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Table A.3.  

 
Cluster 1: Tropical fruit-citrus, floral Cluster 2: Floral, fruit in syrup 

  rGR4 oTR5 rGR8 uGS2 uGS1 rGS2 uGS4 rGS4 rGS1 rGR9 rTD2 rGS3 uGR3 rGR3 uTD2 

NORISOPRENOIDS                

β-ionone  1.15 1.11 1.15 1.24 1.21 1.12 1.45 1.51 1.46 1.60 1.45 1.64 1.65 1.66 1.65 

α-ionone  0.38 0.42 0.40 0.41 0.41 0.39 0.42 0.46 0.46 0.44 0.44 0.48 0.49 0.43 0.43 

β-damascenone  24.60 25.84 25.85 24.07 25.20 25.04 32.43 32.26 29.39 31.30 30.27 30.18 29.92 31.79 30.08 

TDN 55.46 49.97 68.96 42.71 44.67 47.79 41.48 32.80 32.38 32.14 25.42 32.28 31.28 32.90 43.30 

riesling acetal
1
 0.42 0.38 0.53 0.42 0.40 0.45 0.48 0.41 0.36 0.34 0.31 0.36 0.34 0.33 0.32 

TERPENOIDS                

β-citronellol  1.84 1.73 1.78 1.87 1.89 1.83 2.19 2.07 1.93 1.95 1.79 2.13 2.09 2.25 1.79 

geraniol 3.69 3.28 3.72 3.50 3.39 3.80 4.82 4.51 3.12 3.93 2.77 3.69 3.91 5.43 2.86 

linalool  9.21 8.23 9.48 11.11 9.96 9.40 12.38 11.96 11.37 11.52 8.92 12.15 12.02 12.20 9.09 

α-terpineol 31.09 26.42 33.49 29.78 29.18 32.07 34.16 31.84 25.47 26.58 19.74 28.63 28.00 30.86 19.93 

nerol 0.91 0.90 1.05 0.91 0.96 0.94 1.33 1.24 0.97 1.19 0.76 1.15 1.21 1.34 0.92 

1,8-cineole 1.30 1.27 1.29 1.35 1.30 1.30 1.33 1.34 1.32 1.26 1.25 1.27 1.25 1.21 1.14 

r-limonene  10.61 10.15 9.89 14.05 13.38 10.93 21.91 22.30 21.08 22.81 18.09 23.47 25.52 25.32 24.72 

linalool oxide 3.81 3.65 4.07 3.65 3.70 3.56 4.11 3.76 3.62 3.40 2.88 3.64 3.43 3.56 2.88 

LACTONES                

furaneol  62.70 0.93 1.03 1.36 1.15 0.87 1.15 1.48 1.17 8.18 0.63 1.00 10.87 0.97 1.56 

massoia lactone 4.49 4.17 3.13 2.74 3.14 3.44 8.45 10.42 8.81 12.04 7.70 13.26 14.35 9.68 6.35 

VOLATILE PHENOLS                

guaiacol 8.27 7.92 7.35 8.65 8.31 8.41 9.55 9.30 9.00 8.89 10.01 10.37 8.93 9.77 8.73 

eugenol  0.26 0.28 0.24 0.27 0.24 0.28 0.33 0.28 0.25 0.32 0.35 0.28 0.30 0.40 0.37 

E-isoeugenol 0.44 0.42 0.41 0.51 0.44 0.50 0.36 0.31 0.24 0.26 0.26 0.30 0.24 0.26 0.25 

methoxyeugenol 1.57 1.88 1.44 1.40 1.37 1.44 1.67 1.70 2.10 1.63 3.14 1.94 1.57 1.62 2.09 

2,6-dimethoxyphenol 66.70 66.21 61.62 64.36 66.76 63.32 79.43 76.24 74.26 75.16 85.44 81.66 73.84 80.90 80.12 

m-cresol  0.49 0.45 0.46 0.49 0.46 0.49 0.47 0.47 0.42 0.40 0.39 0.46 0.41 0.42 0.34 

o-cresol  0.61 0.58 0.53 0.59 0.62 0.60 0.53 0.54 0.52 0.53 0.52 0.52 0.58 0.58 0.57 

4-ethylguaiacol 0.11 0.12 0.11 0.12 0.11 0.11 0.09 0.10 0.10 0.09 0.09 0.09 0.10 0.09 0.09 

4-vinylguaicol 8.07 7.51 9.12 8.86 7.74 9.14 9.11 8.32 8.12 8.96 7.70 8.81 7.64 9.87 8.94 

4-vinylphenol  111.83 116.96 111.64 79.22 93.18 103.52 89.99 89.95 102.22 86.13 126.37 97.26 74.97 62.25 93.51 

VANILLIN DERIVATIVES                

acetovanillone  22.58 20.03 23.83 25.59 22.56 24.52 29.64 27.27 26.27 25.16 24.96 31.47 26.69 24.65 21.81 

vanillin  96.80 81.33 86.80 99.04 93.64 98.65 108.58 101.87 100.14 98.83 89.64 114.86 96.26 90.80 82.98 

syringaldehyde  179.54 175.95 178.61 178.99 180.46 175.49 288.44 276.75 270.31 253.79 244.67 291.87 236.33 211.10 236.48 

MISCELLANEOUS                

ethyl cinnamate  0.12 0.11 0.11 0.12 0.12 0.12 0.11 0.13 0.12 0.17 0.10 0.16 0.15 0.15 0.14 

ethyl 2-hydroxy-4-methylpentanoate 0.08 0.06 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04 
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Table A.3.  contd. 
 Cluster 3: Toasted-woody, red fruit, black fruit, fruit in syrup Cluster 4: Vegetal Cluster 5: Vegetal, fruit in syrup 

  oTR6 oTD2 uTR2  uTD1 oGR3 uGR4 rTD4  rTD3 rTR5  rTR6 oTD1  rTR1 oTR1 uGS3 uTR1 rTD1 rTR2 rTR7 

NORISOPRENOIDS                   

β-ionone  1.44 1.30 1.41 1.49 1.22 1.58 1.05 1.07 1.44 1.05 1.66 1.47 1.43 1.52 1.48 1.57 1.69 1.64 

α-ionone  0.42 0.43 0.45 0.41 0.38 0.40 0.29 0.36 0.38 0.33 0.51 0.49 0.46 0.45 0.50 0.47 0.48 0.47 

β-damascenone  17.52 20.89 19.62 22.93 23.17 22.64 10.92 11.15 13.02 9.68 17.05 17.00 16.50 17.38 15.10 19.17 17.94 20.62 

TDN 18.86 24.26 16.82 14.76 26.44 19.31 15.54 14.93 14.23 12.59 7.52 9.58 13.50 13.30 13.39 11.42 14.70 11.15 

riesling acetal1 0.23 0.24 0.19 0.19 0.22 0.26 0.15 0.15 0.14 0.14 0.13 0.17 0.19 0.19 0.18 0.16 0.18 0.15 

TERPENOIDS                   

β-citronellol  1.47 1.55 1.59 1.61 1.73 1.52 0.83 0.96 1.00 0.82 1.08 1.19 1.27 1.20 1.10 1.13 1.04 1.03 

geraniol 2.10 2.15 2.19 2.11 3.30 3.41 0.98 0.95 1.01 1.06 0.98 1.08 1.26 1.21 1.27 1.00 1.05 1.18 

linalool  6.57 5.83 7.22 6.17 8.54 9.91 5.96 5.72 5.74 4.68 5.68 6.71 7.22 7.53 5.70 5.97 5.71 5.66 

α-terpineol 10.24 11.36 12.69 11.06 26.90 19.03 3.01 3.11 3.11 3.07 2.78 5.36 6.32 9.43 5.55 5.03 5.03 5.02 

nerol 0.77 0.70 0.84 0.75 0.98 0.93 < D.L < D.L < D.L < D.L < D.L < D.L < D.L < D.L < D.L < D.L < D.L < D.L 

1.8-cineole 1.00 1.05 1.19 1.16 1.13 0.96 1.18 1.22 1.15 1.07 0.97 1.10 1.16 1.16 1.04 0.93 0.91 0.88 

r-limonene  25.79 21.11 20.29 20.31 18.36 27.47 24.07 23.40 25.92 23.64 37.23 25.69 24.11 23.94 25.68 29.30 30.81 30.82 

linalool oxide 1.74 1.83 1.74 1.53 2.99 1.97 1.58 1.36 1.35 1.34 0.90 1.45 1.52 1.78 1.52 1.32 1.49 1.30 

LACTONES                   
furaneol  1.06 0.86 1.55 1.09 1.46 0.79 < D.L < D.L 84.35 < D.L < D.L 1.90 < D.L 25.09 < D.L < D.L < D.L < D.L 

massoia lactone 6.50 4.10 3.86 4.60 2.92 6.01 3.13 3.14 3.39 3.85 4.33 5.21 3.63 3.15 3.68 3.15 3.83 3.32 

VOLATILE PHENOLS                   

guaiacol 12.15 10.05 9.99 9.38 11.58 8.48 12.31 10.73 10.12 12.04 7.81 9.76 11.19 8.18 8.10 10.29 9.58 8.04 

eugenol  0.63 0.60 0.53 0.60 0.41 0.42 0.81 0.72 0.70 0.70 0.70 0.61 0.59 0.53 0.63 0.62 0.51 0.56 

e-isoeugenol 0.39 0.33 0.59 0.43 0.33 0.36 0.58 0.53 0.48 0.51 0.69 1.13 0.93 0.68 0.82 0.65 0.77 0.62 

methoxyeugenol 3.73 3.48 3.23 4.92 2.15 2.06 5.49 4.63 4.27 4.02 8.64 5.58 4.53 3.10 3.63 4.43 3.52 3.50 

2.6-dimethoxyphenol 112.05 99.97 91.82 96.84 95.43 88.67 126.87 116.17 118.25 122.56 80.10 86.97 98.14 83.60 86.82 91.50 90.35 91.09 

m-cresol  0.24 0.23 0.24 0.26 0.29 0.28 0.13 0.13 0.13 0.13 0.17 0.20 0.20 0.21 0.17 0.19 0.17 0.17 

o-cresol  0.45 0.41 0.45 0.43 0.42 0.46 0.32 0.36 0.32 0.30 0.44 0.48 0.42 0.43 0.40 0.46 0.42 0.44 

4-ethylguaiacol 0.09 0.09 0.09 0.09 0.09 0.09 0.11 0.08 0.07 0.10 0.08 0.09 0.09 0.07 0.11 0.09 0.10 0.09 

4-vinylguaicol 10.14 9.56 9.78 9.62 11.01 9.60 7.60 5.75 5.85 5.49 6.50 7.33 7.17 6.84 6.95 7.07 6.66 5.42 

4-vinylphenol  328.92 370.30 241.06 261.42 163.18 174.24 203.56 176.02 184.61 203.07 225.21 210.63 153.26 144.66 185.03 192.43 198.81 186.32 

VANILLIN DERIVATIVES                   

acetovanillone  20.39 17.28 18.54 17.18 23.84 22.97 15.14 13.91 13.31 13.95 20.35 19.81 18.87 19.64 15.39 16.81 14.62 14.13 

vanillin  81.61 62.95 72.64 67.04 88.45 86.59 46.97 41.79 43.77 49.35 49.28 67.86 64.15 68.16 57.04 51.79 56.99 44.55 

syringaldehyde  220.89 165.73 165.87 172.53 243.45 232.94 53.97 49.98 59.79 94.45 107.46 129.22 135.09 139.23 102.68 115.32 104.49 102.13 

MISCELLANEOUS                   

ethyl cinnamate  0.09 0.09 0.08 0.08 0.13 0.08 0.19 0.18 0.19 0.18 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.05 

ethyl 2-hydroxy-4-
methylpentanoate 

0.05 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.12 0.06 0.04 0.04 0.04 0.05 0.03 0.03 0.04 0.03 

1relative area; < D.L. under detection limit. 
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