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RESUMEN 

 
 
 

ESTUDIO DE FUNCIONAMIENTO DE LA INTEGRACIÓN 
DE UNA PLANTA SIDERÚRGICA CON UNA CENTRAL 
DE POTENCIA Y UN SISTEMA DE CAPTURA DE CO2 

 
 
Como parte de las estrategias en la lucha contra el cambio climático y el reto que 
supone para la industria siderúrgica mejorar la eficiencia energética en la 
producción de acero y por tanto en la reducción de emisiones de CO2, se ha 
propuesto la integración de una planta siderúrgica con un sistema de captura de 
CO2 y una central de potencia.  
 
El objetivo de este TFM ha sido el desarrollo de una simulación de una industria 
siderúrgica, a nivel energético como másico. Seguidamente de un estudio de 
viabilidad de integración con una central de potencia para finalmente estudiar la 
integración con el sistema de captura de CO2. 
 
Para el estudio de la integración de los diferentes componentes se han simulado 
los balances de masa y de energía de la industria siderúrgica, atendiendo al 
comportamiento de cada componente interno según las mejores tecnologías 
disponibles actualmente. Todo ello seguido de un estudio del potencial inherente 
a la industria siderúrgica para una auto-captura de CO2. 
 
A la vista de los resultados obtenidos, el autor y director se decantan por la 
elección de un sistema CCS de solvente químico con aminas. De esta manera la 
integración energética y de captura permite la reducción de las emisiones de CO2 
del orden del 90% con una producción eléctrica adecuada al régimen de 
funcionamiento de la planta siderúrgica. 
 
Para la producción eléctrica se ha escogido un ciclo combinado con turbina de 
gas en cabecera que aprovecha los gases energéticos de la siderurgia, con un ciclo 
de vapor en cola con una extracción de vapor para el sistema CCS. El sistema 
CCS es un ciclo de aminas de configuración básica (absorbedor-regenerador) con 
compresión de CO2. 
 
Por último se ha realizado un análisis económico así como de sensibilidad. Para 
ello se ha introducido el concepto de ‘emisiones evitadas’ estudiando las 
emisiones en cada una de las plantas por separado antes y después de la 
integración del sistema CCS. Los resultados preliminares son los suficientemente 
óptimos como para seguir investigando en este sector del campo de CCS.  
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1111 ObjetoObjetoObjetoObjeto    

El TFM presentado a través de este trabajo surge tras la necesidad de la finalización académica 
del Máster de Energías renovables y Eficiencia energética de la Universidad de Zaragoza 
impartido en la EINA.  

El presente TFM está orientado hacia el estudio de la viabilidad de una integración de un 
sistema de captura de CO2 (CCS) en la industria siderúrgica actual. Debido a las mayores 
restricciones en emisiones que se ven a lo largo de los años y a los objetivos adquiridos por las 
diferentes naciones, en un futuro los sistemas CCS pueden llegar a ser una realidad tecnológica 
y económica en el sector eléctrico, siderúrgico y cementero. 

Ya que este tipo de industria es uno de los principales focos de emisión de gases de efecto 
invernadero, la implementación de un sistema de CCS es adecuado tanto desde el punto de 
vista tecnológico como desde el punto de vista medioambiental. 

El mundo de la captura de CO2, entre todos los posibles TFM ofrecidos, supone un reto 
importante al ser un frente de investigación abierto muy amplio y con un futuro poco definido, 
por lo que cualquier tipo de esfuerzo actual puede suponer una mejora a futuro sustancial. 

 

Junto con el director de proyecto y a la vista de los resultados previos obtenidos, el TFM 
plantea diversos objetivos a alcanzar. El objeto del presente TFM consiste en: 

· Realización de una modelización de una planta siderúrgica que refleje en la medida de 
lo posible la realidad tecnológica y operativa de este tipo de industria, basándose en 
diferentes referencias bibliográficas y en la realidad tecnológica actual. 

· Elección de/del sistema/s de captura de CO2 que se adecuen en mejor medida a las 
condiciones de operación de la planta de referencia. 

· Estudio de las posibilidades tecnológicas en cuanto a equipos de producción eléctricos: 
turbinas de gas y turbinas de vapor. Listado y características de los productos ofrecidos 
por los fabricantes a nivel mundial. 

· Simulación de la integración siderurgia-central de potencia-CCS 

· Análisis de los resultados obtenidos en las simulaciones. Analizar las posibilidades de 
mejoras. 

· Extracción de conclusiones que reflejen el trabajo desarrollado en el TFM. 
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2222 AlcanceAlcanceAlcanceAlcance    

La modelización de una planta siderúrgica se hará de forma que se incluyan todos sus 
componentes básicos de producción. En cada uno de ellos se reflejará los flujos de materias y 
de energías entrantes y salientes. Se crearán unos diagramas de interacción interna de la 
planta siderúrgica. Los parámetros de operación se obtendrán de los valores obtenidos en la 
bibliografía, siempre dentro de los límites de uso. 

Al tratar el tema de la simbiosis con la central de potencia y el sistema CCS, ante la falta de 
bibliografía especializada en el área y el aspecto novedoso de esta simbiosis, es necesario una 
elección de un sistema de captura de CO2. Tras las simulaciones iniciales se podrá discernir qué 
sistema de CCS se implementará para la simbiosis final que se adecue en mejor medida a las 
condiciones de operación de la planta de referencia. 

La simulación de la simbiosis se efectuará a nivel termodinámico y haciendo uso de los 
balances de masa y energía pertinentes así como de los parámetros de funcionamiento de los 
elementos, sustancias, maquinaria, etc.. de uso en la siderurgia, planta de potencia y sistema 
CCS elegido. Los parámetros de funcionamiento implementados estarán acorde a la realidad 
tecnológica o físico-química actual y debidamente referenciados. La simulación económica de 
la simbiosis permanecerá en un plano oculta ya que el alcance de la simulación es ver si la 
operación física de la planta es posible. 

En cuanto al tema final de extracción de conclusiones, el alcance que se da a este TFM es el de 
precursor de unas posibles vías de investigación posteriores. A saber: estudio económico de 
implementación de la planta industrial y estudio económico de emisiones de gases nocivos, 
viabilidad actual económico-financiera y tecnológica y viabilidad futura. Posible integración 
con otras fuentes de EERR tras los resultados obtenidos anteriormente. Implementación de 
mejoras en el ciclo CCS. Como se puede ver en la Fig. 1, aún nos encontramos en la primera 
parte de las estrategias, la demostración tecnológica. 

 

 

 

Fig. 1 Estrategias primarias en CCS y puntos críticos [11] 
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3333 IntroducciónIntroducciónIntroducciónIntroducción. Gases de efecto invernader. Gases de efecto invernader. Gases de efecto invernader. Gases de efecto invernadero y Kyotoo y Kyotoo y Kyotoo y Kyoto    

3.13.13.13.1 Motivación históricaMotivación históricaMotivación históricaMotivación histórica    

Desde finales del siglo XIX el aumento de emisiones de gases de efecto invernadero fruto de 
actividades humanas ha provocado un incremento significativo de su concentración en la 
atmósfera [1]. Sin lugar a dudas, la aportación más relevante proviene del uso intensivo de 
combustibles de origen fósil, cuya combustión produce emisiones de CO2 a gran escala. Las 
alteraciones del clima detectadas a finales del siglo XX y comienzos del siglo XXI, manifestadas 
en los incrementos de temperatura superficial en el plantea, del nivel medio de los océanos o 
de los ritmos de desaparición de los hielos polares (ver Fig. 2), están originadas por la 
alteración de los procesos naturales de fijación y producción de gases de efecto invernadero. 

 

Fig. 2 Cambios en la temperatura, en el nivel del mar y en la cubierta de nieve 

para el hemisferio norte. [2] 

La movilización internacional para afrontar la problemática del cambio climático desembocó 
en la firma del conocido Protocolo de Kyoto en 1997, en el que se estableció un marco de 
compromisos de control de emisiones tomando como horizonte el año 2012. En la actualidad, 
las negociaciones de los países más industrializados del planeta con los países en vías de 
desarrollo no han permitido alcanzar un consenso de cara a unificar políticas y actuaciones 
para horizontes temporales más lejanos (2020, 2050). Resulta obvio que la mezcla de intereses 
de índole político, económico, social y medioambiental dificulta enormemente tal objetivo. 

3.23.23.23.2 Gases que causan el efecto invernaderoGases que causan el efecto invernaderoGases que causan el efecto invernaderoGases que causan el efecto invernadero    

3.2.1 Dióxido de carbono (CO2) 

La principal fuente de emisión de dióxido de carbono (CO2) a la atmósfera es la quema de 
combustibles fósiles y biomasa (gas natural, petróleo, combustibles, leña)(ver Fig. 3) en 
procesos industriales, transporte, y actividades domiciliarias (cocina y calefacción). Los 



Eloy Pueyo Casabón, 2012 

Memoria 

 
 

- 8 - 

incendios forestales y de pastizales constituyen también una fuente importante de CO2 
atmosférico. La concentración del CO2 atmosférico subió desde 280 ppm en el periodo 1000 - 
1750, a 368 ppm en el año 2000 [3], lo que representa un incremento porcentual de 31%. Se 
estima que la concentración actual es mayor que ocurrida durante cualquier periodo en los 
últimos 420.000 años, y es muy probable que también sea el máximo de los últimos 20 
millones de años. 

 

Fig. 3 Energía primaria total suministrada [Mtep] [10] 

Cabe hacer presente que el carbono en la atmósfera en la forma de CO2 constituye una 
porción muy pequeña del total de este elemento en el sistema climático. El carbono contenido 
en la atmósfera se estima en 730 PgC (1 PgC = 1 Peta-gramo de carbono = 1000 millones de 
toneladas) mientras que el CO2 disuelto en los océanos es del orden de 38.000 PgC. Por otra 
parte, en el sistema terrestre se estima que existen unos 500 PgC en las plantas, y que son 
fijados mediante el proceso de fotosíntesis, y otros 1.500 PgC en materia orgánica en diferente 
estado de descomposición. 

Se estima que entre 1990 y 1999 el hombre emitió a la atmósfera un promedio de 6.3 PgC de 
carbono por año (ver Fig. 5). Por otra parte, en el mismo periodo la tasa anual de traspaso de 
carbono atmosférico hacia la biosfera se estimó en 1.4 PgC/año, y hacia el océano en unos 1.9 
PgC/año. De esta forma el hombre contribuyó a aumentar la concentración del carbono en el 
reservorio atmosférico a una tasa de 3.0 PgC/año durante este periodo. Ver Fig. 4. 

 

Fig. 4 Concentración atmosférica mundial de CO2 [3] 
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Fig. 5 Emisiones globales de CO2 por región [MtonCO2] [10] 

3.2.2 Metano (CH4) 

La principal fuente natural de producción de CH4 son los pantanos. El CH4 se produce también 
en la descomposición anaeróbica de la basura en los rellenos sanitarios; en el cultivo de arroz, 
en la descomposición de residuos fecales de animales; en la producción y distribución de gas y 
combustibles; y en la combustión incompleta de combustibles fósiles. La concentración de 
metano aumentó entre 700 ppb en el periodo 1000 - 1750 y 1750 ppb en el año 2000, con un 
aumento porcentual del 151%. Ver Fig. 6. 

 

Fig. 6 Concentración atmosférica mundial de CH4 [3] 

3.2.3 Dióxido de nitrógeno (NO2) 

El aumento del NO2 en la atmósfera se deriva parcialmente del uso creciente de fertilizantes 
nitrogenados. El NO2 también aparece como subproducto de la quema de combustibles fósiles 
y biomasa, y asociado a diversas actividades industriales (producción de nylon, producción de 
ácido nítrico y emisiones vehiculares). Un 60% de la emisión de origen antropogénico se 
concentra en el Hemisferio Norte. La concentración de NO2 atmosférico creció entre 270 ppb 
en el periodo 1000 - 1750, a 316 ppb en el año 2000. 

 

Fig. 7 Concentración atmosférica mundial de óxido nitroso [3] 
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3.2.4 Ozono (O3) 

El ozono troposférico se genera en procesos naturales y en reacciones fotoquímicas que 
involucran gases derivados de la actividad humana. Su incremento se estima en un 35% entre 
el año 1750 y el 2000. 

El ozono estratosférico es de origen natural y tiene su máxima concentración entre 20 y 25 km 
de altura sobre el nivel del mar. En ese nivel cumple un importante rol al absorber gran parte 
de la componente ultravioleta de la radiación solar. Se ha determinado que compuestos 
gaseosos artificiales que contienen cloro o bromo han contribuido a disminuir la concentración 
del ozono en esta capa, particularmente alrededor del polo sur durante la primavera del 
hemisferio sur. Ver Fig. 8. 

 

Fig. 8 Concentración atmosférica mundial de ozono. Sept 2009 [DU=Dobson units] 

3.2.5 Halocarbonos 

Los halocarbonos son compuestos gaseosos que contienen carbono y algunos de los siguientes 
elementos: cloro, bromo o fluoro. Estos gases, que fueron creados para aplicaciones 
industriales específicas, han experimentado un significativo aumento de su concentración en la 
atmósfera durante los últimos 50 años. Una vez liberados, algunos de ellos son muy activos 
como agentes intensificadores del efecto invernadero planetario. Como resultado de la larga 
vida media de la mayoría de ellos, las emisiones que se han producido en los últimos 20 o 30 
años continuarán teniendo un impacto por mucho tiempo. 

Tabla 1 Potencial de calentamiento global de los principales gases de efecto 

invernadero. [4] 

Vida Potencial de calentamiento global 
Especie Fórmula 

[años] 20 años 100 años 500 años 

CO2 CO2 variable 1 1 1 

Metano CH4 12±3 56 21 6.5 

Óxido nitroso N2O 120 280 310 170 

      

HFC-23 CHF3 264 9100 11700 9800 

HFC-32 CH2F2 5.6 2100 650 200 

HFC-41 CH3F 3.7 490 150 45 

HFC-43-10mee C5H2F10 17.1 3000 1300 400 

HFC-125 C2HF5 32.6 4600 2800 920 

HFC-134 C2H2F4 10.6 2900 1000 310 

HFC-134a CH2FCF3 14.6 3400 1300 420 

HFC-152a C2H4F2 1.5 460 140 42 

HFC-143 C2H3F3 3.8 1000 300 94 

HFC-143a C2H3F3 48.3 5000 3800 1400 



Eloy Pueyo Casabón, 2012 

Memoria 

 
 

- 11 - 

HFC-227ea C3HF7 36.5 4300 2900 950 

HFC-236fa C3H2F6 209 5100 6300 4700 

HFC-245ca C3H3F5 6.6 1800 560 170 

Hexafluoruro de azufre SF6 3200 16300 23900 34900 

Perfluoromethane CF4 50000 4400 6500 10000 

Perfluoroethane C2F6 10000 6200 9200 14000 

Perfluoropropane C3F8 2600 4800 7000 10100 

Perfluorobutane C4F10 2600 4800 7000 10100 

Perfluorocyclobutane c-C4F8 3200 6000 8700 12700 

Perfluoropentane C5F12 4100 5100 7500 11000 

Perfluorohexane C6F14 3200 5000 7400 10700 

Perfluoromethane CF4 50000 4400 6500 10000 

Perfluoroethane C2F6 10000 6200 9200 14000 

Perfluoropropane C3F8 2600 4800 7000 10100 

Perfluorohexane C6F14 3200 5000 7400 10700 

 

La Tabla 1 nos presenta el potencial de calentamiento global de cada tipo de gas. De esta 
manera se pueden comparar los distintos gases de efecto invernadero entre sí ya que se toma 
como referencia el carbono. Todo ello, unido a la mentalidad cada vez más respetuosa con el 
medio ambiente, ha permitido desarrollar herramientas de cálculo de la huella de carbono 
[5][6][7] incluso páginas web interactivas para concienciar a la población sobre actuaciones 
futuras para la reducción de los efectos del cambio medioambiental [8]. 

3.33.33.33.3 El protocolo de KyotoEl protocolo de KyotoEl protocolo de KyotoEl protocolo de Kyoto    [9][9][9][9]    

El protocolo de Kyoto tiene su origen en la convención Marco de las Naciones Unidas sobre el 
cambio climático que fue aprobado en la sede de las Naciones Unidas, en Nueva York, el 9 de 
mayo de 1992. Esta convención es fruto de un proceso internacional de negociación a raíz de 
la publicación del primer informe de evaluación del Panel Intergubernamental de Expertos 
sobre el Cambio Climático (IPCC). En este Informe se confirmaba la existencia y peligrosidad 
del fenómeno del cambio climático. 

3.3.1 Objetivos adquiridos 

El protocolo de Kyoto marca objetivos obligatorios relativos a las emisiones de gases de efecto 
invernadero para las principales economías mundiales que lo han aceptado. Estos objetivos 
individuales van desde una reducción del -8% hasta un crecimiento máximo del +10% respecto 
a las emisiones del año base, que ha sido fijado en 1990 (se podrá utilizar el año 1995 para los 
gases fluorados) y resumen del protocolo de Kyoto según cita el protocolo ‘con miras a reducir 
el total de sus emisiones de los gases de efecto invernadero a un nivel inferior de no menos de 
un 5% al nivel de 1990 en el periodo de compromiso 2008-2012 a nivel mundial. 

A continuación se presenta la Fig. 9 con los objetivos de emisión de gases de efecto 
invernadero contraídos por las diferentes partes:  
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Fig. 9 Objetivos fijados por los países firmantes del protocolo de Kyoto [9] 

La Unión Europea ha asumido un objetivo conjunto de reducción del -8% de sus emisiones de 
1990 para 2008-2012, si bien esta reducción ha sido distribuida de forma diferenciada entre 
sus estados miembros en función del resumen del protocolo de Kyoto y de sus características 
individuales. Así, el estado español tiene un objetivo de incremento máximo del +15% de sus 
emisiones de gases de efecto invernadero respecto a las generadas en 1990. La Fig. 10 muestra 
el objetivo fijado por el protocolo de Kyoto y la evolución de las emisiones para España. 
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Fig. 10 Emisiones de gases de efecto invernadero, referencia y límite establecido 

por el protocolo de Kyoto para España [Fuente propia] 

3.3.2 Mecanismos flexibles del protocolo de Kyoto 

Estos mecanismos tienen el doble objetivo de facilitar a los países desarrollados el 
cumplimiento de sus compromisos de reducción y limitación de emisiones y promocionar la 
financiación de proyectos ‘limpios’ en países en desarrollo o en transición hacia económicas de 
mercado. Entre los mecanismos flexibles se incluyen los siguientes: 

· El comercio de Derechos de Emisión: mediante este mecanismo los países 
industrializados podrán comprar o vender una parte de sus derechos de emisión a otros 
países con el objetivo de alcanzar, de forma eficiente desde el punto de vista 
económico, los compromisos adquiridos en Kyoto. De esta manera, los países que 
reduzcan sus emisiones más de lo comprometido podrán vender los créditos de 
emisiones excedentarios a los países que consideren más difícil satisfacer sus objetivos.   

· La aplicación conjunta (JI por sus siglas en inglés): este mecanismo regula proyectos de 
cooperación entre países obligados a contener o reducir sus emisiones, de manera que 
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la cantidad de ahorro gracias a las nuevas instalaciones, respecto a plantas más 
contaminantes, se comparte entre los participantes en los proyectos.   

· Mecanismos de desarrollo limpio (CDM por sus siglas en inglés): se trata de un 
mecanismo similar al anterior, dirigido a países con compromisos de reducción de 
emisiones, de manera que puedan vender o compensar las emisiones equivalentes que 
han sido reducidas a través de proyectos realizados en otros países sin compromisos de 
reducción, generalmente en vías de desarrollo. 
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4444 Producción de aceroProducción de aceroProducción de aceroProducción de acero    

Para información más detallada, ver Anexo I. 

4.14.14.14.1 IntroducciónIntroducciónIntroducciónIntroducción    

La historia de la industria siderúrgica en España comienza en el siglo XIX. Los primeros altos 
hornos privados surgieron en Lugo en 1794. Más tarde, la siderurgia pasó a Andalucía. 
Siguiendo el modelo europeo de altos hornos se instalaron plantas en Marbella en Sevilla. A 
partir de 1852 las fábricas asturianas empezaron a trabajar a pleno rendimiento. 

La primacía de Asturias se debió a la abundancia de hulla y de mena de hierro en su territorio. 
Pero esta superioridad pasó a Vizcaya, al terminar 1876, comenzaron a instalarse en la ría del 
Nervión.  Se acentuó la hegemonía vizcaína al frente de la siderurgia española y se concentró 
toda la producción en el norte. Altos Hornos de Vizcaya, empresa creada en 1902, se convirtió 
en la dominante en la siderurgia española. 

Después de la primera guerra mundial, a las provincias cantábricas se añadieron dos nuevas 
competidoras, Barcelona y sobre todo Valencia, que en los años 20 superó a Asturias. Después 
con el franquismo, se creó Ensidesa, que dio lugar a Aceralia, que se integró con la francesa 
Usinor y la luxemburguesa Arbed, creando así la actual Arcelor. 

4.24.24.24.2 Mejores tecnologías disponibles (BAT)Mejores tecnologías disponibles (BAT)Mejores tecnologías disponibles (BAT)Mejores tecnologías disponibles (BAT)    

La producción de acero en la actualidad tiene cuatro posibles tecnologías o procesos para su 
obtención: 

· El alto horno (de ahora en adelante ‘Blast furnace’; BF) junto a la ruta de oxígeno 
básico en horno (a partir de ahora ‘Basic oxygen furnace’; BOF) para producir arrabio. 

· La fusión directa de la chatarra ferrosa (a partir de ahora ‘Electric arc furnace’; EAF) 

· La reducción por fundición o ‘Smelting reduction’ 

· La reducción directa o ‘Direct reduction’ 

En 2006 la producción de acero en la Unión Europea (EU27) se basaba en tecnología blast 
furnace/basic oxygen route (alrededor del 59.8%) y en el electric arc furnace (40.2%) (Fig. 11). 
Las tecnologías de direct reduction tan solo suponían un 6.8% de la producción mundial de 
acero y la smelting redution tan solo operaban seis plantas a nivel mundial a finales de 2007. 
Por lo tanto las tecnologías mayormente difundidas son las dos primeras: blast furnace & Basic 
oxygen furnace, en las que se centrará el desarrollo de la siderurgia de este TFM. La Fig. 11 la 
producción de acero y el número de plantas para la unión europea. 



Eloy Pueyo Casabón, 2012 

Memoria 

 
 

- 15 - 

 

Fig. 11 Producción de acero en la UE para BF y EAF. Nº de plantas de cada 

tecnología 

4.34.34.34.3 Basic oxygen furnaceBasic oxygen furnaceBasic oxygen furnaceBasic oxygen furnace    

El reemplazo de aire por oxígeno en la industria siderurgia fue sugerido por Henry Bessemer. 
Desde la década de los ’50, el oxígeno ha sido utilizado en la siderurgia independientemente 
del método específico de producción utilizado. La primera producción de un BOF a escala 
industrial fue en Linz (Austria) en 1952. 

El objetivo del proceso BOF es oxidar las impurezas no deseadas contenidas en el metal 
caliente/fundido. Los elementos principales que se convierten en óxidos son el carbono, silicio, 
manganeso y fósforo. El contenido en azufre se reduce considerablemente en los 
pretratamientos del mental caliente. Las reacciones de oxidación que se dan son las 
contenidas en la Tabla 2. 

Tabla 2 Reacciones químicas que se producen en el BOF. []=disuelto en metal. 

()=contenido en la escoria 

 

La operación del BOF es semi-continua. En las acerías modernas cada ciclo puede realizar hasta 
380 toneladas de acero y le cuesta entre 30 – 40 minutos. Existen muchos tipos de reactores 
BOF, pero el más comúnmente extendido es el tipo LD converter (Linz-Donawitz) (ver Fig. 12) 
para metales con bajo contenido en fósforo. El reactor tiene forma de pera, con paredes 
refractarias y está enfriado por agua. El oxígeno se aplica mediante una lanza de soplado con 
una pureza superior al 99%. 

 

Fig. 12 Convertidor básico BOF tipo LD 
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4.44.44.44.4 AltAltAltAlto horno o blast furnaceo horno o blast furnaceo horno o blast furnaceo horno o blast furnace    

El BF es un sistema cerrado donde el los materiales férreos (mineral de hierro, sinter o pellets) 
aditivos (formadores de escorias) y agentes reductores (coque) están continuamente siendo 
alimentados desde la parte superior del horno mediante un sistema de carga que a la vez 
permite recoger el gas del BF. La Fig. 13 ilustra la forma física y los principales flujos másicos 
que intervienen en el proceso simplificado dentro de un BF.  

 

Fig. 13 Representación simplificada de un BF 

El proceso se puede describir como sigue. Un chorro de aire caliente/plasma enriquecido con 
oxígeno y con agentes reductores auxiliares se inyecta en la zona de toberas produciendo una 
contracorriente de un gas reductor. Este aire introducido reacciona para producir 
principalmente monóxido de carbono que a su vez reduce los óxidos de hierro en el arrabio 
producto. El arrabio es recolectado en la zona del crisol junto con la escoria. El arrabio se 
transporta para un posterior procesamiento y las escorias se eliminan para la posible venta a 
otras industrias. El gas del BF se recoge a través de la parte superior, se le hace un tratamiento 
y se distribuye a través de los diferentes procesos de la planta siderúrgica para su 
aprovechamiento como fuel o para la producción eléctrica de autoconsumo de la planta.  

4.54.54.54.5 PlantPlantPlantPlantasasasas de coque de coque de coque de coque    

El concepto básico de las plantas de coque es la pirólisis. La pirólisis del carbón (ver Fig. 14) 
significa el calentamiento del mismo en una atmósfera sin o parcialmente de oxígeno para 
producir el coque y otros gases y líquidos. La pirólisis del carbón a altas temperaturas también 
se le llama carbonización. En este proceso, la temperatura de los gases de calentamiento 
comprende entre 1150 a 1350 ºC calentando la carga de carbón hasta los 1000 – 1100 ºC y 
comprende un periodo entre 14 a 28 horas. La duración del mismo depende de diversos 
factores como por ejemplo de la anchura del horno, la densidad del carbón o la calidad 
deseada del coque.  

El coque es el agente reductor más importante por su extendido uso en la producción del 
arrabio. El coque de carbón funciona como material de soporte y a la vez como matriz por la 
cual el gas circula en el alto horno. El coque de carbón no puede ser reemplazado en su 
totalidad por carbón u otros fueles, por lo que su producción en la industria de la siderurgia es 
esencial.  
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Fig. 14 Consumo final del carbón según sector [Mtep] [10] 

Solo ciertos tipos de carbones, como son el carbón de coque o el bituminoso, con las 
propiedades plásticas adecuadas, pueden ser convertidos a coque. El petróleo, aceite y 
residuos de los mismos son añadidos para dar una mejora en cuanto a compactación del 
carbón. 

El diseño básico de los hornos de coque modernos se desarrolló en la década de los ’40. Los 
hornos tenían unos 12 metros de largo, 4 metros de alto y 50 centímetros de ancho y se 
equipaban con puertas a ambos lados (ver Fig. 16). El aire de alimentación se precalentaba con 
los gases de escape para recuperar calor y permitir conseguir altas temperaturas y mejorar el 
ratio de producción de coque. Desde los ’40 el proceso se ha mecanizado y los materiales 
usados en la construcción del horno de coque se han mejorado consiguiéndose mejoras 
significantes. Las baterías pueden contener hasta 70 toneladas de coque que pueden llegar a 
medir 14x6x0.6 metros. Por motivos de transferencia de calor indirecta, las anchuras se de 
estos CO se establecen entre 30 hasta 60 centímetros. En las acerías modernas se pueden 
conseguir CO con hasta 70 toneladas de carbón dispuestos en batería (ver Fig. 15).  

 

Fig. 15 Batería de hornos de coque con un 

horno abierto 

 

Fig. 16 Vaciado de un horno de coque     

. 

4.64.64.64.6 Plantas de sinterizadoPlantas de sinterizadoPlantas de sinterizadoPlantas de sinterizado    

Los altos hornos o BF actuales de gran rendimiento consiguen mejorar las prestaciones 
mediante diversas preparaciones previas tanto físicas como metalúrgicas de la carga que van a 
contener. Con estos pretratamientos se consiguen mejores permeabilidades y capacidad de 
reducción de la carga introducida. Esta preparación implica una aglomeración de la carga del 
BF ya sea por aglomerado (sintering) o por peletizado.  

La carga en el proceso de sinterizado consiste en una mezcla de minerales en polvo, aditivos 
(por ejemplo caliza u olivina) y materiales reciclados provenientes de otros procesos aguas 
abajo (por ejemplo polvo de los fangos del BF o escamas de los molinos) a lo cual se le añade el 
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polvo de coque para permitir una ignición favorable a la carga. En Europa se usa 
exclusivamente el proceso denominado down draft sintering on continuous travelling grates. 

La planta de sinterizado consiste esencialmente en una parrilla circulante alargada capaz de 
soportar altas temperaturas (normalmente hierro forjado) (ver Fig. 17). El material mezclado 
en los procesos previos se dispone sobre una capa de un grosor de entre 30 a 50 cm formada 
por sinterizado reciclado. Esta capa inferior tiene como función prevenir que la mezcla fresca 
pase a través de los agujeros de la parrilla y protege la parrilla del foco de calor que se 
generará en la combustión de la mezcla.  

 

Fig. 17 Parrilla circulante de transporte de la mezcla previa 

En las plantas modernas de siterizado la capa de material a sinterizar tiene aproximadamente 
40 – 60 cm de profundidad. Al principio de la parrilla se igniciona la mezcla mediante 
quemadores de gas. En procesos aguas abajo se colocan potentes ventiladores de tiro inducido 
para que el aire pase a través de toda la longitud del proceso de sinterizado. El aire se 
introduce gracias a cámaras de introducción de aire que se colocan debajo de la parrilla. El gas 
que se produce por la combustión del combustible se extrae mediante colectores de gas para 
luego tratarlo y limpiarlo. 

4.74.74.74.7 Unidad de separación de aire (ASU)Unidad de separación de aire (ASU)Unidad de separación de aire (ASU)Unidad de separación de aire (ASU)    

El aire es una mezcla de gases formada mayoritariamente por nitrógeno y oxigeno. También 
contiene pequeñas cantidades de argón, trazas de otros gases (CO2, Ne, He,...) y una cantidad 
variable de vapor de agua. Las grandes plantas comerciales siguen utilizando el proceso 
tradicional de destilación criogénica. Tanto el agua como el CO2 se eliminan en una fase previa 
al proceso de separación de aire. El proceso más sencillo de esta tecnología es el de Linde con 
columna simple que fue utilizado por primera vez en 1902. Actualmente, las grandes 
compañías productoras (Air liquide, Air products, BOC, Linde, Praxair...) emplean una gran 
variedad de procesos más complejos según sean los gases que se desean producir (O2, N2, Ar), 
el grado de pureza de los mismos (90%; 99%; 99,9%; 99,99%) y su fase (líquido, gas). La mayor 
parte de estos procesos utilizan la columna doble de Linde. 

 

Fig. 18 Diferentes tipos de producción de ASU 
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Las plantas de separación criogénica del aire (ver Fig. 18) constituyen un tipo especial de 
plantas químicas, basadas en procesos de licuefacción y destilación del aire. La destilación 
criogénica se utiliza principalmente para la obtención de nitrógeno, oxígeno y argón en 
cantidades elevadas (>100 Tm/día), ya sea como producto líquido o gaseoso, o bien cuando se 
requiere una alta pureza de oxígeno (>95%) o producir argón. 

La separación criogénica del aire conlleva diversos procesos. Inicialmente el aire de 
alimentación a la planta es filtrado y comprimido (aproximadamente a 6 bar). A continuación 
el aire se seca mediante su enfriamiento en un intercambiador aire-agua o aire-aire y con el 
posible apoyo de un sistema de refrigeración mecánica. La eliminación total del vapor de agua, 
anhídrido carbónico y otros contaminantes (por ejemplo hidrocarburos) se realiza mediante 
tamices moleculares. 

El enfriamiento del aire a temperaturas criogénicas se lleva a cabo en intercambiadores de 
calor multiflujo que aprovechan la capacidad de refrigeración de los gases que salen de la 
planta. Aún así, la intensidad energética en cuanto a demanda eléctrica de las ASU es muy 
elevada, situada en valores entre 180 – 240 kWh/tonO2 (ver Fig. 19). 

 

Fig. 19 Energía requerida según la pureza del oxígeno 
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5555 SistemasSistemasSistemasSistemas de captura de CO de captura de CO de captura de CO de captura de CO2222    

5.15.15.15.1 Absorción químicaAbsorción químicaAbsorción químicaAbsorción química    

La absorción química es el proceso de CCS por excelencia en post-combustión. Éste implica un 
proceso de transferencia de masa con un proceso de reacción química [1]. La reacción que 
tiene lugar en la columna de absorción es exotérmica, mientras que la de regeneración es 
endotérmica. Ha de existir un compromiso entre velocidad de reacción y entalpía de formación 
ya que los compuestos químicos que reaccionan a mayor velocidad tienen energías de 
regeneración más elevadas y viceversa. Los disolventes orgánicos disponibles están 
compuestos principalmente por las aminas primarias, secundarias y terciarias (ver Anexo VI 
para mayor información sobre las aminas y el ciclo de aminas). 

Antes del proceso de separación del CO2 es necesario enfriar la corriente de gas que lo 
contiene limpiándola de partículas e impurezas todo lo posible. Esta corriente se lleva a la 
columna de absorción para que tenga contacto con los solventes químicos. Cuando el CO2 es 
liberado en el regenerador se comprime para su transporte y almacenamiento. Los ratios de 
recuperación del solvente pueden ser del 98% y la pureza del CO2 separado puede llegar al 
99%. Ver la Fig. 20 para un esquema simplificado de CCS en post-combustión. 

Decir que también se incluyen dentro de la categoría de post-combustión la absorción física, 
membranas selectivas y adsorción. Su desarrollo es muy inferior a los solventes químicos y por 
lo tanto no se incluye un resumen de en qué consiste. 

 

Fig. 20 Esquema básico de un sistema CCS en post-combustión [13] 

5.1.1 Ventajas de la absorción química [12] 

Como ventaja principal es la técnica CCS más desarrollada, con plantas piloto y de 
dimensionamiento casi industrial en funcionamiento. 

Las aminas son capaces de trabajar a bajas presiones parciales de CO2. Pero para ello se debe 
disponer de una mezcla de aminas diluida ya que tiene carácter corrosivo y recircular un gran 
caudal para poder captar el CO2 requerido. 

La instalación principal (central de potencia, pozo de extracción de gas natural, siderurgia, 
cementera…) no sufre modificaciones sustanciales. En la fase de construcción del sistema CCS 
la instalación puede seguir funcionando y produciendo. 
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Existe un auge en el uso del amoníaco NH3 como solvente químico ya que su precio es muy 
inferior al precio de las aminas. El problema del amoníaco es su elevada volatilidad y su 
carácter nocivo para la salud humana y del medio ambiente. 

5.1.2 Desventajas de la absorción química [12] 

El principal problema de este tipo de instalación es la elevada energía de regeneración y un 
elevado consumo energético en la columna de regeneración. Las aminas primarias pueden 
llegar a tener valores de 4.7 MJ/kgCO2. Esto supone una caída en el rendimiento de una central 
de potencia tipo del orden de 10 puntos porcentuales (en torno a un 30%). 

Debido a la razón anterior, la implementación en centrales actuales (de vida entre 15-30 años) 
no es muy apetecible ya que tienen un rendimiento bajo por la obsolescencia de la tecnología 
y porque le restan pocos años de vida útil. La amortización del sistema CCS es complicado. 

Corrosión en los equipos por presencia de oxígeno. Degradación prematura del solvente 
químico al oxidarse con el oxígeno presente en la corriente de gases (3-4% de concentración). 
Los equipos suelen construirse en aceros al carbono por su bajo precio, pero muy ineficaces 
frente a la corrosión. 

Problemas con el SO2 y los NOx. Ya que las aminas tienen carácter básico reaccionarán con los 
ácidos de éstos compuestos. En primer lugar con los del SOx, posteriormente con los NOx y 
finalmente con los del CO2. De esta manera se degrada mucha cantidad de aminas por lo que 
es obligatorio colocar un desulfurador (<10ppm) y un eliminador de NOx. 

No se consiguen capturas del 100% ya que el tamaño de los equipos debería ser enorme, y 
consigo las inversiones económicas. Se alcanzan ratios del 90% que son suficientes para 
alcanzar térmicos de compromisos globales medioambientales. 

5.25.25.25.2 Ciclos de carbonataciónCiclos de carbonataciónCiclos de carbonataciónCiclos de carbonatación----calcinacióncalcinacióncalcinacióncalcinación    

Este tipo emergente de tecnología CCS se enmarca también dentro de las técnicas de post-
combustión, pero se le da un trato especial ya que en Zaragoza, tanto en la Escuela de 
ingenieros como en el INCAR-CSIC (Instituto de Carbón Química) son precursores de este tipo 
de tecnología. 

La idea de utilizar CaO como sorbente regenerable de CO2 se remonta al siglo XIX, con varias 
patentes en la primera mitad del siglo XX en el campo de la gasificación de carbón [1]. Estas 
tecnologías se están reactivando en la actualidad con propuestas de procesos de gasificación 
favorecida, así como en nuevas aplicaciones en post-combustión.  

Los gases de combustión procedentes de la industria se ponen en contacto con el sorbente en 
un reactor adecuado para que tenga lugar la reacción gas-sólido entre el CO2 y el sorbente. Por 
lo general se trata de una carbonatación. El sólido se separa con facilidad de la corriente 
gaseosa y se transporta a otro reactor donde tiene lugar su regeneración o calcinación. Existe 
una circulación interna de sólido entre ambos reactores. En el segundo reactor se libera una 
corriente de CO2 concentrado lista para ser comprimida y transportada para su 
almacenamiento final. Para que tenga lugar la reacción de regeneración es necesaria la 
aportación de un flujo de calor al reactor. 

Calcinación: CaCO3�CaO+CO2+182kJ/mol Carbonatación: CaO+CO2+182kJ/mol �CaCO3 

Se requiere un aporte constante de sorbente fresco que compense las pérdidas de sorbente 
activo que existen ene el sistema. Estas pérdidas están relacionadas con la atrición del material 
y su arrastre con la corriente de gases de salida que abandona la instalación, así como con la 
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disminución de la actividad química del sorbente al sufrir varios ciclos. Ver la Fig. 21 para 
hacerse una idea del diagrama de flujos. 

 

Fig. 21 Esquema básico de un sistema CCS de carbonatación-calcinación 

5.2.1 Ventajas del ciclo carbonatación-calcinación 

El consumo de energía de la regeneración del sorbente se recupera en fuentes de calor a alta 
temperatura, lo que facilita su aprovechamiento en el ciclo de vapor de una central. 

Sinergia con la industria del cemento. Si el sorbente es utilizado por la cementera, su coste 
podría considerarse cero para la captura. 

No existen residuos problemáticos ni utilización de consumibles caros, escasos o sujetos a 
patentes. Bajo coste específico del material. 

Los reactores de lecho fluidizado circulantes son tecnologías ya desarrolladas para otras 
aplicaciones a gran escala. 

Altas velocidades de reacción en el rango de temperatura de los gases de combustión emitidos 
por la planta de referencia o en el caso de aplicaciones donde un mismo reactor alberga la 
reacción de combustión y carbonatación (captura de CO2 in situ). 

Elevada capacidad específica de adsorción del sorbente disminuye el inventario sólido 
necesario en el interior del ciclo, simplificando la operación y disminuyendo al mismo tiempo 
el consumo energético. 

Larga estabilidad química y mecánica del sorbente para un elevado número de ciclos. Esta 
característica tiene una influencia muy fuerte en el coste del CO2 evitado a través de la 
minimización de la purga requerida en el sistema. 

5.35.35.35.3 OxicombustiónOxicombustiónOxicombustiónOxicombustión    

La oxicombustión [1] consiste en realizar una combustión con oxígeno de tal modo que se 
obtenga una corriente de gases con una elevada concentración de CO2 haciendo 
económicamente viable su separación del resto de gases generados. 

Si la combustión se realiza con aire, el nitrógeno que se introduce diluye el dióxido de carbono 
a la salida, siendo la separación de ambos gases muy costosa, mientras que en la 
oxicombustión, los gases que se obtienen están compuestos principalmente por CO2 y vapor 
de agua, pudiéndose separar de manera sencilla mediante condensación. Ver Fig. 22. 

La oxicombustión fue propuesta por primera vez con el fin de generar una corriente de gases 
rica en CO2 en 1982 para inyectarlo en pozos de petróleo. También se utiliza en otras 
aplicaciones industriales con requerimientos de calentamiento a altas temperaturas, como la 
industria del vidrio, aluminio, etc. El desarrollo de la oxicombustión a gran escala, y su 
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extensión a grandes plantas de generación de energía eléctrica depende sustancialmente de la 
posibilidad de obtener oxígeno de forma económicamente viable, de una alta pureza y a 
presiones moderadas. Por otro lado, no tiene requerimientos energéticos para regeneración 
del sorbente, como ocurre por ejemplo con la absorción o adsorción, aunque la concepción y 
el diseño de los equipos se ven alterados por las diferencias existentes cuando se utiliza una 
combustión con oxígeno puro frente a la utilización de aire en una planta de combustión 
convencional, lo que supone una desventaja. 

Las empresas y los centros de investigación están estudiando la viabilidad del proceso de 
oxicombustión para plantas existentes y nuevas centrales. La conclusión que se ha obtenido 
hasta hoy de las plantas piloto en funcionamiento es que no existen limitaciones técnicas para 
aplicar la oxicombustión, aunque algunos parámetros de la transferencia de calor se ven 
modificados y la cantidad de gases que circula disminuye. El factor más determinante es la 
disminución de eficiencia global de las plantas.  

 

Fig. 22 Esquema básico de un sistema CCS en oxi-combustión [15] 

5.3.1 Ventajas de la oxicombustión [12] 

La pureza obtenida en la corriente de gases de combustión en cuanto al componente de CO2 es 
muy elevado, llegándose a valores cercanos al 92% según la International flame research 
fundation italiana. 

Tecnología probada en otras aplicaciones.  

Reducción del tamaño de la caldera y de los equipos para una misma potencia ya que el caudal 
de gases de escape es menor al no tener el gas inerte nitrógeno N2. 

Reducción de los costes de inversión al disponer de equipos de menor tamaño. 

No se forman NOx derivados del mecanismo de formación térmico ya que no se introduce 
nitrógeno con el oxígeno. 

5.3.2 Desventajas de la oxicombustión [12] 

Redimensionamiento de los equipos por quemar el combustible directamente con oxígeno y 
por disponer de menor caudal de combustión. 

Difícil reconversión de planta actuales a una oxicombustión completa (se ha conseguido ratios 
de 35% de O2 en el aire de alimentación). 

Alto consumo energético o penalización por la inclusión de una ASU, en torno al 7%. 

Infiltraciones nocivas de aire porque la caldera funciona a depresión. 
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La temperatura adiabática de llama aumenta por lo que los materiales deben adaptarse. 
Actualmente se soluciona recirculando gases de escape para que el CO2 actúe como inerte en 
la combustión. Problemática de dónde coger el caudal de recirculado, antes o después de la 
desulfuración. 

Impacto en el rendimiento global de la planta del orden de 10 puntos porcentuales ( ± 20%). 

Incremento de los costes de inversión del orden del 40% de las actuales CP. 

5.45.45.45.4 Chemical loopingChemical loopingChemical loopingChemical looping    

Uno de los mayores inconvenientes que presenta la oxicombustión tal y como se ha planteado 
hasta ahora, es el coste de la obtención de oxígeno puro, tanto económico como energético 
[1]. Con el fin de reducirlo, se plantea hacer la separación del oxígeno del aire dentro del ciclo 
de combustión. Para ello se desarrolla el uso de transportadores sólidos de oxígeno, que son 
unas partículas que se encargan de capturar el oxígeno del aire mediante una reacción de 
oxidación para, posteriormente, reaccionar con el combustible y reducirse. Además de utilizar 
los transportadores para la generación de una corriente de elevada pureza de CO2, estas 
partículas también pueden ser empleadas para la producción de H2 o en gasificación de 
combustibles fósiles. Inicialmente estaba concebido para utilizar combustibles gaseosos, por 
ello toda la explicación se base en este tipo de combustibles. 

En el reactor de oxidación (ver Fig. 23 y Fig. 24) se introduce el aire comprimido y las partículas 
que van a actuar como transportador de oxígeno (Me). Dichas partículas suelen ser metales, 
que en contacto con el oxígeno del aire se oxidan. De este reactor sale una corriente formado 
por lo óxidos metálicos (MeO). 

Esta corriente de sólidos se introduce en el reactor de reducción en el cual las partículas de 
transportador oxidado se reducen con el combustible para transformarse de nuevo en 
partículas capaces de capturar oxígeno en el reactor de oxidación.  

Reacción de oxidación: QMeOOMeO +↔+− αα 21 2

1
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Fig. 23 Esquema básico de un sistema CCS 

en chemical looping [16] 

 

Fig. 24 Esquema compacto de un reactor 

de chemical looping [16] 
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5.4.1 Ventajas del chemical looping [12] 

Se tiene como producto de combustión una mezcla de CO2 y vapor de agua, fácilmente 
separables mediante condensación del vapor. Esto conlleva a un menor coste por no necesitar 
incluir una etapa de separación de gases posterior. 

Hay una disponibilidad de óxidos metálicos posibles muy elevada. Además tienen un coste 
relativo mucho más bajo que en los demás tipos de CCS. 

La regeneración del sorbente se realiza in situ. 

Ausencia de emisiones de NOx ya que no se introduce nitrógeno con el gas de combustión. 

Los transportadores tienen muy buenas propiedades ante la aglomeración. Mayor facilidad de 
transporte y de generar ciclos sin inconvenientes. 

Menor penalización energética al no tener que disponer de una ASU. Posibilidad de producción 
de H2 como gas de salida. 

Los costes simulados son lo suficientemente buenos para mantener el interés en esta 
tecnología (<10€/tonCO2). La tecnología no tiene detractores en general. 

5.4.2 Desventajas del chemical looping [12] 

Solo existen plantas piloto de muy poca potencia ( ≈ 120kW). En un futuro se estudia ampliar la 
potencia de las plantas piloto hasta 1MWt. 

Se acumulan muy pocas horas de operación ( ≈ 4000h). Operación discontinua. 

Al disponerse de tantos transportadores de oxígeno la elección del más favorable para cada 
tipo de planta piloto es un enigma. Existen problemas con los transportadores sobre su 
reactividad según los ciclos, posibilidad de desactivación de algunos de ellos…) 

Sólo está probada tecnológicamente con gas natural. Para combustibles sólidos aún no. 

No existen estudios reales de costes, ni de inversión, ni de instalación, ni de operación ni de 
coste de tonelada evitada de CO2. Sólo hay simulaciones.  

5.55.55.55.5 IGCC con captura de COIGCC con captura de COIGCC con captura de COIGCC con captura de CO2222    

Los procesos de captura de CO2 previos a la combustión se basan de forma muy resumida en la 
transformación del combustible primario en una corriente de gases cuyos principales 
componentes son CO2 y H2, que pueden ser separados de forma relativamente sencilla por sus 
concentraciones y presiones disponibles [17]. Las tecnologías de captura en pre-combustión 
pueden ser aplicadas a todos los recursos fósiles, tales como gas natural, fuel y carbón, 
haciéndose extensible también a la biomasa y residuos. 

Se pueden distinguir tres pasos principales en el aprovechamiento de combustibles primarios 
con captura en precombustión (ver Fig. 25): 

· Reacción de producción de gas de síntesis. Procesos que llevan a la generación de una 
corriente compuesta principalmente por hidrógeno (H2) y monóxido de carbono (CO) a 
partir del combustible primario.  

· Reacción gas-agua (shift) para convertir el CO del gas de síntesis en CO2. La reacción se 
puede expresar según la fórmula de la eq. 1. 

CO + H2O → CO2 + H2        (eq. 1) 
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y su objetivo es convertir el CO del gas de síntesis que se obtuvo en el primer paso en 
CO2 manteniendo la mayor parte de la energía del CO en la corriente gaseosa resultante. 
Al utilizar agua como agente oxidante se obtiene hidrógeno. La reacción requiere 
catalizador que optimiza la cinética y la temperatura de trabajo. 

· Separación del CO2. Esta etapa tiene como objetivo separar el CO2 de la corriente de 
gas que está formada principalmente por CO2/H2, existiendo varios procedimientos. La 
concentración de CO2 en esta corriente puede estar comprendida entre el 15-60% en 
base seca y la presión de la corriente entre 2-7 MPa. El CO2 separado queda disponible 
para su almacenamiento. 

Para llevar a cabo todos estos procesos son necesarios una serie de sistemas adicionales que 
son los que constituyen los principales inconvenientes de la tecnología de captura de CO2 en 
pre-combustión: la unidad de separación de aire (ASU), la unidad de gasificación, las unidades 
de lavado del gas de síntesis (eliminación de S, Cl..), la utilización de catalizadores para la 
reacción shift y los residuos obtenidos y la recirculación del nitrógeno de la ASU para poder 
introducir el H2 obtenido en la turbina de gas para la producción de electricidad. 

 

Fig. 25 Esquema básico de un sistema CCS en IGCC 

5.5.1 Ventajas del IGCC [12] 

Los procesos de reformado y gasificación son procesos conocidos y ampliamente establecidos. 

Amplia gama de combustibles a utilizar, tanto gaseoso como líquidos como sólidos. 

La separación del CO2 y del H2 ya se lleva a cabo a grandes escalas en refinerías. La separación 
es más fácil que en post-combustión al disponerse en altas concentraciones y a altas 
presiones. Menores costes por compresión del CO2 por disponer menos etapas de compresión. 

Altos ratios de separación. En unidades PSA se consiguen purezas del 99.99% de H2. 

El gas de combustión es el H2 que tiene mayor contenido energético que el metano. 

Menores pérdidas de rendimiento del sistema. En torno a 6 puntos porcentuales frente a los 
10 puntos porcentuales de la post-combustión. 

Menores costes por tonelada de CO2 evitada. Valores entre 13-38 €/ton frente a los valores en 
post-combustión de 40-60 €/ton. 

5.5.2 Desventajas del IGCC [12] 

Es obligatoria la conversión del combustible en gas de síntesis. Lo que implica un proceso más 
complejo y la necesidad de reactores. 
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No todos los carbones son gasificables de manera rentable. Se necesitan aquellos carbones 
que presentan bajo contenido en carbono (lignitos) aunque se ha conseguido gasificar con 
mezclas de coque del petróleo. 

La aplicación directa a centrales térmicas actuales es inviable ante la necesidad de disponer del 
reactor de gasificado. 

Las plantas IGCC tienen un alto coste de inversión. Los estudios fijan como potencia mínima 
rentable los 300MW. Aquí es muy importante el factor de escala. 

Alto coste y consumo energético de separación del oxígeno en el aire y plantas ASU. Abre el 
campo de alternativa para la separación con membranas. 

Necesidad de catalizadores para llevar a cabo la reacción shift (adecuación en presión y/o 
temperatura). A veces pueden llegar a ser caros. Pero estos catalizadores ya están 
desarrollados. 

Al utilizar el hidrógeno como combustible, las turbinas actuales adaptadas al gas natural no 
pueden utilizar 100% H2. Se necesitan desarrollar turbinas para el H2. Actualmente se soluciona 
mezclando con N2 de la ASU para diluir el H2. 

Falta generalizada de experiencias reales a gran escala. Las estaciones de Puertollano y 
ELCOGAS acumulan algunas horas de funcionamiento. 
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6666 Simulación de la planta siderúrgicaSimulación de la planta siderúrgicaSimulación de la planta siderúrgicaSimulación de la planta siderúrgica    

6.16.16.16.1 Producción de la industria siderúrgicaProducción de la industria siderúrgicaProducción de la industria siderúrgicaProducción de la industria siderúrgica    

Un primer dato a tener muy en cuenta es qué cantidad de arrabio/acero es capaz de producir 
una planta siderúrgica. Para contestar a esta pregunta se ha desarrollado el apartado 9 del 
Anexo I. En él se encuentran las producciones de 33 altos hornos y de 6 BOF encontrados en la 
bibliografía referenciada. 

Como valores promedio se dispone de una producción de 2.63 millones de toneladas de 
arrabio al año en el alto horno y de una producción de 2.8 millones de toneladas de acero al 
año en el BOF. Calculando el valor promedio equivalente a producción de acero según se 
indica en el citado apartado se obtiene la Tabla 3: 

Tabla 3 Producción del alto horno, BOF y producción ponderada 

Tipo de horno Nº de hornos Producto Producción promedio 

   [mill ton /año] [kg/s] 

Alto horno 33 Arrabio 2.63 83.37 

BOF 6 Acero 2.8 88.99 

 Producción ponderada 95.727 kgacero/s 

 

6.26.26.26.2 Diagramas de bloquesDiagramas de bloquesDiagramas de bloquesDiagramas de bloques    

A continuación se representan los diagramas de bloques para los 6 componentes principales 
que conforman la industria de siderurgia de referencia. En ellos se indican los principales 
inputs y outputs que intervienen. Ver Fig. 26 a Fig. 31. Para más información ir al Anexo I 
apartado 10. 

 

Fig. 26 Flujos del BOF [Fuente propia] 
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Fig. 27 Flujos en el BF [Fuente propia] 

 
 
 
 

 

Fig. 28 Flujos en el horno de coque [Fuente propia] 
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Fig. 29 Flujos en la planta de sinterizado [Fuente propia] 

 

Fig. 30 Flujos en la ASU [Fuente propia] 

 

Fig. 31 Flujos en la compresión de aire [Fuente propia] 

6.36.36.36.3 Diagramas de interacciónDiagramas de interacciónDiagramas de interacciónDiagramas de interacción    

En los diagramas de interacción se muestra de forma simplificada las interacciones que surgen 
entre los diferentes componentes presentados en el apartado anterior. Se atiende a 
clasificarlos dependiendo del aspecto de interés que se requiere en cada momento. Se han 
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obtenido 6 diagramas de interacción (Fig. 32 a Fig. 37) atendiendo a criterios como pueden ser: 
flujos másicos más significativos, gases energéticos, producción de CO2, vapor/agua, 
electricidad, producción de la ASU y la compresión. Para más información ir al Anexo I 
apartado 10. 

 

 

 

Fig. 32 Principales flujos másicos [Fuente propia] 

 
 
 

 

Fig. 33 Flujos de los gases energéticos [Fuente propia] 
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Fig. 34 Flujos de producción de CO2 [Fuente propia] 

 

 

Fig. 35 Flujos del agua y del vapor [Fuente propia] 

 

Fig. 36 Consumos de electricidad [Fuente propia] 
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Fig. 37 Aire atmosférico, aire comprimido y productos de la ASU [Fuente propia] 

6.46.46.46.4 Propiedades de los gases energéticosPropiedades de los gases energéticosPropiedades de los gases energéticosPropiedades de los gases energéticos    

La totalidad del desarrollo para la obtención de los gases energéticos está desarrollado en el 
Anexo II. A continuación se muestra resumidamente en tablas las propiedades de los gases que 
aparecen en la industria siderúrgica. 

La Tabla 4 muestra los pesos atómicos de los elementos que conforman las diferentes 
moléculas que se componen los gases de la industria siderúrgica. En la Tabla 5 se muestran las 
ocho moléculas de las que se componen dichos gases y las propiedades que interesan para el 
desarrollo de las siguientes características. 

 

Tabla 4 Pesos atómicos [g/mol] 

Hidrógeno Carbono Nitrógeno Oxígeno 

1,00797 12,01115 14,00670 15,99940 

 

Tabla 5 Pesos moleculares de los elementos y energías de combustión 

 Peso molecular Energía de combustión Calor específico * 

 Mr [g/mol] Ecomb [kJ/mol] Cp [kJ/kg·K] 

CO 28.1 283.0 1.049 

H2 2.02 285.8 14.42 

CO2 44.01 0.0 0.942 

N2 28.01 0.0 1.040 

CH4 16.04 887.1 2.191 

C2H6 30.07 1559.7 1.723 

C3H8 44.10 2219.2 1.642 

C4H10 58.12 2879.0 1.647 

 

A continuación, la Tabla 6 recoge las composiciones elementales de los gases energéticos de la 
industria de la siderurgia. La composición se recoge en porcentaje en volumen.  
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Tabla 6 Composición elemental de los gases energéticos [%] 

 Gas natural COG BOF BF gas 

CO 0.0 5.9 61.6 24.3 

H2 0.0 57.4 2.9 2.9 

CO2 0.9 2.0 17.0 20 

N2 1.3 6.4 18.1 52.7 

CH4 90.9 26.9 0.4 0.1 

C2H6 5.4 0.9 0.0 0 

C3H8 1.1 0.5 0.0 0 

C4H10 0.3 0.0 0.0 0 

 

Finalmente en la Tabla 7 se tienen las propiedades de los gases energéticos que se buscaban 
desde el principio: poder calorífico, densidad, densidad energética y calor específico. 

Tabla 7 Poder calorífico, densidad, densidad energético y calor específico de los 

gases energéticos de la industria siderúrgica 

  Gas natural COG BOF BF gas 

Poder calorífico [MJ/Nm
3
] 41.34 19.83 8.30 3.47 

Densidad [kg/Nm
3
] 0.789 0.459 1.335 1.358 

Densidad energética [kg/MJ] 0.01909 0.02315 0.16080 0.39060 

Calor específico [kJ/kg·K] 2.131 9.037 1.422 1.412 

 

6.56.56.56.5 Balances de masa y energíaBalances de masa y energíaBalances de masa y energíaBalances de masa y energía    

A continuación se presentan de forma resumida y tabulada (desde la Tabla 8 a la Tabla 19) los 
balances de masa y de energía para la industria siderúrgica. Para ver el desarrollo completo, 
por favor consultar el Anexo III.  

6.5.1 Balances de masa y energía componente a componente 

Basic oxygen furnace 

Tabla 8 Lista detallada de los inputs: masa, cp, temperatura y energía en el BOF 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Oxígeno 85.66 0.942 725 55.0 

Nitrógeno 12.5 1.045 725 9.1 

Aire comprimido 21.97 1.012 650 13.9 

Agua 82.65 4.180 25 0 

Argón 1.6 0.520 728 0.6 

Arrabio 860 0.450 1250 474.1 

Chatarra 220 0.450 25 0 

Aditivos 119 0.483 25 0 

BF gas 3.79 1.407 160 0.72 

COG 9.26 9.035 80 4.6 

Gas natural 7.39 2.131 25 0 

Vapor 27.86 ---- ---- 82 

Electricidad ---- ---- ---- 177.9 
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Tabla 9 Lista detallada de los outputs: masa, cp, temperatura y energía en el BOF 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

CO2 123.12 0.942 660 73.6 

CO 5.20 1.049 660 3.5 

Acero 1000 0.500 800 388.74 

Retornos internos. Sinter 84.80 0.794 380 23.9 

Escorias 82.20 0.794 380 23.2 

BOF gas 84.47 1.426 650 74.98 

Vapor 71.98 ---- ---- 230 

 

Blast furnace 

Tabla 10 Lista detallada de los inputs: masa, cp, temperatura y energía en el BF 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Oxígeno 79.23 0.942 327 21.96 

Nitrógeno 73.11 1.045 327 22.96 

Aire comprimido 15.12 1.012 326.9 4.6 

Agua de refrigeración 320 4.180 70 60.2 

Agua de proceso 1444.02 4.180 90 392.34 

Sinterizado 935 0.482 200 78.9 

Mena de hierro 155 0.731 25 0 

Coque 360 0.836 180 46.65 

Retornos internos 17.2 0.794 800 10.6 

Aditivos 22.1 0.907 25 0 

Petróleo 25.8 2.090 25 0 

Carbón 140 0.835 60 4.1 

BF gas 535.4 1.407 160 101.8 

BOF gas 84.4 1.426 550 62.9 

Vapor 33.47 ---- ---- 98.5 

Electricidad ---- ---- ---- 501.93 

 

Tabla 11 Lista detallada de los outputs: masa, cp, temperatura y energía en el BF 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Agua de desecho 1555.9 4.180 90 422.7 

Retornos internos. Sinter 220.6 0.794 1200 205.8 

Retornos internos. BF 17.2 0.794 1200 16 

Arrabio 860 0.450 1100 416 

BF gas 1585.3 1.407 180 346.8 

 

 

Coke oven 

Tabla 12 Lista detallada de los inputs: masa, cp, temperatura y energía en el coke 

oven 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire comprimido 18.61 1.012 326.9 5.7 

Agua de proceso 200 4.180 60 29.3 

Agua de apagado 19.46 4.180 25 0 
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Carbón 465 0.835 25 0 

COG 29.17 9.035 80 14.5 

Vapor 18.55 ---- ---- 54 

Electricidad ---- ---- ---- 243.66 

 

Tabla 13 Lista detallada de los outputs: masa, cp, temperatura y energía en el coke 

oven 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Agua de desecho 200 4.180 70 37.6 

CO2 3.38 0.942 90 0.2 

CO 15.75 1.049 90 1.1 

Coque 360 0.836 190 49.7 

Limpieza de gases 37.5 2.660 90 6.5 

COG 67.5 9.035 90 39.7 

Vapor 66.66 ---- ---- 213 

 

 

Planta de sinterizado 

Tabla 14 Lista detallada de los inputs: masa, cp, temperatura y energía en la 

planta de sinterizado 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire comprimido 28.1 1.012 327 8.6 

Aire 776 1.012 25 0 

Mena de hierro 760 0.731 25 0 

Retornos internos 305.3 0.794 375 84.9 

Aditivos 185.5 0.907 25 0 

Carbón 48.13 0.835 60.2 1.4 

BF gas 40.19 1.407 160 7.7 

Electricidad ---- ---- ---- 65.8 

 

Tabla 15 Lista detallada de los outputs: masa, cp, temperatura y energía en la 

planta de sinterizado 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Escorias 12.25 0.794 250 2.2 

Sinterizado 935 0.482 250 101.4 

Gases de extracción 804.1 1.012 80 44.8 

Limpieza de gases 14.88 0.192 80 0.2 

CO 53.48 1.049 80 3.1 

CO2 323.59 0.942 80 16.8 

 

Unidad de separación de aire (ASU) 

Tabla 16 Lista detallada de los inputs: masa, cp, temperatura y energía en ASU 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire de entrada 736.2 1.012 25 0 

Electricidad ---- ---- ---- 118.7 
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Tabla 17 Lista detallada de los outputs: masa, cp, temperatura y energía en ASU 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Oxígeno 164.9 0.918 185 24.21 

Nitrógeno 564.8 1.040 185 96.96 

Argón 6.55 0.5203 185 0.54 

 

Compresión de aire 

Tabla 18 Lista detallada de los inputs: masa, cp, temperatura y energía en la etapa 

de compresión de aire 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire de entrada 83.79 1.012 25 0 

Electricidad ---- ---- ---- 55.36 

 

Tabla 19 Lista detallada de los outputs: masa, cp, temperatura y energía en la 

etapa de compresión de aire 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire comprimido 83.79 1.057 650 55.36 

 

6.5.2 Balance de masa y energía global 

Las tablas que vienen a continuación recogen de forma global los balances de masa (Tabla 20) 
y balances de energía (Tabla 21) tanto componente a componente como al global de la 
industria siderúrgica. También se puede observar que el balance global es prácticamente nulo 
tanto en masa como en energía. En la Tabla 21 se ha dividido la energía de los inputs en dos 
ítems: energía de los inputs o de los flujos másicos y energía de aporte, principalmente 
referido a electricidad. 

Tabla 20 Balance de masa global [kg] 

 Inputs Outputs  

Basic oxygen furnace 1451.8 1451.8  

Blast furnace 4239.2 4239.2  

Coke oven 750.8 750.8  

Sinter plant 2143.3 2143.3  

ASU 736.2 736.2  

Compresión de aire 83.79 83.79  

   Balance de masa 

Total 9405.09 9405.09 +0.007731 kg 

 

Tabla 21 Balance de energía global descompuesto en los diferentes componentes 

 Inputs Aporte Outputs  

Basic oxygen furnace 640.02 177.9 817.92  

Blast furnace 905.60 501.93 1408  

Coke oven 104.04 243.66 347.70  

Sinter plant 102.55 65.8 168.35  
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ASU 0 118.72 118.72  

Compresión de aire 0 55.36 55.36  

    Balance de energía 

Total 1752.22 1163.37 2916.06 +1.74 kJ 

 

6.66.66.66.6 Funcionamiento aisladoFuncionamiento aisladoFuncionamiento aisladoFuncionamiento aislado    

La información más detallada se encuentra en el Anexo V apartado 2.  

El caso de funcionamiento aislado significa que la planta siderúrgica se encuentra sin ningún 
tipo de integración, es decir, sin planta de potencia propia ni sistema CCS. Esto implica que la 
planta siderúrgica debe abastecerse tanto de la energía eléctrica mediante compra a la red 
como de energía térmica para la generación de vapor mediante una caldera propia. Todo ello 
va a suponer unas emisiones de CO2 a la atmósfera, que sumadas a las emisiones propias de 
los procesos internos de la siderurgia sumarán el total de emisiones de este tipo de industria. 

6.6.1 Abastecimiento térmico 

Para el abastecimiento térmico del vapor de aporte a los distintos elementos de la industria 
siderúrgica se necesita una caldera. Los parámetros que caracterizan a la caldera se 
encuentran reflejados en el apartado 1 del Anexo IV. La Tabla 22 contiene resumidos estos 
valores. 

Tabla 22 Datos para el abastecimiento térmico 

Potencia caldera Carbón Aire combustión CO2 emitido 

[kW] [kg/s] [kg/s] [kg/s] 

24600 3.94 29.15 5.23 

 

6.6.2 Abastecimiento eléctrico 

El abastecimiento eléctrico se hace conectándose a la red de energía eléctrica disponible. De 
este modo se compra la totalidad de la electricidad. Suponiendo un rendimiento eléctrico de la 
red eléctrica española del 50% y traduciendo la demanda eléctrica a demanda térmica a través 
de este rendimiento se puede calcular la potencia térmica que definiría la caldera ficticia de la 
red eléctrica para poder obtener el total de electricidad que requiere la siderurgia. Esta caldera 
ficticia tendría asociado una emisión de CO2 que se simulará mediante los parámetros 
reflejados en el apartado 1 del Anexo IV. En la Tabla 23 vienen contenidos los resultados de 
aplicar las ideas aquí reflejadas. 

Tabla 23 Datos para el abastecimiento eléctrico 

 

 

6.6.3 Emisiones de CO2 

Finalmente, en la Tabla 24 se encuentran resumidos los datos de emisiones de CO2. Estas 
emisiones vienen dadas por los diferentes elementos de la industria siderurgia, por el 
abastecimiento térmico y por el abastecimiento eléctrico.  
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Tabla 24 Datos globales para la siderurgia en modo sin integración 

 CO2 emitido [kg/s] 

Siderurgia 44.09 

Demanda eléctrica 51.77 

Demanda térmica 5.23 

Total 101.09 
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7777 Integración con una central de potenciaIntegración con una central de potenciaIntegración con una central de potenciaIntegración con una central de potencia    

El paso que se propone a continuación es la integración de la siderurgia con una central de 
potencia. Dado que la siderurgia tiene un excedente de producción de gases energéticos, 
podría ser beneficioso sacarles un partido energético e incluso económico. De este modo 
también se podría reducir las emisiones de CO2 ya que el combustible no es del todo ‘sucio’ 
como el carbón.  

Para aprovechar la energía contenida en los gases energéticos de la siderurgia se plantea un 
ciclo combinado con turbina de gas en cabecera, caldera de recuperación y ciclo de vapor de 
cola. Para hacerse una idea se tiene la Fig. 38. 

 

Fig. 38 Esquema general de integración de la CP con la siderurgia [Fuente propia] 

7.17.17.17.1 Caracterización de la siderurgiaCaracterización de la siderurgiaCaracterización de la siderurgiaCaracterización de la siderurgia    

En este breve apartado lo que se va a hacer es representar la industria siderúrgica 
anteriormente analizada de forma más simplificada. Para entenderlo mejor, se va a 
caracterizar la siderurgia desde el punto de vista de la central de potencia (CP). Es decir, se 
representará como una caja negra de dónde se tendrán unos pocos inputs/outputs que son los 
de interacción siderurgia-CP. Más información en el apartado 3 del Anexo V. La Fig. 39 muestra 
la caracterización de la siderurgia y sus tres interacciones con la CP: gases energéticos, vapor 
de aporte y vapor de extracción. 
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Fig. 39 Esquema de caracterización de la siderurgia [Fuente propia] 

7.27.27.27.2 Elección de turbina de gasElección de turbina de gasElección de turbina de gasElección de turbina de gas    

La elección de la turbina de gas (TG) se ha realizado en el apartado 2 del Anexo IV. Resumiendo 
el procedimiento se tendría: se sabe la potencia disponible en los gases energéticos de la 
siderurgia que son 367MWt. Aplicando un rendimiento eléctrico de la turbina de entre 30 
hasta el 40 % se debe buscar una turbina con una potencia comprendida entre 110 – 146 MWe. 

Con estas premisas sencillas, ya que la turbina de gas se va a modelizar como una ‘caja negra’ y 
parametrizada con sus parámetros más fundamentales, la elección de la turbina es de la marca 
Mitsubishi Heavy Industries concretamente el modelo M701DA. La Tabla 25 contiene las 
propiedades más significativas de esta TG. La Fig. 40 muestra una imagen de la misma. 

Tabla 25 Propiedades técnicas de la turbina de gas Mitsubishi M701DA 

 

 

Fig. 40 Corte de la turbina de gas M701DA 

7.37.37.37.3 Simulación del HRSGSimulación del HRSGSimulación del HRSGSimulación del HRSG    

El HRSG (heat recovery steam generator) se va a caraterizar con muy pocos parámetros para 
denotar su simplicidad a la hora de simular. Un parámetro crítico es la temperatura de salida 
de los gases provenientes de la TG, ya que si se recupera mucho calor y se bajan por debajo de 
la temperatura de condensación del agua, ésto puede provocar la condensación del agua así 
como elementos nocivos para los elementos estructurales del HRSG como pueden ser el azufre 
formándose ácido sulfúrico. Se va a suponer una caída de presión en el circuito de agua/vapor 
de 10 bares. 
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       ∆ T=47ºC 

 

          Tsalida=150ºC 

 

 

Fig. 41 Esquema de funcionamiento del HRSG [Fuente propia] 

La Fig. 41 muestra la temperatura de los gases de escape de la TG (línea superior) con la 
condición impuesta de la temperatura de salida a 150ºC. Por otro lado (línea inferior), entra el 
agua proveniente de la parte del condensador del ciclo de vapor como líquido subenfriado y 
sufre un calentamiento con cambio de fase para obtener vapor a una temperatura final de 
495ºC. 

7.47.47.47.4 Caracterización del ciclo de vaporCaracterización del ciclo de vaporCaracterización del ciclo de vaporCaracterización del ciclo de vapor    

En primer lugar se disponen de 4 cuerpos de turbinas. Se les ha llamado turbina de alta (TA), 
turbina de media 1 (TM1), turbina de media 2 (TM2) y turbina de baja (TB). De este modo se 
dispone de 3 puntos de extracción de caudales, dos de ellos se emplean para el 
aporte/extracción a la siderurgia y el tercero de ellos para la extracción hacia el desgasificador. 
Las turbinas de alta y de baja tienen un rendimiento isoentrópico del 85% mientras que las 
turbinas de media tienen uno equivalente al 90%. La bomba de baja se supone un rendimiento 
isoentrópico del 83%. 

El condensador trabaja a 0.06 bares de presión y el desgasificador a 0.9 bares de presión. Se 
incluye un alternador eléctrico acoplado al eje mecánico de las turbinas con un rendimiento 
electromecánico del 97%. La bomba de alta produce un incremento de la temperatura del 
fluido de 2ºC. La temperatura del vapor vivo procedente del HRSG depende de la temperatura 
de entrada de gases de escape de la TG como se ha visto en la Fig. 41. 

Ya que el funcionamiento del ciclo de vapor depende en su totalidad de la turbina de gas de 
cabecera y de los aportes/extracciones de la siderurgia, la elección de un modelo específico de 
turbina de vapor se hace inviable a primera estancia. Para ello se han listado las turbinas de 
vapor de tres grandes fabricantes: Siemens, MAN turbo y GE (ver apartados 3.2 3.3 3.4 del 
Anexo IV). 

7.57.57.57.5 Simulación y resultadosSimulación y resultadosSimulación y resultadosSimulación y resultados    

7.5.1 Resultados termodinámicos 

La Tabla 26 contiene los datos termodinámicos de los fluidos que intervienen en el ciclo de 
potencia del caso base planteado. 

Como se puede observar, el máximo caudal de vapor a manejar por el ciclo de vapor es de casi 
70 kg/s. El de aire asciende a 402 kg/s. Existe un caudal de purga de 5.6 kg/s. 
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Tabla 26 Resultados tabulados. Caudal, presión, temperatura, entalpía, entropía y 

título de los puntos del ciclo de vapor 

 Caudal Presión Temp. Entalpía Entropía Título 

 [kg/s] [bar] [ºC] [kJ/kg] [kJ/kg·K] [%] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20  

 

7.5.2 Potencias y producción eléctrica 

A continuación, en la Tabla 27 se incluyen los valores de potencias térmicas que intervienen en 
este ciclo. Se han incluido las potencias del HRSG, condensador, del vapor de aporte y del 
vapor de extracción. 

Tabla 27 Potencias térmicas de relevancia en el ciclo de vapor 

Elemento Potencia [MWt] 

HRSG 166.3 

Condensador 111.1 

Aporte vapor 42.4 

Extracción vapor 22.34 

 

En la Tabla 28 se incluyen los valores de potencia generada por las turbinas, tanto de gas como 
de vapor; así como el consumo eléctrico de las bombas del ciclo de vapor. Se puede 
comprobar que la TG produce el 64% de la energía eléctrica y el ciclo de vapor el 36%, lo que 
está acorde a la típica producción de un ciclo combinado de 2/3 para la TG y 1/3 para las TV. 

Tabla 28 Potencias eléctricas de la CP 

Elemento Potencia [MWe] 

Turbina de gas 127.7 

Turbina de alta 9.6 

Turbina de media 1 19 

Turbina de media 2 28.3 
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Turbina de baja 16.9 

Bomba de baja 5.7 kW 

Bomba de alta 0.92 

TOTAL neto 198.4 

 

Finalmente se ha resumido en la Tabla 29 los valores de demanda eléctrica de la siderurgia, la 
producción neta en la CP y, haciendo la resta, la potencia eléctrica disponible para poder 
exportar a la red eléctrica. En este caso son 87MWe. 

Tabla 29 Producción y demanda, potencia exportable de energía eléctrica 

Elemento Potencia [MWe] 

Demanda de la siderurgia 111.3 

Producción de la CP 198.4 

Potencia exportable 87.1 

 

7.5.3 Emisiones de CO2 

Las emisiones de CO2 se han dividido en las dos fuentes de emisiones de esta sinergia: la 
siderurgia y la CP. En total asciende a casi 110kg/s, con un reparto del orden del 39% para la 
siderurgia y 61% para la central de potencia (ver Tabla 30).  

Tabla 30 Emisiones de CO2 de la integración siderurgia-CP 

Elemento emisor Emisiones de CO2 

Industria siderúrgica 43.09 kg/s 

Combustión gases en TG 66.39 kg/s 

TOTAL emisiones 109.5 kg/s 

 

En este caso, al contrario que ocurría con la siderurgia sin ningún tipo de integración, la central 
de potencia es capaz de producir un exceso de electricidad que se venderá a la red. Al 
contabilizar todas las emisiones en la Tabla 30, el excedente eléctrico supone emisiones de CO2 
evitadas al sistema eléctrico español. Siguiendo la forma de operación del apartado 6.6.2 de 
esta memoria y del apartado 6.3.2 del Anexo V se pueden calcular las emisiones de CO2 
evitadas. La Tabla 31 contiene los datos obtenidos para el cálculo del CO2 evitado. 

Tabla 31 Emisiones de CO2 evitadas 

 

 

7.67.67.67.6 Potencial de captura de COPotencial de captura de COPotencial de captura de COPotencial de captura de CO2222    

Una vez simulado el comportamiento de la sinergia entre siderurgia y central de potencia y 
obtenerse unos resultados satisfactorios, se va a proceder a analizar que potencial tiene esta 
sinergia a la hora de capturar CO2. Para poder incorporar la captura de CO2 es necesario 
disponer de un flujo de vapor a 130ºC que habrá que extraer del ciclo de vapor. La Fig. 42 
muestra la nueva configuración con la extracción al regenerador. En el esquema se ha 
eliminado la turbina de baja presión ya que queremos ver de cuánto vapor se dispone para el 
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regenerador y producir así la captura de CO2. En cierto modo el regenerador funciona como el 
condensador del ciclo, pero con la diferencia que la turbina de media nº2 es una turbina de 
contrapresión (presión a la salida de 2.7bar). 

 

Fig. 42 Esquema de funcionamiento del estudio del potencial energético [Fuente 

propia] 

Los equipos utilizados siguen siendo los mismos que se han empleado en el caso base, por lo 
que no modifican sus parámetros de funcionamiento. De este modo se puede decir que el caso 
ficticio que nos ocupa, el caso de mayor potencial energético, es de alguna manera lo más fiel 
al planteamiento inicial propuesto. 

Como se pretende estudiar tres tipos de aminas (MEA, DEA y MDEA), caracterizadas por su 
energía de regeneración, se obtendrán tres valores máximos de CO2 a capturar. Las 
características de las aminas que influyen en este apartado se encuentran reflejadas en el 
apartado 8.1 de esta memoria. 

 

7.6.1 Ciclo de vapor 

Como en los casos anteriores, primero se presentan los resultados termodinámicos de los 
puntos especificados en la Fig. 42. Los resultados se obtienen tabulados en la Tabla 32. 
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Tabla 32 Resultados tabulados. Caudal, presión, temperatura, entalpía, entropía y 

título de los puntos del ciclo de vapor. Ciclo de potencial energético 

 Caudal Presión Temp. Entalpía Entropía Título 

 [kg/s] [bar] [ºC] [kJ/kg] [kJ/kg·K] [%] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14  

 

7.6.2 Potencias térmicas y producción eléctrica 

En este apartado se obtiene el potencial térmico de captura de CO2. Como se puede observar 
en la Tabla 33 la potencia disponible en el regenerador es de 135MWt. Por lo tanto, si la 
siderurgia se la combina con una central de potencia con el fin de capturar el máximo CO2 
posible tenemos 135MWt dedicados exclusivamente a la captura de CO2. Se observa que la 
potencia transmitida en el HRSG es la misma que en el caso anterior. 

Tabla 33 Potencias térmicas de relevancia en el ciclo de vapor 

Elemento Potencia [MWt] 

HRSG 166.3 

Regenerador 134.95 

Aporte vapor 42.4 

Extracción vapor 22.34 

 

Más datos de potencias eléctricas se encuentran tabulados en las Tabla 34 y Tabla 35. Como 
dato más característico es el de potencia exportable o potencia para vender a la red que 
asciende a 63MWe. En este caso la producción eléctrica disminuye en 23.9MWe lo que es 
equivalente a una reducción del 27.5%.  

Tabla 34 Producción y demanda, potencia exportable de energía eléctrica 

Elemento Potencia [MWe] 

Demanda de la siderurgia 111.3 

Producción de la CP 174.6 

Potencia exportable 63.2 

 

Tabla 35 Potencias eléctricas de relevancia en la CP 

Elemento Potencia [MWe] 

Turbina de gas 127.7 
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Turbina de alta 10 

Turbina de media 1 19.8 

Turbina de media 2 19.4 

Bomba de alta 0.92 

TOTAL neto 174.6 

 

7.6.3 Emisiones de CO2 

Como emisiones de CO2 se van a tener las mismas que en el caso base, ya que tanto la 
siderurgia como el TG funcionan en el mismo régimen. La Tabla 36 hace un resumen de las 
emisiones de CO2 que produce la industria.  

Tabla 36 Emisiones de CO2 de la integración siderurgia-CP 

Elemento emisor Emisiones de CO2 

Industria siderúrgica 43.09 kg/s 

Combustión gases en TG 66.39 kg/s 

TOTAL emisiones 109.5 kg/s 

 

Como se ha obtenido el flujo de vapor destinado a la regeneración que equivale a 135MWt, 
conociendo las propiedades de las aminas, en particular su energía de regeneración (ver Tabla 
39 de esta memoria ); se puede traducir en flujo de CO2 máximo a capturar según la 
configuración mostrada en la Fig. 42. Utilizando la mejor amina disponible, la MDEA, se tiene 
que se puede capturar hasta el 62% del CO2. 

Tabla 37 Potencial de captura de CO2 [kg/s] 

Tipo amina CO2 capturado CO2 emitido % Capturado 

MEA 32.36 77.14 29.55 

DEA 45.85 63.65 41.87 

MDEA 67.95 41.55 62.05 

 

7.6.4 Emisiones de CO2 equivalentes 

Como se ha procedido en el caso anterior, se va a calcular las emisiones de CO2 equivalentes al 
disponer de energía eléctrica a vender a la red. La Tabla 38 contiene los resultados. El más 
significativo es que se puede evitar del orden de 29kg/s de CO2. 

Tabla 38 Emisiones de CO2 evitadas en ciclo de potencial de captura 
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8888 Integración con una central de potencia y CCSIntegración con una central de potencia y CCSIntegración con una central de potencia y CCSIntegración con una central de potencia y CCS    

La captura de CO2 se va a realizar utilizando un ciclo de absorbente químico o aminas (ver 
apartado 1 del Anexo VI). Aunque lo que no se tiene claro es el tipo de amina que se va a 
utilizar ya que la operación de la CP y del CCS va a variar drásticamente según el tipo de amina 
utilizado. Se dispone de estos tres tipos de aminas: MEA (monoetanolamina), DEA 
(dietanolamina) y MDEA (metildietanolamina) ya que son de los tres tipos que más fácilmente 
se conocen sus propiedades y de disponer de un mayor número de industrias químicas que las 
producen. 

8.18.18.18.1 Caracterización de las aminasCaracterización de las aminasCaracterización de las aminasCaracterización de las aminas    

Las propiedades de las aminas que se muestran en la Tabla 39 se han obtenido de la 
bibliografía especializada (ver apartado 2 del Anexo VI). En esta tabla tan solo se recogen los 
valores promedio y son aquellos con los que se simularán la integración siderurgia-CP-CCS. 
Como valores a remarcar es la energía de regeneración que es muy elevada para la MEA, que si 
se combina con un bajo porcentaje en la mezcla, una carga de captura de CO2 menor a las 
otras aminas y un flujo de CO2 remanente elevado lo que produce es una cantidad de fluido en 
el ciclo de aminas muy superior al resto. 

Tabla 39 Propiedades físico-químicas de las aminas 

 Unidades MEA DEA MDEA 

Peso molecular [g/mol] 61.08 105.14 119.16 

Energía de regeneración [MJ/kgCO2] 4.170 2.943 1.986 

Porcentaje de mezcla [%] 28.7 31.3 35.0 

Carga de captura [kgCO2/kgamina] 0.31137 0.49687 0.59085 

Calor específico [kJ/kg·K] 2.4857 2.3803 2.7260 

Flujo CO2 remanente [kgCO2/kgamina] 0.154 0.090 0.079 

 

Un aspecto clave en captura de CO2 con solvente químico es que no se puede realizar una 
captura del 100% a costes relativamente asequibles. Los valores típicos para este tipo de 
tecnología son del orden del 80 – 95 %. En el caso que atañe, se ha buscado diversos ejemplos 
de operación de CCS con solvente químico (ver apartado 3.4 del Anexo VI) y se ha obtenido un 
valor promedio de captura de 89.14%. 

8.28.28.28.2 Descripción y parametrización del ciclo de aminasDescripción y parametrización del ciclo de aminasDescripción y parametrización del ciclo de aminasDescripción y parametrización del ciclo de aminas    

Para más información, ver el apartado 4.1. del Anexo VI. 

8.2.1 Configuración del ciclo de aminas 

Se ha escogido para el ciclo de aminas la configuración básica (ver Fig. 43). El ciclo de aminas 
tiene unos elementos básicos que se describen a continuación: 

· Absorbedor. Es un intercambiador de calor y de masa. En el se produce la separación o 
absorción del CO2 en las aminas.  

· Intercambiador de calor o economizador. Se coloca en medio de las dos torres y su 
cometido principal es el de repartir el calor que disponen los diferentes flujos de aminas 
de modo que se minimice el aporte/extracción de calor. 
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· Regenerador (Stripper). Es el otro intercambiador de calor y de masa. En el ocurre el 
efecto contrario que el absorbedor, el CO2 se desprende de las aminas.  

· Refrigerador. Sirve para evacuar el sobrante térmico del flujo de aminas pobre. 
Temperaturas de operación típicas de 90-40ºC. 

 

Fig. 43 Configuración básica del ciclo de aminas 

8.2.2 Parametrización de los componentes principales 

Para simular el absorbedor tan solo necesitamos la temperatura de entrada del flujo de aminas 
pobre (lean amine). La temperatura de salida se obtendrá aplicando un balance de masa y de 
energía a la totalidad del absorbedor. La temperatura de entrada es de 39.9ºC. 

Para simular el regenerador, las condiciones a aplicar son también en temperatura. Hay que 
tener en cuenta que la temperatura máxima del vapor de aporte está admitida a 132ºC debido 
a que si se sobrepasa la degradación de las aminas aumenta y su costo económico de 
reposición es elevadísimo. Suponiendo una temperatura de approach de 10ºC, se tiene una 
temperatura máxima del fluido de aminas de 122ºC. En el caso de simulación que atañe a este 
TFM se han escogido 116.5ºC la temperatura de salida y 87.4ºC la temperatura de entrada al 
regenerador. 

8.2.3 Consumo eléctrico del ciclo de aminas 

El ciclo de aminas tiene dos consumos eléctricos diferenciados, tal como se explica en el 
apartado 4.1.5 del Anexo VI. Por un lado se tiene que impulsar el fluido formado por agua, 
aminas y CO2 a través de los diferentes elementos que componen el ciclo de aminas. Para ello 
es necesario colocar una bomba de impulsión que consumirá energía eléctrica para funcionar. 
Por otro lado se va a disponer un tren de compresión del CO2 (ver Fig. 44) de cuatro etapas con 
la misma relación de presión ( ≈ 2.6) e intercoolers intermedios. 

 

Fig. 44 Tren de compresión del CO2 

8.38.38.38.3 Diagrama de funcionamiento generalDiagrama de funcionamiento generalDiagrama de funcionamiento generalDiagrama de funcionamiento general    

La idea básica del diagrama de funcionamiento, con respecto al anterior caso estudiado, es la 
incorporación del ciclo de captura de CO2 en la cola de los gases de escape (ver Fig. 45). 
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Fig. 45 Diagrama de funcionamiento de la integración de la siderurgia con una 

central de potencia y ciclo de captura de CO2 [Fuente propia] 

Como diferencias principales se observa la inclusión del ciclo CCS que consiste en el 
absorbedor (izquierda) el regenerador (derecha) el intercambiador de calor o economizador 
(en medio) y el refrigerador. Luego se tiene el tren de compresión del CO2. 

Por otro lado, antes de introducir el flujo de gases de escape al absorbedor se debe juntar las 
corrientes de gases de escape de la TG y el CO2 de la siderurgia. Además se le hace un by-pass 
al HRSG para obtener en el punto 10 una temperatura de 200ºC. 

La característica que más va a modificar el funcionamiento del CC es el hecho de disponer de 
una toma de vapor (extracción del punto 21 y 22). El sistema de funcionamiento elegido es 
aquel que la TG produzca el caudal de gases de escape necesarios para que el flujo 21 ceda la 
energía requerida en la regeneración del CO2. De este modo la restricción introducida en la 
simulación es que m[23]=0kg/s, lo que implica que la turbina de media nº3, la turbina de baja, 
el condensador, bomba de baja, desgasificador 1 y bomba de media es como si no funcionasen 
realmente.  

8.48.48.48.4 Turbinas de gas empleadasTurbinas de gas empleadasTurbinas de gas empleadasTurbinas de gas empleadas    

Ya que el estudio del funcionamiento de la integración con la captura de CO2 se hace con tres 
tipos de aminas con parámetros de funcionamiento diferentes, la operación de los 
componentes de la CP y del sistema CCS van a modificarse debido a que estos solventes 
químicos introducen variaciones significativas.  
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El elemento en cabeza del ciclo, la turbina de gas, va a ser decisivo ya que los demás 
componentes de la CP y del CCS dependen del funcionamiento de esta turbina de gas. Al igual 
que se hizo en el apartado 7.2 de esta memoria, se va a listar a continuación las turbinas de 
gas elegidas para el funcionamiento con cada tipo de amina a emplear. Para más información, 
por favor leed el apartado 4.3 del Anexo VI. 

En la Tabla 40 se tiene el listado de cada tipo de turbina y su fabricante, nº de turbinas a 
colocar, rendimiento, potencia nominal, relación de presión, caudal de gases de escape y 
temperatura de los gases de escape. Lo que más llama la atención es que no se va a colocar 1 
turbina en ningún caso, siendo necesario el uso de al menos 2 turbinas. Esto es debido a que la 
potencia eléctrica de salida en algunos casos es muy elevada y con un solo equipo no es 
posible satisfacerla y en otros casos porque la introducción de una turbina con sus parámetros 
de funcionamiento reales no se adecua a lo que le está exigiendo el CC y el CCS. 

Tabla 40 Turbinas de gas para cada tipo de amina 

 

8.58.58.58.5 Potencias y producción eléctricaPotencias y producción eléctricaPotencias y producción eléctricaPotencias y producción eléctrica    

8.5.1 Potencia térmica 

En este apartado se tienen 2 principales modificaciones. Al no disponerse de un condensador 
en el ciclo de potencia ya que m[23]=0 (lo que es lo mismo que la turbina de media nº2 trabaja 
a contrapresión) entonces esa necesidad de refrigeración no se tendrá. Más o menos el 
regenerador hace esa utilizad visto desde el punto de vista del ciclo de vapor.  

Por otro lado, en el tema de compresión de CO2 se ha dispuesto de intercoolers para enfriar la 
corriente de CO2. Se han incluido para bajar la temperatura de la corriente de CO2 para que su 
entalpía no se disparase y así tener unos consumos eléctricos de los compresores menores que 
si no se instalase intercoolers. 

Tabla 41 Potencias térmicas de relevancia [MWt] 

 

Como se puede ver, la introducción de los intercoolers maneja mucha cantidad de potencia 
térmica. Sería adecuado darle un uso de tal manera que los requerimientos energéticos 
térmicos de los demás componentes bajasen. El problema es que estos intercoolers funcionan 
en un rango de operación de entre 40 hasta 120 ºC, por lo tanto son una fuente de calor 
residual (calefacción, precalentar otros flujos…). 
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8.5.2 Potencia eléctrica 

Como se ha hecho en apartados anteriores, ahora se muestran los valores de potencias 
eléctricas generadas o consumidas por los diversos elementos de que consta el ciclo de 
potencia. La Tabla 42 contiene todos los resultados. Llama la atención los valores nulos de los 
elementos turbina de media nº3, turbina de baja, bomba de baja y bomba de media. Como se 
ha dicho con anterioridad, al no circular flujo de vapor en estos componentes, entonces es 
como si no estuviesen colocados en el CP. De todos modos se han incluido tanto en la 
simulación como en los resultados ya que si se hubiese impuesto una condición diferente a la 
de m[23]=0 (por ejemplo Potencia neta eléctrica = 400 MW) entonces el funcionamiento de 
estos equipos debería considerarse. 

A la vista de los resultados, uno que destaca por encima del resto es la potencia de la turbina 
de gas en el caso de empleo de MEA. La potencia de 2GWe viene debido a que los 
requerimientos energéticos para la regeneración del CO2 en el regenerador son muy elevados, 
lo que se traduce en que se necesita más vapor en la extracción del punto 21. Para satisfacer 
esta demanda de vapor se debe intercambiar más potencia térmica en el HRSG. Por lo tanto la 
TG debe quemar más combustible. Al hacerlo, la producción de CO2 aumenta con lo que el 
ciclo CCS demanda más cantidad de energía térmica en el regenerador. Así que es un círculo 
vicioso que tiene su punto de estabilidad en los resultados presentados aquí. 

A la vista de los resultados ofrecidos, y comparándolos con los resultados de la Tabla 35 
(integración del CP exclusivamente), se ha optado por escoger como mejor modo de operación 
el uso de aminas MDEA. Las producciones eléctricas de la turbina de gas y las potencias 
térmicas intercambiadas en los equipos son superiores a los de la integración de la CP, pero no 
muy desmesuradas. Hay que recordar que el objetivo de la empresa es la producción de acero 
con el superávit de captura de CO2, no transformar la siderurgia en una central de potencia 
eléctrica con un superávit de producción de acero. 

Tabla 42 Potencias eléctricas de relevancia [MWe] 

 

 

Finalmente se presentan los datos relacionadas con la potencia eléctrica para todos los 
componentes que no se han reflejado en la tabla anterior. Como se puede ver en la Tabla 43 se 
tiene una demanda de la siderurgia constante ya que opera en las mismas condiciones 
siempre. La demanda de bombeo de líquido en el sistema CCS es baja ya que el salto de 
presión es bajo (del orden de 5 bares). En cambio la compresión de CO2 produce el mayor 
consumo en los sistemas de CCS con solvente químico (del orden del 10% de la producción 
eléctrica de la CP). 
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Tabla 43 Producción y demanda, potencia exportable de energía eléctrica [MWe] 

 

8.68.68.68.6 Emisiones de COEmisiones de COEmisiones de COEmisiones de CO2222    

8.6.1 Datos resumidos 

En el caso de integración total de la siderurgia con la CP y con el sistema CCS se van a tener 
tres fuentes de emisiones de CO2: la propia siderurgia, la quema de los gases energéticos 
provenientes de la siderurgia y la quema del gas natural. Aunque las emisiones de las dos 
primeras fuentes permanezcan constantes ya que el funcionamiento y la producción de la 
industria siderúrgica no se ha modificado, si que lo hará el combustible extra de gas natural. La 
Tabla 44 contiene todos los datos relativos a emisiones de CO2. 

Tabla 44 Emisiones de CO2 de la integración siderurgia-CP-CCS [kg/s] 

 

8.6.2 Emisiones de CO2 equivalente a la red eléctrica 

Se va a proceder a calcular, como en los casos anteriores, las emisiones de CO2 equivalentes a 
la red eléctrica porque la planta con la integración de CP y CCS es capaz de producir un 
excedente eléctrico y volcarlo a la red. La Tabla 45 contiene los datos acostumbrados a reflejar 
en este tipo de análisis. 

Tabla 45 Datos de emisiones de CO2 equivalente 

 

 

9999 Emisiones de COEmisiones de COEmisiones de COEmisiones de CO2222 evitadas evitadas evitadas evitadas    

El desarrollo más exhaustivo se encuentra contenido en el Anexo VII. 
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9.19.19.19.1 MetodologíaMetodologíaMetodologíaMetodología    

La metodología básica consiste en comparar las producciones de los dos casos: el caso real que 
es el esquema integrado de siderurgia con central de potencia y con CCS (ver apartado 8) y el 
caso ficticio que corresponde a la integración de la siderurgia con central de potencia (ver 
apartado 7) más una central de potencia extra para suplir la carencia en producción eléctrica. 

 

Fig. 46 Esquema básico de la metodología empleada 

Como se muestra en la Fig. 46, una ver realizada la comparativa de producciones, en las que se 
busca que ambos casos produzcan igual cantidad de acero y de electricidad para poder hacer 
una comparativa más fidedigna, se buscará las emisiones de CO2 evitadas. Con todo ello se 
podrá hacer un pequeño análisis económico relativo a la inversión y también será necesario un 
pequeño análisis de sensibilidad en cuanto a parámetros económicos. 

9.29.29.29.2 Caso real. Integración CP+CCSCaso real. Integración CP+CCSCaso real. Integración CP+CCSCaso real. Integración CP+CCS    

El caso real comprende el mismo esquema de funcionamiento que el explicado en el apartado 
8 de esta memoria. Es el que consiste en la planta siderúrgica, con aprovechamiento de los 
gases energéticos en la central de potencia de ciclo combinado y con un sistema de captura de 
CO2 mediante solvente químico. Para una configuración más en detalle ver la Fig. 45. A 
continuación se presenta la misma integración pero resaltando los flujos másicos y energéticos 
que son de especial relevancia, ver Fig. 47. 

 

Fig. 47 Configuración para el Caso real 

Extrayendo los resultados en forma de tabla, considerando las producciones como valores 
positivos y las necesidades como valores negativos, se confecciona la Tabla 46. Como valores a 
destacar son la producción de acero 95.73kg/s, la producción eléctrica neta 161.7kWe y las 
emisiones de CO2 tras su captura en 13.6kg/s. 
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Tabla 46 Emisiones de CO2, flujos eléctricos y requerimientos térmicos. Caso real 

 

9.39.39.39.3 Caso ficticio. Integración CP+CPficticiaCaso ficticio. Integración CP+CPficticiaCaso ficticio. Integración CP+CPficticiaCaso ficticio. Integración CP+CPficticia    

El caso ficticio es un poco más complicado en concepto, pero no en operación. Lo que viene a 
ser el ‘Caso ficticio’ es la adaptación de la integración siderurgia+CP estudiada en el apartado 7 
añadiéndole una central de potencia ficticia que funcione en el mismo régimen que la ya 
integrada para que supla la carencia de producción eléctrica. El concepto está más 
desarrollado en el apartado 4 del Anexo VII. El esquema simplificado es el que muestra la Fig. 
48. 

 

Fig. 48 Configuración para el Caso ficticio 

La central de potencia ficticia no se ha simulado en un modo tan exhaustivo como se ha hecho 
con la central de potencia integrada. Para modelizar esta nueva central de potencia ficticia se 
ha basado en el funcionamiento de la centra de potencia integrada. Para ello se obtiene el 
rendimiento neto del ciclo de potencia (antes de satisfacer la demanda eléctrica de la 
siderurgia) y el factor de emisión de CO2 por quemar los gases energéticos en la TG: 
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Para realizar los cálculos necesarios, se parte del hecho de que se quiere dimensionar la 
central de potencia ficticia de manera que produzca la energía eléctrica necesaria para que 
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junto con la electricidad exportada por la central de potencia integrada, entre ambas 
produzcan la misma cantidad de energía que en el Caso real. Para ello, la central de potencia 
ficticia necesita producir 74.6MWe. 

Una vez simulado todo el proceso se obtienen los datos más relevantes que se encuentran 
contenidos en la Tabla 47. De nuevo los valores a destacar son la producción de hacer con 
95.73kg/s y la producción eléctrica con 161.7MWe (las mismas que en el Caso real) y unas 
emisiones de CO2 de 134.4kg/s. 

Tabla 47 Emisión de CO2, flujos eléctricos y requerimientos térmicos. Caso ficticio 

 

9.49.49.49.4 Emisiones de COEmisiones de COEmisiones de COEmisiones de CO2222 evitadas evitadas evitadas evitadas    

Se conocen los productos que interesan, acero electricidad y CO2, para poder tener 
argumentos para comparar ambos casos. Ya que se ha impuesto que ambos casos produzcan 
el mismo acero (como se tiene la misma siderurgia en ambos casos se cumple) y la misma 
producción eléctrica (se ha añadido la central de potencia ficticia) tan solo falta comparar las 
emisiones de CO2. 

Obteniendo los valores correspondientes de las Tabla 46 y Tabla 47 se puede llegar a saber las 
emisiones de CO2 evitadas. Por lo tanto para el caso real se tienen unas emisiones de 13.6 kg/s 
de CO2 y en el caso ficticio de 134.4 kg/s. Suponiendo que el funcionamiento de la industria sea 
durante todo el año en continuo, sin paradas para mantenimiento, entonces las emisiones de 
CO2 evitadas se pueden calcular y están recogidas en la Tabla 48. 

Tabla 48 Emisiones de CO2 evitadas mensuales y anuales 

 

9.59.59.59.5 Análisis económicoAnálisis económicoAnálisis económicoAnálisis económico    

9.5.1 Parámetros influyentes 

Para el análisis económico se han tenido en cuenta los siguientes factores: 

· Años de vida. Ya que la vida de funcionamiento de los equipos que se van a instalar no 
tiene una duración infinita si no limitada se debe considerar. En esta vida no influye el 
término obsolescencia tecnológica, es decir la tecnología implantada se verá superada 
por nuevos sistemas que se descubran e implanten en un futuro. 

· Interés económico. Con esta variable se intentará dar un valor más real a los pagos de 
dinero. Esto es, si cada mes la empresa debe desembolsar la misma cantidad de dinero, 
la cantidad desembolsada en el primer día no tiene el mismo valor cualitativo que la 
desembolsada el último día ya que habrán transcurrido ‘x’ años, aunque el valor 
cuantitativo sea el mismo. Con este aspecto se introduce el término ‘depreciación 
económica’.  
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· Precio de la tonelada de CO2. El precio de la tonelada de CO2 viene fijado diariamente 
por el mercado de emisiones de CO2 a nivel de la Comunidad Europea. Aunque el valor 
es fruto de las leyes de la oferta y la demanda, para este estudio preliminar se va a 
suponer constante a lo largo de toda la vida útil de la empresa. 

9.5.2 Valores de los parámetros 

Se va a suponer un valor de años de vida de 25 años, reflejando de este modo que aunque los 
diversos componentes de la planta pudieran seguir funcionando en perfectas condiciones una 
vez superados estos años, la realidad tecnológica existente nos indicaría que la mejor opción 
sería un reemplazo o una actualización de la planta. 

El interés económico servirá para poder actualizar el coste económico de los diversos 
desembolsos en cada mes o en cada año al valor que tendría actualmente sumado. Lo que 
viene siendo el VAN (valor actual neto). 
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Aunque el precio por tonelada de CO2 tiene unos valores muy volátiles sujetos a la leyes de 
oferta y demanda típicas de un mercado de valores (ver Fig. 49, empieza en enero de 2008), 
para hacer el cálculo preliminar se va a utilizar un valor de 30€/tonCO2 ya que es un valor 
razonable según se explica en el apartado 6.2.3 del Anexo VII. 
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Fig. 49 Histórico del precio de emisión por tonelada de CO2 [Fuente propia] 

9.5.3 Resultados preliminares 

Al aplicar los valores de los parámetros más influyentes citados en el apartado anterior y 
teniendo en cuenta los valores obtenidos en la Tabla 48 se puede calcular los valores 
económicos que se presentan en la Tabla 49. 

Tabla 49 Cantidades económicas mensuales y VAN 

 

Este valor de 1818.5M€ nos indica que si se coloca un sistema CCS como el estudiado se puede 
llegar a ahorrar 1818.5M€ por haber evitado la emisión de toneladas de CO2.  
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Visto desde otro punto de vista, esta cantidad obtenida sería el máximo dinero a invertir para 
la construcción e implementación de la industria siderúrgica con su central de potencia y ciclo 
CCS. Se tendría que tener en cuenta el coste del combustible adicional, los requerimientos de 
capital para la construcción de los nuevos sistemas, etc… 

9.69.69.69.6 Análisis de sensibilidadAnálisis de sensibilidadAnálisis de sensibilidadAnálisis de sensibilidad    

Para realizar este análisis se van a implementar 27 casos distintos de VAN que corresponden a 
variar los valores de las tres variables en tres niveles: 

· Años de vida: se van a considerar 15, 20 y 25 años. 

· Interés económico: se estudiará para valores anuales de 4, 6 y 8 %. 

· Precio de emisión: se tendrán los valores de 20, 25 y 30 €/tonCO2. 

A continuación se van a estudiar la influencia de cada tipo de parámetro muy por encima. Un 
análisis un poco más profundo se encuentra en el Anexo VII apartados 7.1, 7.2 y 7.3. 

9.6.1 Influencia de los años de vida 

Los años de vida influyen de una manera notable como se aprecia en la Fig. 50. Como norma 
general se observa que al disponer de una instalación más vieja con más años, el valor del VAN 
aumenta. Esto es debido a que durante todos esos años de más se van a evitar emisiones de 
CO2 que producen un ‘beneficio’ virtual a la empresa al no tener que pagar por su emisión. 
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Fig. 50 Influencia del parámetro ‘Años de vida’ 

9.6.2 Influencia del interés económico 

Con el interés económico ocurre lo contrario, cuanto mayor es menor disponibilidad de dinero 
para realizar la inversión. Esto es debido a que el valor del dinero se deprecia con mayor 
prontitud. Ver Fig. 51. 
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Fig. 51 Influencia del parámetro ‘Interés económico’ 

9.6.3 Influencia del precio de emisión 

Es el parámetro que a simple vista se intuye más influyente. A mayor coste por tonelada de 
CO2 mayor ahorro económico al no emitir esos gases. Se observa una tendencia lineal como se 
muestra en la Fig. 52. Valores del precio de emisión a fecha de depósito del TFM (alrededor de 
8.5€/ton) no hace interesante la inversión en un sistema de CCS en la industria siderúrgica. 
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Fig. 52 Influencia del parámetro ‘Precio de emisión’ 

9.6.4 Importancia de los parámetros 

Para poder comparar de una forma más sencilla los tres parámetros y poder discernir cúal de 
ellos es el de mayor importancia y cual el de menor influencia lo que se van a comparar son las 
subidas porcentuales.  

Para ello se obtiene un valor promedio de subida porcentual. Ésto consiste en ver en qué 
porcentaje varía el VAN al varía un 1% el valor de un parámetro. Por ejemplo, si se varía un 1% 
el valor del precio de emisión, según la gráfica Fig. 52 sabemos que aumentará el VAN pero 
¿en cúanto?. La Tabla 50 nos lo desvela. 
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Tabla 50 Importancia relativa de los parámetros 

 

Por lo que se observa, el factor más influyente es el precio de emisión, seguido de los años de 
vida y finalmente del interés económico que tiene una tendencia a la baja. 
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10101010 ConclusionesConclusionesConclusionesConclusiones    

10.110.110.110.1 Nivel tecnológicoNivel tecnológicoNivel tecnológicoNivel tecnológico    

Hablando de nivel tecnológico hay que diferenciar dos aspectos clave: refiriéndose a nivel de 
componente o refiriéndose a nivel global. Si uno se fija a nivel de componente se puede decir 
que el aspecto tecnológico está resuelto. Actualmente se disponen de muchos fabricantes, 
muchos modelos con diferentes capacidades y rangos de operación. Y se está hablando de un 
gran número elevado de componentes que conforman tanto la industria siderúrgica, el ciclo de 
potencia y el ciclo de aminas. Se puede hablar de turbinas, de bombas, de intercambiadores de 
calor, de cintas transportadoras, de lanzaderas de equipos de medición… 

Pero el problema surge al interaccionar los diversos componentes para que conformen un ciclo 
(de materiales, de energía, termodinámico…). Es en este aspecto, la integración de los 
componentes que individualmente funcionan correctamente, es donde se puede mejorar en 
un futuro más próximo. Un ejemplo de ello es el problema que tiene la turbina de gas en un 
ciclo IGCC ya que la quema de H2 no está muy estudiada. Para solventar esta dificultad se están 
investigando nuevos materiales que soporten mayores temperaturas o nuevas turbinas que 
quemen H2. Otros incluso buscan que el hidrógeno sea un vector energético.  

Cambiando de tema, el aspecto de integración energética así como de integración de 
materiales, el concepto denominado simbiosis industrial, en el caso de la industria siderúrgica 
está muy explotado. Quedan pocos frentes abiertos para su mejora. Al introducir la simbiosis 
con la central de potencia y el ciclo CCS, en el aspecto energético tiene ventajas ya que se 
autoabastece eléctricamente. Pero en otro tipo de industrias como puede ser la cementera, 
este tipo de interacciones favorecen en un mayor grado el interés de implementación de 
sistemas CCS porque se traducen en un mayor ahorro de materias primas y combustibles. 

10.210.210.210.2 Resultados obtenidosResultados obtenidosResultados obtenidosResultados obtenidos    

A la vista de los resultados obtenidos se comentarán los diversos aspectos más relevantes. 
Comparando el caso inicial de una planta siderúrgica produciendo exclusivamente acero con el 
caso de la integración total se puede deducir que se reducen las emisiones de CO2 en un 30% 
aproximadamente. Aunque esta comparativa no es adecuada ya que en el primer caso tan solo 
se produce acero y se debe abastecer la industria del total del consumo eléctrico y en el 
segundo caso se captura CO2 y se produce electricidad sobrante. 

Al realizar los cálculos para el caso real y el caso ficticio analizados, que en este caso si que se 
pueden comparar ya que producen cantidades similares de acero y de electricidad se ha 
observado una reducción de emisiones de CO2 del 90%. Este es el principal beneficio de la 
introducción del sistema CCS. De este modo se puede llegar a ahorrar la empresa la emisión de 
3.8 millones de toneladas de CO2 al año (el equivalente de una planta de carbón pulverizado 
de 430MWe). 

El estudio económico refleja una variación importante del capital a invertir. La cifra final de 
monto económico máximo de inversión para que la planta con la integración sea rentable 
oscila entre los 800 y los 1800 M€. Esto es debido a que la tecnología está en una fase inicial, el 
mercado de valores de emisiones aún no es maduro y con los tiempos de crisis actuales no 
está favorecido y las características de las aminas son muy restrictivas (realmente hay un gran 
movimiento investigador en obtener mejores propiedades de las aminas como son la creación 
de nuevas aminas por parte de grandes multinacionales) 
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10.310.310.310.3 Futuro de la integración CCS en siderurgiaFuturo de la integración CCS en siderurgiaFuturo de la integración CCS en siderurgiaFuturo de la integración CCS en siderurgia    

A la vista de los resultados se puede concluir que la integración de un sistema CCS en la 
industria siderúrgica es una realidad tanto tecnológica como factible. Ya que la decisión de 
implementar este sistema siempre viene motivada por motivos económicos más que 
medioambientales, entonces para la empresa tiene que ser una fuente de ingresos o una 
estrategia que les produzca menos desembolsos económicos. 

Como se ha visto, se puede ha llegar a hacer inversiones del orden de los 800 hasta los 1800 
M€. Por lo tanto, este rango tan amplio de inversión supone una incertidumbre elevada. Ésto 
puede desembocar en que la implementación de este tipo de sistemas se retrase para la 
industria siderúrgica.  

Pero esta incertidumbre crea un potencial en el ámbito investigador, un ‘nicho de mercado’ 
desde el punto de vista económico. Por lo tanto, muchas horas e investigadores se deben 
invertir para poder concretar unos parámetros de funcionamiento más optimizados, unos 
equipos más fiables y unos resultados económicos más ajustados. El campo de investigación es 
muy amplio, puede abarcar desde mejorar las eficiencias energéticas del ciclo de aminas, el 
desarrollo de nuevos tipos de aminas así como de nuevos tipos de CCS, estudios del mejor 
sistema de operación de la planta siderúrgica en global. La continuidad del proyecto se debe 
centrar en obtener un estudio económico en profundidad, las líneas futuras de mejora  pasa 
por realizar un estudio económico del ahorro que supondría la integración llevada a cabo en 
plantas reales frente a la inversión necesaria para llevar a cabo un sistema CCS. 
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Ar Argón IGCC Ciclo combinado de gas integral 

ASU Unidad de separación de aire INCAR Instituto de carbón-química 

BA Bomba de alta presión IPCC 
Panel Intergubernamental de Expertos sobre el 
Cambio Climático 

BAT Best available technology (mejor tecnología disponible) LD Convertidor Linz-Donawitz 

BB Bomba de baja presión MDEA Metil Dietanolamina 

BE Balance de energía MEA Etanolamina 

BF Blast furnace – Alto horno MeO Óxidos metálicos 

BM Bomba de media presión m[i] Flujo másico en el punto i 

BM Balance de masa Mr Peso molar 

BOF Basic oxygen furnace – Reductor básico de oxígeno mV Flujo volumétrico 

CaCO3 Carbonato de calcio M€ Millón de euros 

Cact Coste actualizado NH3 Amoníaco 

CaO Óxido de calcio NO2 Dióxido de nitrógeno 

Cbruto Coste bruto NOx Óxidos de nitrógeno 

CCS Capture and Storage system O3 Ozono 

CDM Mecanismos de desarrollo limpio p Periodos de tiempo 

CH4 Metano PCI Poder calorífico inferior 

CO Monóxido de carbono PCS Poder calorífico superior 

CO Coke oven – Horno de coque PgC Petagramo de Carbono = 109 toneladas 

CO2 Dióxido de carbono ppb Partes por billón 

COG Gas del horno de coque ppm Partes por millón 

CP Central de potencia (eléctrica) PSA Pressure Swing Adsorption 

CPS Centro politécnico superior SO2 Dióxido de azufre 

Cp / cp Calor específico SOx Óxidos de azufre 

C2H6 Etano TA Turbina de vapor de alta presión 

C3H8 Propano TB Turbina de vapor de baja presión 

C4H10 Butano TEA Trietilamina 

DEA Dietanolamina TFM Trabajo fin de máster 

EAF Electric arc furnace – Horno eléctrico TG Trubina de gas 

Ecomb Energía de combustión TMi Turbina de vapor de media presión 

EERR Energías renovables TV Turbina de vapor 

EEUU Estados Unidos UE Unión Europea 

GE General electric VAN Valor actual neto 

GEI Gases de efecto invernadero Wi Trabajo eléctrico 

GN / gn Gas natural υ  Volumen específico 

H2 Hidrógeno tη
 

Rendimiento térmico de caldera 

Hg Mercurio ρ
 Densidad 

HRSG Heat recovery steam generador CPη
 

Rendimiento de la central de potencia 

i Interés económico ε  Densidad energética 
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1111 IntroduIntroduIntroduIntroduccióncciónccióncción    

La historia de la industria siderúrgica en España comienza en el siglo XIX [A,I - 1]. En esa época, 
el atraso técnico, disponibilidad de combustible caro o de mala calidad y un mercado de 
dimensiones reducidas hicieron que la siderurgia española, a lo largo del siglo XIX, no pudiera 
competir con productos ingleses, belgas o alemanes. 

Los primeros altos hornos privados surgieron en Lugo (Galicia). Concretamente en 1794 y 
localizado en Sargadelos. Con anterioridad, la Monarquía, para sus necesidades de 
armamento, había instalado algunos altos hornos. Más tarde, la siderurgia pasó a Andalucía. 
Siguiendo el modelo europeo de altos hornos al carbón vegetal y afinación y laminación a la 
hulla se instalaron plantas en Marbella (Málaga) y en Cazalla de la Sierra (Sevilla). Pero la 
hegemonía de la siderurgia andaluza no pudo prolongarse más allá de 1863, cuando las 
fábricas asturianas de Mieres (desde 1852) y La Felguera (desde 1859) empezaron a trabajar a 
pleno rendimiento. 

La primacía de Asturias se debió a la abundancia de hulla y de mena de hierro en su territorio. 
Pero esta superioridad, después de la irrupción del convertidor Bessermer, pasó a Vizcaya. Al 
terminar en 1876 la segunda guerra carlista, algunos empresarios europeos con el fin de 
conseguir mineral barato para sus altos hornos, comenzaron a instalarse en la ría del Nervión. 
La oferta aparecía así dividida entre los productores asturianos y vascos. Empezó una gradual 
sustitución de los convertidores Bessemer por otros sistemas de fabricación, difundidos en 
Europa y EEUU. Apareció así el "horno abierto" Martin-Siemens que mejoraba el método del 
Bessemer. 

Se acentuó la hegemonía vizcaína al frente de la siderurgia española y se concentró toda la 
producción en el norte. En la época de la Gran Guerra, el primer productor siderúrgico de 
España era Vizcaya, seguida de Asturias y después Santander, Álava, Guipúzcoa y Navarra. Las 
fábricas andaluzas habían dejado de producir. Y Altos Hornos de Vizcaya empresa creada en 
1902, a partir de la fusión de otras dos sociedades, se convirtió en la dominante en la 
siderurgia española. 

Después de la primera guerra mundial, a las provincias cantábricas se añadieron dos nuevas 
competidoras, Barcelona y sobre todo Valencia, que en los años 20 superó a Asturias. Después 
con el franquismo, se creó Ensidesa, que dio lugar a Aceralia, que se integró con la francesa 
Usinor y la luxemburguesa Arbed, creando así la actual Arcelor [A,I - 2]. 

2222 Mejores tecnologías disponibles Mejores tecnologías disponibles Mejores tecnologías disponibles Mejores tecnologías disponibles actualmenteactualmenteactualmenteactualmente (BAT) (BAT) (BAT) (BAT)    

2.12.12.12.1 TecnologíasTecnologíasTecnologíasTecnologías a nivel europeo a nivel europeo a nivel europeo a nivel europeo    

La producción de acero en la actualidad tiene cuatro posibles tecnologías o procesos para su 
obtención: 

· El alto horno (de ahora en adelante ‘Blast furnace’; BF) junto a la ruta de reducción 
básica de oxígeno (a partir de ahora ‘Basic oxygen furnace’; BOF) 

· La fusión directa de la chatarra ferrosa (a partir de ahora ‘Electric arc furnace’; EAF) 

· La reducción por fundición o ‘Smelting reduction’ 
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· La reducción directa o ‘Direct reduction’ 

En 2006 la producción de acero en la Unión Europea (EU27) [A,I - 3] se basaba en tecnología 
blast furnace/basic oxygen route (alrededor del 59.8%) y en el electric arc furnace (40.2%) (Fig. 
1). Las tecnologías de direct reduction tan solo suponían un 6.8% de la producción mundial de 
acero y la smelting redution tan solo operaban seis plantas a nivel mundial a finales de 2007. 
Por lo tanto las tecnologías en que se centrará este Anexo I: serán las dos primeras: blast 
furnace & Basic oxygen furnace y electric arc furnace, que se describen en puntos posteriores 
en este mismo anexo. 

 

Fig. 1 Producción de acero en la UE para BF y EAF. Nº de plantas de cada 

tecnología [A,I - 3] 

2.22.22.22.2 Acerías deAcerías deAcerías deAcerías de ciclo integrado ciclo integrado ciclo integrado ciclo integrado    

Las acerías de ciclo integrado o ‘Integrated steelworks’ se caracterizan por la complejidad del 
proceso de obtención del acero, tanto a nivel energético como de materias 
primas/subproductos. De las cuatro tecnologías presentadas más atrás sin duda la de mayor 
complejidad es la BF&BOF. Ocupan extensiones de varios kilómetros cuadrados en complejos 
industriales de complejidad elevada.  

Estas acerías de ciclo integrado se caracterizan por tener redes independientes de materiales y 
de flujos energéticos entre las diferentes unidades de producción (por ejemplo, coke oven 
plants, blast furnace, castings…). Más adelante se describen los elementos principales de esta 
industria. 

3333 Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)    

3.13.13.13.1 El proceso BOFEl proceso BOFEl proceso BOFEl proceso BOF    

El reemplazo de aire por oxígeno en la industria siderurgia fue sugerido por Henry Bessemer. 
Desde la década de los ’50, el oxígeno ha sido utilizado en la siderurgia independientemente 
del método específico de producción utilizado. La primera producción de un BOF a escala 
industrial fue en Linz (Austria) en 1952. 

El objetivo del proceso BOF es oxidar las impurezas no deseadas contenidas en el metal 
caliente/fundido. Los elementos principales que se convierten en óxidos son el carbono, silicio, 
manganeso y fósforo. El contenido en azufre se reduce considerablemente en los 
pretratamientos del mental caliente. Los objetivos de este proceso de oxidación son: 
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· Reducción del contenido en carbono hasta un especificado nivel (aproximadamente 
desde un 4 – 5 % hasta un 0.01 – 0.4 %) 

· Ajustar el contenido de elementos deseables añadidos 

· Eliminar impurezas no deseadas hasta el nivel mínimo posible 

Los procesos básicos que comprenden el BOF están esquematizados en la Fig. 2. Se pueden 
agrupar en pretratamientos, BOF, adecuación de las emisiones y gases, tratamientos 
secundarios. El cuadrado de la figura representa el núcleo del BOF o proceso principal. 

 

Fig. 2 Secuencia del proceso BOF [A,I - 3] 

3.23.23.23.2 Procesos de oxidaciónProcesos de oxidaciónProcesos de oxidaciónProcesos de oxidación    

La idea principal del BOF es que las impurezas no deseadas sean oxidadas. Después pasarán a 
formar parte de las escorias y se extraerán en procesos subsiguientes. La Tabla 1 muestra las 
reacciones químicas principales durante los procesos de oxidación que ocurren en el BOF. Las 
impurezas se extraen con el gas que se obtiene o mediante las escorias líquidas. La energía 
requerida para fundir el metal y los diversos materiales de entrada es suministrada por las 
propias reacciones exotérmicas de oxidación, por lo que no es necesario un aporte de calor. 
Por el contrario se debe añadir chatarra o hierro mineral para compensar el exceso de 
temperatura. En algunos BOF y procesos de soplado combinado diversos hidrocarbonos 
gaseosos como el gas natural se inyectan por toberas enfriantes.  

Tabla 1 Reacciones químicas que se producen en el BOF. []=disuelto en metal. 

()=contenido en la escoria 

Elemento a eliminar Reacción química 

[C]+[O] � CO 
Carbono 

[CO]+[O] � CO2 

[Si]+2[O]+2[CaO] � (2CaO·SiO2) 
Silicio 

[Si]+2[O] � (SiO2) 

Manganeso (Mn]+(O] � (MnO) 

Fósforo 2[P]+5[O]+3[CaO] � (3CaO·P2O5) 

Aluminio 2[Al]+3[O] � (Al2O3) 

La operación del BOF es semi-continua. Un ciclo completo consiste en las siguientes fases: 

· Carga de la chatarra y del mineral de hierro. 

· Fusión del metal 
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· Aporte de oxígeno proveniente de una planta de separación de oxígeno (ASU).  

· Muestreo y chequeo de calidad 

· Adecuación de la temperatura del proceso 

· Tapado y tiempo de residencia 

En acerías modernas cada ciclo puede realizar hasta 380 toneladas de acero y le cuesta entre 
30 – 40 minutos. Existen muchos tipos de reactores BOF, pero el más comúnmente extendido 
es el tipo LD converter (Linz-Donawitz) (ver Fig. 3) para metales con bajo contenido en fósforo. 
El reactor tiene forma de pera, con paredes refractarias y está enfriado por agua. El oxígeno se 
aplica mediante una lanza de soplado con una pureza superior al 99%. Se necesitan en torno a 
50 – 70 Nm3/tonproducto. 

 

Fig. 3 Convertidor básico BOF tipo LD 

3.33.33.33.3 Composición y características del BOF gasComposición y características del BOF gasComposición y características del BOF gasComposición y características del BOF gas    

Tabla 2 Composición y características del BOF gas. 

Parámetro Unidad Valor medio Rango de variación 

Composición 

CO %vol 72.5 55 – 80 

H2 %vol 3.3 2 – 10 

CO2 %vol 16.2 10 – 18 

N2 %vol 8.0 8 – 26 

Características 

Densidad kg/Nm
3
 1.33 1.32 – 1.38 

PCI kJ/Nm
3
 9580 7100 – 10100 

Temperatura de llama ºC 2079 --- 

4444 Blast furnace (BF)Blast furnace (BF)Blast furnace (BF)Blast furnace (BF)    

4.14.14.14.1 Descripción del BFDescripción del BFDescripción del BFDescripción del BF    

El BF es un sistema abierto donde el los materiales férreos (mineral de hierro, sinter o pellets) 
aditivos (formadores de escorias) y agentes reductores (coque) están continuamente siendo 
alimentados desde la parte superior del horno mediante un sistema de carga que a la vez 
permite recoger el gas del BF. La Fig. 4 ilustra la forma física y los principales flujos másicos que 
intervienen en el proceso simplificado dentro de un BF.  
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Fig. 4 Representación simplificada de un BF 

El proceso se puede describir como sigue. Un chorro de aire caliente/plasma enriquecido con 
oxígeno y con agentes reductores auxiliares se inyecta en la zona de toberas produciendo una 
contracorriente de un gas reductor. Este aire introducido reacciona para producir 
principalmente monóxido de carbono que a su vez reduce los óxidos de hierro en arrabio. El 
arrabio es recolectado en la zona del crisol junto con la escoria. El arrabio se transporta para 
un posterior procesamiento y las escorias se eliminan para la posible venta a otras industrias. 
El gas del BF se recoge a través de la parte superior, se le hace un tratamiento y se distribuye a 
través de los diferentes procesos de la planta siderúrgica para su aprovechamiento como fuel 
o para la producción eléctrica de autoconsumo de la planta. Las diferentes zonas de división de 
una BF se recogen en la Tabla 3. 

Tabla 3 Zonas de división y propiedades principales de un BF. [A,I - 3][A,I - 4] 

 Zona Propiedades 

Top Tragante Carga del mineral / evacuación gas BF 

Shaft Cuba Tambiente � T=950ºC 

Belly Vientre 950ºC � 1250ºC 

Bosh Etalaje Fusión hierro / formación de escorias 

Tuyères Toberas T>2000ºC / introducción aire 

 

Hearth Crisol 
Colecta del hierro fundido y escorias 

(1500ºC) 
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4.24.24.24.2 Gas del BFGas del BFGas del BFGas del BF    

El gas obtenido en la parte superior del BF tiene una composición aproximada que se recoge 
en la Tabla 4. Además también tiene trazas de azufre y cianuros, así como grandes cantidades 
de polvo arrastrado de las escorias. Los gases de BF tienen mayor cantidad de hidrógeno si se 
usa gas natural o gases del coke oven como agente a inyectar en las tuyères/toberas. Los 
cianuros pueden ser especialmente de concentración elevada en las operaciones de 
volteo/descarga, pero se intentan minimizar usando los aditivos correctos.  

El gas obtenido en el BF tiene un poder calorífico de entre 2.7 hasta 4.0 MJ/Nm3. La 
producción de este gas en los actuales BF alcanza los valores de 1200 – 2000 Nm3/tonmetal. 

Después de su limpieza el gas del BF se usa comúnmente como fuel al mezclarse con el gas del 
coke oven, BOF gas o gas natural (enriquecimiento).  

Tabla 4 Composición elemental del gas proveniente del BF 

Compuesto Composición (%) 

CO 20 – 28 

N2 50 – 55 

H2 1 – 5 

CO2 17 – 25 

4.34.34.34.3 Hot stovesHot stovesHot stovesHot stoves    

El plasma caliente necesario para la operación del BF se produce en los elementos 
denominados hot stoves o calentadores (también denominados en inglés cowpers). Son 
instalaciones auxiliares usadas con la finalidad de calentar el aire (ver Fig. 5). Una temperatura 
mayor del plasma se traduce en una reducción de consumo de carbono. La función principal de 
los chorros de plasma es proveer del oxígeno necesario para la gasificación del coque, cuyo gas 
al entrar en contacto con el contenido del BF reduce los óxidos de hierro. 

 

Fig. 5 Sistema de carga y hot stove de un alto horno [A,I - 25] 

La operación de los hot stoves es cíclica. Primero se calienta el recinto caliente o cámara de 
combustión mediante la combustión del gas del BF enriquecido. Se alcanzan temperaturas de 
entre 1100 – 1500 ºC. Seguidamente se pasa aire ambiente a través de los stoves para que se 
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caliente gracias al calor contenido en los elementos refractarios que conforman las paredes. 
Para que se obtenga plasma hay que calentar el aire hasta los 900 – 1350 ºC. Una vez tenemos 
el plasma se inyecta al BF a través de las toberas.  

Hay dos tipos básicos de hot stoves: combustión interna o combustión externa. Aunque el 
funcionamiento básico es similar, se diferencian en las emisiones de CO. Se necesitan entre 3 ó 
4 hot stoves por cada BF. 

5555 Electric arc furnace (EAF)Electric arc furnace (EAF)Electric arc furnace (EAF)Electric arc furnace (EAF)    

5.15.15.15.1 Teconología del EAFTeconología del EAFTeconología del EAFTeconología del EAF    

El EAF consiste en la fusión directa de los materiales que contienen hierro (principalmente 
chatarra y mineral ferroso). En la actualidad está jugando un papel cada vez más creciente (ver 
Fig. 1). En países como Italia y España la tecnología EAF supone un 61% y 77% respectivamente 
de la producción total de acero en dichos países.  

El componente principal de alimentación de una EAF es la chatarra que puede provenir de los 
desperdicios internos de la acería, sobrantes de manufacturas del acero o de consumidores de 
chatarra. El hierro directamente reducido o direct reduced iron está ganando aceptación como 
materia prima de las EAF por su bajo contenido en ganga, precio más estable que la chatarra y 
bajo contenido en metales indeseados (por ejemplo cobre). Aleaciones de hierro acostumbran 
a añadirse para ajustar diversas concentraciones de metales no férreos al acero final. 

Como en los BOF, se forma escoria a partir de cal para recoger los componentes desechables 
del acero. En las escorias del EAF se producen a partir de la fusión de las materias primas con 
una adición de cal o de dolomita a temperaturas de entorno 1600ºC. La producción de 
aleaciones de acero comprende varios procesos adicionales en los cuales varios tipos de 
escorias se producen como subproductos.  

5.25.25.25.2 Precalentamiento de la chatarraPrecalentamiento de la chatarraPrecalentamiento de la chatarraPrecalentamiento de la chatarra    

En primer lugar se tiene un proceso de recuperación de calor. Se hace pasar los gases de 
escape del horno EAF a través de la chatarra que posteriormente se alimentará a dicho horno. 
De esta manera se recupera cierta cantidad de calor. Esta técnica se viene usando alrededor 
de unos 40 años para ahorrar energía eléctrica. 

Una de las primeras empresas en incorporarlo a nivel industrial fue Fuchs system technic 
GMBH en 1988. Se colocaba una cubeta de alimentación (single shaft) encima del EAF y se 
hacía pasar el gas caliente del EAF para luego alimentar la siguiente tanda. Se conseguían 
ratios de recuperación de hasta 50%. Una posterior mejora es el denominado double shaft que 
consiste en 2 hornos idénticos (uno en operación EAF y otro en espera). Por el horno de espera 
se hace pasar los gases de escape calentando de este modo la carga y también se calienta la 
chatarra por contacto directo con las paredes del EAF. Las técnicas más modernas son los 
denominados finger shaft que permiten el precalentamiento del 100% de la chatarra. Uno de 
las técnicas más recientemente desarrolladas es el precalentamiento COSS que combina los 
beneficios de los sistemas shaft (proceso discontinuo) con aquellos de los procesos Consteel 
(procesos continuos).  
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5.35.35.35.3 Funcionamiento de EAFFuncionamiento de EAFFuncionamiento de EAFFuncionamiento de EAF    

Una vez cargado el horno con la chatarra, la cal o dolomita, aleaciones de hierro y demás 
aditivos se procede a introducir los electrodos eléctricos en la carga sólida. En esta etapa la 
potencia eléctrica aplicada es baja para no dañar las paredes y el cierre de la radiación 
proveniente de los electrodos. Una vez que la chatarra empieza a fundir y los electrodos 
penetran en la chatarra y la escoria se adhiere a los mismos, la potencia eléctrica se amplía 
hasta su total capacidad. Se usan lanzas de oxígeno o combustores de oxi-fuel para ayudar en 
las etapas iniciales de la fusión. Se completa la fusión de toda la carga inicial. 

El uso de oxígeno en los EAF tuvo una rápida aceptación alrededor de hace 30 años, no solo 
por motivos metalúrgicos sino también por un incremento de productividad. El uso de oxígeno 
en los EAF permite los siguientes procesos: 

· la inyección de oxígeno con carbono granular permite la generación de espumas de 
escorias gracias a la generación de pequeñas burbujas de CO. Esta técnica (foamy slag) 
que está implementada en la industria siderúrgica, mejora el apantallamiento de las 
paredes del horno de la radiación del arco eléctrico y mejora la trasferencia de energía 
del arco eléctrico al baño de acero.  

· se inyecta cierta cantidad de oxígeno por la parte superior para una post-combustión 
del CO y de los posibles hidrocarburos antes de que los gases de escape abandonen el 
horno con el propósito de obtener el mayor contenido energético para el 
precalentamiento.  

· por razones metalúrgicas, el oxígeno se usa para la decarburación del baño de acero y 
la retirada de elementos no deseados como el fósforo o el silicio.  

La inyección de oxígeno se traduce en un incremento de los gases de escape. El CO y el CO2, 
partículas finas de óxidos férreos y otros productos de gases de escape se forman en el horno. 
En el caso de que exista post-combustión se consiguen contenidos en CO por debajo del 0.5 % 
en volumen.  

La Fig. 6 recoge de forma sencilla los flujos intervinientes a lo largo del proceso EAF. 

 

Fig. 6 Flujos simplificados en un EAF [A,I - 3] 
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6666 Coke oven plants (CO)Coke oven plants (CO)Coke oven plants (CO)Coke oven plants (CO)    

6.16.16.16.1 Concepto básico de las plantas COConcepto básico de las plantas COConcepto básico de las plantas COConcepto básico de las plantas CO    

La pirólisis del carbón significa el calentamiento del mismo en una atmósfera sin o 
parcialmente de oxígeno para producir el coque y otros gases y líquidos. La pirólisis del carbón 
a altas temperaturas también se le llama carbonización. En este proceso, la temperatura de los 
gases de calentamiento comprende entre 1150 a 1350 ºC calentando la carga de carbón hasta 
los 1000 – 1100 ºC y comprende un periodo entre 14 a 28 horas. La duración del mismo 
depende de diversos factores como por ejemplo de la anchura del horno, la densidad del 
carbón o la calidad deseada del coque.  

El agente reductor más importante por su extendido uso en la producción del fundido de 
metal es el coque. Permite extraer el oxígeno indirectamente formado primero dióxido de 
carbono o directamente usándolo como contenido inherente de carbono. La gasificación del 
coque también permite suplir el calor necesario para los procesos de reducción. El coque de 
carbón funciona como material de soporte y a la vez como matriz por la cual el gas circula en el 
horno. El coque de carbón no puede ser reemplazado en su totalidad por carbón u otros 
fueles, por lo que su producción en la industria de la siderurgia es esencial.  

Solo ciertos tipos de carbones como son el carbón de coque o el bituminoso, con las 
propiedades plásticas adecuadas, pueden ser convertidos a coque. Como ocurre con los 
minerales de hierro, ciertos tipos deben ser mezclados para mejorar la productividad del BF. 
Otros materiales que contienen carbono también pueden ser utilizados en pequeñas 
proporciones (por ejemplo el coque de petróleo o gomas de neumáticos usados) bajo la 
condición de no tener una influencia negativa en el medio ambiente. El petróleo, aceite y 
residuos de los mismos son añadidos para dar una mejora en cuanto a compactación del 
carbón. 

6.26.26.26.2 Descripción del procDescripción del procDescripción del procDescripción del proceso COeso COeso COeso CO    

El diseño básico de los CO modernos se desarrolló en la década de los ’40. Los hornos tenían 
unos 12 metros de largo, 4 metros de alto y 50 centímetros de ancho y se equipaban con 
puertas a ambos lados. El aire de alimentación se precalentaba con los gases de escape para 
recuperar calor y permitir conseguir altas temperaturas y mejorar el ratio de producción de 
coque. Desde los ’40 el proceso se ha mecanizado y los materiales usados en la construcción 
del horno de coque se han mejorado consiguiéndose mejoras significantes. Las baterías 
pueden contener hasta 70 toneladas de coque que pueden llegar a medir 14x6x0.6 metros. Por 
motivos de transferencia de calor indirecta, las anchuras se de estos CO se establecen entre 30 
hasta 60 centímetros. Cada CO puede contener fácilmente más de 30 toneladas de carbón. En 
las acerías modernas se pueden conseguir CO con hasta 70 toneladas de carbón.  

El proceso de fabricación del coque de carbón se puede dividir en los siguientes pasos: 

· Manejo del carbón y preparación previa 

· Operación en batería (cargar el carbón, calentamiento, proceso del formación del 
coque, empuje del coque y apagado del coque) 

· Manejo del coque (descarga, almacenamiento, transporte) y preparación final 

· Tratamiento del gas del CO (COG) con recuperación y tratamientos de los subproductos 
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· Recuperación del calor y tratamientos de los gases de escape en plantas con 
recuperación del calor 

6.2.1 Subproceso de calentamiento 

En una batería de CO las diferentes unidades están separadas por paredes de calentamiento. 
Todas las unidades tienen hileras de bloques refractarios. Estas paredes de calentamiento 
consisten en un número de flujos de calentamiento y boquillas de alimentación del 
combustible. La temperatura media máxima que se alcanza en los bloques refractarios está 
comprendida entre 1150 a 1350 ºC. Normalmente, el COG tratado y limpiado se usa como 
combustible (autoconsumo) pero otros gases de la siderurgia como el gas proveniente del BF 
pueden ser utilizados. El COG tiene un poder calorífico de unos 18.5 MJ/m3. Para mejorar la 
eficiencia energética de los CO se disponen de intercambiadores regenerativos colocados 
debajo de los hornos, donde se intercambia el calor desde los gases de escape al aire del 
proceso de combustión.  

6.2.2 Subproceso de apagado del coque 

Básicamente hay dos vías para llevar a cabo este apagado: la vía húmeda y la vía seca. Al 
aplicar la vía húmeda lo que se hace es colocar el coque recién salido de los CO en las torres de 
apagado. Se le produce un baño de agua para pasar la carga desde unos 1100ºC hasta los 
80ºC. En este proceso se consume mucha cantidad de agua y su finalidad es que el 
carbón/coque al contacto con el aire ambiente no produzca una autocombustión. Con la vía 
seca lo que se hace es pasar un gas inerte (para evitar la combustión) a través de la carga o en 
una cámara externa separada de la torre de apagado. El gas inerte es enfriado en un 
intercambiador para recuperar energía térmica. 

6.2.3 Subproceso de manejo del coque y preparación final 

Después del proceso de apagado el coque se almacena en pilas desde las cuales se transportan 
mediante bandas, por camión o tren a un edificio separado para su aplastado (adecuación del 
tamaño de partícula para procesos posteriores).  

Las partículas de gran tamaño (20 – 70 mm) se usan en los BF o se venden en el mercado. Las 
partículas finas (<20 mm) se usan en los procesos de sínter y en las plantas de acero para 
permitir un mayor ratio de uso de chatarra. 

6.36.36.36.3 Energía demandada y tratamiento del COGEnergía demandada y tratamiento del COGEnergía demandada y tratamiento del COGEnergía demandada y tratamiento del COG    

Como ejemplos de la energía que se requiere en el proceso de fabricación de coque se ha 
introducido en este anexo la Fig. 7, de donde se pueden deducir los flujos energéticos de 
mayor importancia así como los diferentes flujos de salida del mismo y su grado de 
aprovechamiento. En la Fig. 8 se recoge un sistema de tratamiento del COG con recuperación 
de subproductos con sus diferentes subconjuntos. 
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Fig. 7 Energía requerida en un CO 

 

Fig. 8 Esquema típico del tratamiento de COG en una planta con recuperación de 

subproductos 

7777 Plantas de sinterizado (Sinter plants)Plantas de sinterizado (Sinter plants)Plantas de sinterizado (Sinter plants)Plantas de sinterizado (Sinter plants)    

7.17.17.17.1 JustificaciónJustificaciónJustificaciónJustificación    

Los altos hornos o BF actuales de gran rendimiento consiguen mejorar las prestaciones 
mediante diversas preparaciones previas tanto físicas como metalúrgicas de la carga que van a 
contener. Con estos pretratamientos se consiguen mejores permeabilidades y capacidad de 
reducción de la carga introducida. Esta preparación implica una aglomeración de la carga del 
BF ya sea por aglomerado (sintering) o por peletizado.  
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La carga en el proceso de sinterizado consiste en una mezcla de minerales en polvo, aditivos 
(por ejemplo caliza u olivina) y materiales reciclados provenientes de otros procesos aguas 
abajo (por ejemplo polvo de los fangos del BF o escamas de los molinos) a lo cual se le añade el 
polvo de coque para permitir una ignición favorable a la carga. En Europa se usa 
exclusivamente el proceso denominado down draft sintering on continuous travelling grates 
(parrilla circulante). 

7.27.27.27.2 Mezclado dMezclado dMezclado dMezclado de los materialese los materialese los materialese los materiales    

Se requiere un mezclado de las materias primas antes del proceso de sinterizado. Esto se 
traduce en colocar en capas los materiales en zonas específicas con las cantidades precisas 
requeridas en el proceso de sinterizado. Se disponen capas de minerales pulverizados junto 
con materiales reciclados de otras partes del proceso de la siderurgia. Finalmente se colocan 
los elementos más gruesos en la parte superior para evitar que el posible aire pueda arrastrar 
las partículas más finas. Una vez el proceso en las camas de mezclado se ha llevado a cabo, se 
transporta la carga hasta los tanques de almacenamiento para empezar el proceso de 
sinterizado (ver Fig. 9). 

Como se ha comentado anteriormente, otros aditivos se pueden introducir en la mezcla. Por 
ejemplo caliza, olivina, polvo de los precipitadores electroestáticos, escamas de los molinos, 
otros polvos provenientes de limpieza de los gases del BF, en menor medidas fangos o lodos. 
También los propios flujos de reciclado del proceso de sinterizado. Todo ello se puede añadir a 
la mezcla en la etapa de mezclado inicial. 

El polvo de coque (partículas finas del coque caracterizadas por <5mm) es el combustible más 
comúnmente utilizado en el proceso de sinterizado. Proviene principalmente de la planta de 
coque (CO) directamente en forma de polvo de coque o se puede producir en una molienda de 
coque de importación. Las acerías integradas con capacidad insuficiente de coque adquieren 
suficiente combustible de fuentes externas para suplir las necesidades de la planta de 
sinterizado. En esta situación, la antracita puede ser una alternativa económicamente viable 
así como técnicamente ya que se requieren combustibles con bajo contenido en volátiles. 

El mineral de hierro, el polvo de coque y los demás aditivos se trasportan con bandas y se 
cargan según los requerimientos en masa en un molino de mezclado. En este molino se 
mezclan completamente y la mezcla final se humedece para permitir la formación de micro-
pellets que mejoran la permeabilidad en el proceso de sinterizado.  

 

Fig. 9 Esquema simplificado del mezclado en las plantas de sinterizado 

7.37.37.37.3 Proceso de sinterizado Proceso de sinterizado Proceso de sinterizado Proceso de sinterizado     

La planta de sinterizado consiste esencialmente en una parrilla circulante alargada capaz de 
soportar altas temperaturas (normalmente hierro forjado) (ver Fig. 10). El material mezclado 
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en los procesos previos se dispone sobre una capa de un grosor de entre 30 a 50 cm formada 
por sinterizado reciclado. Esta capa inferior tiene como función prevenir que la mezcla fresca 
pase a través de los agujeros de la parrilla y protege la parrilla del foco de calor que se 
generará en la combustión de la mezcla.  

 

Fig. 10 Parrilla circulante de transporte de la mezcla previa 

En las plantas modernas de sinterizado la capa de material a sinterizar tiene aproximadamente 
40 – 60 cm de profundidad, pero en plantas más antiguas se disponían de profundidades más 
pequeñas. Al principio de la parrilla se igniciona la mezcla (el combustible más utilizado es el 
polvo de coque) mediante quemadores de gas. En procesos aguas abajo se colocan potentes 
ventiladores de tiro inducido para que el aire pase a través de toda la longitud del proceso de 
sinterizado. El aire se introduce gracias a cámaras de introducción de aire que se colocan 
debajo de la parrilla. El gas que se produce por la combustión del combustible se extrae 
mediante colectores de gas para luego tratarlo y limpiarlo. 

La combustión de la mezcla se produce a la vez que se transporta a lo largo de la parrilla 
circulante. Se pueden conseguir temperaturas de hasta 1300 – 1480 ºC (ver Fig. 11), que sirven 
para sinterizar (aglomerar) la partículas finas para producir un clinker poroso al cual se le 
denomina sinterizado. Un gran número de reacciones químicas y metalúrgicas se llevan a cabo 
en el proceso de sinterizado. Éstas producen a la vez el sinterizado y las emisiones de gas. 

 

Fig. 11 Diagrama esquemático de temperaturas y zonas de reacción en el proceso 

de sinterizado pasados 6 minutos después de la ignición 

El polvo de coque se quema completamente antes de alcanzar el final de la parrilla. La última o 
las dos últimas cajas de aporte de aire se utilizan para empezar a enfriar el flujo. El enfriador se 
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puede integrar en el proceso de sinterizado, pero es más común de disponer de enfriadores 
separados (por ejemplo enfriadores rotacionales). Al final de la parrilla, el sinterizado cae y se 
conduce a un puerto de rotura donde se rompe para obtener un material granulado fácil de 
manejar. En muchas plantas, el sinterizado se pasa a través de un proceso denominado hot 
screening en dónde las partículas finas (menos del mm) son separadas y recicladas y se 
introducen de nuevo en la mezcla inicial.  

8888 Unidad de separación de aire (ASU)Unidad de separación de aire (ASU)Unidad de separación de aire (ASU)Unidad de separación de aire (ASU)    

8.18.18.18.1 Evolución histórica de las ASUEvolución histórica de las ASUEvolución histórica de las ASUEvolución histórica de las ASU    

A continuación se plasma a través de un breve informe temporal los hitos alcanzados en el 
entorno industrial de las ASU [A,I - 6]. Se puede observar que, aunque es una tecnología con 
más de 100 años a su haber, es un gran campo de investigación en la actualidad por su gran 
auge y su proyección a futuro. 

1985: Primera planta piloto de escala comercial de licuefacción del aire. 

1902: Primera planta ASU de la historia para la obtención de oxígeno (ver Fig. 12) 

1904: Primera planta ASU de la historia para la obtención de nitrógeno. 

1910: Primera planta ASU con un proceso de rectificado de doble columna. 

1930: Desarrollo del proceso Linde- Fränkl para la separación de aire. 

1950: Primera planta Linde- Fränkl de oxígeno sin reciclado de presión y con reactores rellenos 
de piedras. 

1954: Primera planta ASU con purificación de aire mediante adsorbedores. 

1968: Introducción de la tecnología ‘Molecular sieve’ para la pre-purificación del aire. 

1978: La compresión interna del oxígeno es aplicada a las ASU de escala industrial. 

1981: El proceso de elevada presión es introducido en la industria. 

1984: Construcción de la mayor planta industrial ASU con ajuste de demanda variable de O2. 

1990: Primera planta totalmente controlada a distancia sin operación manual. Producción de 
argón puro mediante rectificación. 

1991: Mayor planta mundial ASU con columnas empaquetadas. 

1992: ASU producen gases de calidad megapureza. 

1997: Mayor planta para la obtención de nitrógeno con una capacidad de 40000 ton/día. 

2000: Desarrollo del condensador tipo multi-stage-bath avanzado. 

2006: Mayor contrato de la historia en ASU. Capacidad de 30000 millones de toneladas al día 
de oxígeno para el proyecto ‘Pearl GTL’ en Qatar. 
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Fig. 12 Planta ASU de 1902. Producción de 5 kg/h de O2 

8.28.28.28.2 Principio de funcionamiento de una ASUPrincipio de funcionamiento de una ASUPrincipio de funcionamiento de una ASUPrincipio de funcionamiento de una ASU    

El aire es una mezcla de gases formada mayoritariamente por nitrógeno y oxigeno [A,I - 7]. 
También contiene pequeñas cantidades de argón, trazas de otros gases (CO2, Ne, He,...) y una 
cantidad variable de vapor de agua. Aunque hoy día se emplean distintas tecnologías para 
separar el aire en sus componentes las grandes plantas comerciales siguen utilizando el 
proceso tradicional de destilación criogénica. Tanto el agua como el CO2 se eliminan en una 
fase previa al proceso de separación de aire. El proceso más sencillo de esta tecnología es el de 
Linde con columna simple que fue utilizado por primera vez en 1902 (ver Fig. 14). 
Actualmente, las grandes compañías productoras (Air liquide, Air products, BOC, Linde, 
Praxair...) emplean una gran variedad de procesos más complejos según sean los gases que se 
desean producir (O2, N2, Ar), el grado de pureza de los mismos (90%; 99%; 99,9%; 99,99%) y su 
fase (líquido, gas). La mayor parte de estos procesos utilizan la columna doble de Linde. 

 

Fig. 13 Diferentes tipos de producción de ASU 

Las plantas de separación criogénica del aire (ver Fig. 13) constituyen un tipo especial de 
plantas químicas, basadas en procesos de licuefacción y destilación del aire. La destilación 
criogénica se utiliza principalmente para la obtención de nitrógeno, oxígeno y argón en 
cantidades elevadas (>100 Tm/día), ya sea como producto líquido o gaseoso, o bien cuando se 
requiere una alta pureza de oxígeno (>95%) o producir argón. 

Todos los procesos criogénicos están basados en la compresión del aire y su posterior 
enfriamiento a temperaturas muy bajas, para conseguir su licuefacción parcial. Esto permite su 
destilación criogénica (basada en el fenómeno de que cada uno de los componentes puros del 
aire licua a temperaturas diferentes) para separar el/los producto/s deseados en una columna 
de etapas múltiples. Puesto que la temperatura del proceso es muy baja es necesario que 
equipos como la columna de destilación, intercambiadores de calor y otros componentes 
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estén aislados frente a trasferencia de calor desde el medio ambiente. En la práctica estos 
componentes se ubican en una o más cajas frías (paralelepípedo con aislamiento térmico 
multicapa).  

La separación criogénica del aire conlleva diversos procesos. Inicialmente el aire de 
alimentación a la planta es filtrado y comprimido (aproximadamente a 6 bar). A continuación 
el aire se seca mediante su enfriamiento en un intercambiador aire-agua o aire-aire y con el 
posible apoyo de un sistema de refrigeración mecánica. La eliminación total del vapor de agua, 
anhídrido carbónico y otros contaminantes (por ejemplo hidrocarburos) se realiza mediante 
tamices moleculares. 

El enfriamiento del aire a temperaturas criogénicas se lleva a cabo en intercambiadores de 
calor multiflujo que aprovechan la capacidad de refrigeración de los gases que salen de la 
planta. 

 

Fig. 14 Licuación del aire mediante laminación isoentálpica (proceso Linde) [A,I - 8] 

8.38.38.38.3 Datos de operación de las unidades ASUDatos de operación de las unidades ASUDatos de operación de las unidades ASUDatos de operación de las unidades ASU    

A continuación se hace una recopilación de datos de operación que se pueden extraer de la 
bibliografía disponible online. Cabe destacar que la mayoría de las aplicaciones actuales de las 
ASU en el campo de la investigación están orientadas hacia la inclusión de la ASU en sistemas 
IGCC (ciclo combinado de gas integrado). Aunque las especificaciones bien pueden ser 
utilizadas en la industria de la siderurgia ya que esta no requiere de oxígeno o nitrógeno de 
muy alta pureza. Además tiene la ventaja que el gasto energético es mucho menor tal como 
indica la Fig. 15. 
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Fig. 15 Energía requerida según la pureza del oxígeno [A,I - 12] 

8.3.1 Producción de oxígeno 

La Tabla 5 resume los datos recopilados para la producción de O2 en ASU para aplicación en la 
siderurgia en cuanto a pureza del oxígeno, impurezas, capacidad, consumo, temperatura y 
presión. 

Tabla 5 Datos de operación de las ASU en cuanto a producción de O2 

Referencia Pureza O2 Impurezas Capacidad Consumo Temp. Presión 

[A,I - 9] 95% ---- 5970 kmol/h ---- ---- ---- 

[A,I - 10] 95% 3.5%N2 + 1.5%Ar 21.34 kg/s ---- 200 ºC 41 bar 

[A,I - 11] ---- ---- ---- 200 kWh/ton ---- ---- 

[A,I - 12] ---- ---- 8000 ton/dia ---- ---- ---- 

[A,I - 13] 96% 4%Ar ---- ---- ---- ---- 

[A,I - 14] 95% ---- ---- ---- ---- 48 bar 

[A,I - 15] 95% ---- ---- ---- 295 K 48 bar 

[A,I - 16] 95% 3.2%Ar + 1.8%N2 ---- ---- ---- ---- 

[A,I - 17] ---- ---- ---- 201.3-147 kWh/ton ---- ---- 

[A,I - 18] ---- ---- ---- 0.28-0.3 kWh/Nm
3
 ---- ---- 

Como datos a utilizar en la simulación de la industria siderúrgica a lo largo de este TFM se van 
a tomar: 

Pureza O2: 95.17% 

Impurezas: 2.08% N2 + 2.75% Ar 

Consumo: 200 kWh/tonO2 

Condiciones a la salida: 185ºC y 47bar 

8.3.2 Producción de nitrógeno 

En la Tabla 6 se recogen datos análogos a los presentados en la Tabla 5, pero en esta ocasión 
centrándose en el producto nitrógeno N2. 

Tabla 6 Datos de operación de las ASU en cuanto a producción de N2 

Referencia Pureza N2 Impurezas Capacidad Temp. Presión 

[A,I - 9] 98% 2%O2 23170 kmol/h ---- ---- 

[A,I - 13] 99.9% 0.1%Ar ---- ---- ---- 

[A,I - 14] 99-99.9% ---- ---- ---- 88-25 bar 

[A,I - 15] >98.2% ---- ---- 295-500 K 88-25-1.15 bar 

[A,I - 16] 99% ---- ---- ---- ---- 
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Como datos a utilizar en la simulación de la industria siderúrgica a lo largo de este TFM se van 
a tomar: 

Pureza N2: 99.0% 

Impurezas: 0.90% O2 + 0.1% Ar 

Condiciones a la salida: 185ºC y 57bar 

8.48.48.48.4 LLLLa tecnología ASUa tecnología ASUa tecnología ASUa tecnología ASU en el escenario global en el escenario global en el escenario global en el escenario global    

El volumen del mercado mundial es del orden de 25.000 M€ [A,I - 8], con un reparto 
aproximado del 35% EEUU y Canadá, Europa 33%, Japón 14%, Pacífico asiático 7%, Sudamérica 
6% y resto 5%. La demanda de oxígeno (unas 180.000 Tm/dia) va por delante de la de 
nitrógeno, con una tasa de crecimiento anual próxima al 8%, frente al 6%, para este último. Les 
sigue en importancia la venta de CO2, de hidrógeno y argón. La industria electrónica ha 
generado un segmento de mercado de gases ultrapuros (mín 99,9999%), que puede calificarse 
de "nueva tecnología" en este tradicional sector de la industria química. 

9999 Producción de la industria metalúrgicaProducción de la industria metalúrgicaProducción de la industria metalúrgicaProducción de la industria metalúrgica    

9.19.19.19.1 Producción de los BFProducción de los BFProducción de los BFProducción de los BF    

En la Tabla 7 se muestran datos de producciones anuales de diversos blast furnaces en 
operación en la actualidad y proyectos a futuro. Los datos se han obtenido en millones de 
toneladas de arrabio producidas al año. Para obtener la producción en [kg/s] hay que aplicar 
un factor de proporción equivalente a:       1 millón ton / año ≈  31.71 kg/s.  

Tabla 7 Producciones en BF comerciales. [millones de toneladas de arrabio/año] 

Producción Ref  Producción Ref  Producción Ref 

1.40 [A,I - 19]  5.90 [A,I - 21]  1.50 [A,I - 23] 

1.40 [A,I - 19]  2.60 [A,I - 22]  4.00 [A,I - 23]  

4.69 [A,I - 19]  2.46 [A,I - 23]  3.87 [A,I - 23] 

2.91 [A,I - 19]  2.46 [A,I - 23]  2.46 [A,I - 23] 

3.35 [A,I - 20]  1.54 [A,I - 23]  2.20 [A,I - 23] 

4.00 [A,I - 20]  3.20 [A,I - 23]  1.96 [A,I - 23]  

3.35 [A,I - 20]  1.50 [A,I - 23]  0.83 [A,I - 23] 

1.50 [A,I - 20]  3.25 [A,I - 23]  3.25 [A,I - 23] 

3.25 [A,I - 20]  3.50 [A,I - 23]  3.25 [A,I - 23] 

1.96 [A,I - 20]  2.24 [A,I - 23]  1.54 [A,I - 23] 

1.50 [A,I - 20]  2.20 [A,I - 23]  1.75 [A,I - 23] 

 

Se obtiene un valor promedio para la producción de un BF de 2.63 millones de toneladas de 
arrabio al año. Esto traducido a kilogramos por segundo se obtienen 83.37 kg/s de arrabio. De 
los balances de masa del Anexo III, en concreto de la Tabla 9 y Tabla 10, se deduce que la 
proporción arrabio/acero es de 860/1000. Por consiguiente la producción traducida a BOF es 
de 3.05 millones de toneladas de acero al año o 96.95 kg/s. 
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9.29.29.29.2 Producción en BOFProducción en BOFProducción en BOFProducción en BOF    

En la Tabla 8 se muestran datos de producciones anuales de diversos BOF en operación en la 
actualidad y proyectos a futuro. Los datos se han obtenido en millones de toneladas de acero 
producidas al año. La media es de 2.8 millones de toneladas al año o 88.99 kg/s. Si se ponderan 
los valores obtenidos de medias se tiene un dato de producción de 95.727 kg/s. 

Tabla 8 Producciones en BOF comerciales. [millones de toneladas de acero/año] 

Producción Ref 

2.40 [A,I - 24] 

2.10 [A,I - 24] 

1.10 [A,I - 24] 

3.00 [A,I - 24] 

3.60 [A,I - 24] 

4.64 [A,I - 24] 

10101010 Configuración de la industria siderúrgica de simulaciónConfiguración de la industria siderúrgica de simulaciónConfiguración de la industria siderúrgica de simulaciónConfiguración de la industria siderúrgica de simulación    

10.110.110.110.1 Diagramas de bloquesDiagramas de bloquesDiagramas de bloquesDiagramas de bloques    

En estos diagramas que comprenden desde la Fig. 16 hasta la Fig. 21 (ver páginas a 
continuación) se han plasmado todos los flujos, tanto de carácter másico como energético. De 
igual modo se han numerado cada componente de la industria siderúrgica del modo que indica 
la Tabla 9. 

Tabla 9 Numeración de los componentes de la industria siderúrgica 

Número de componente Componente 

1 Basic oxygen furnace BOF 

2 Blast furnace BF 

3 Coke oven 

4 Sinter plant 

5 ASU 

6 Compresión de aire 

 

Así mismo se han numerada cada una de las corrientes que aparecen en estos diagramas. De 
este modo se puede nombrar inequívocamente cada corriente con un doble índice [i;j], donde 
el primer índice ‘i’ denota el número correspondiente al flujo dentro de un componente de la 
industrial y el segundo índice ‘j’ hace referencia al componente de la industria según la Tabla 9. 
Por ejemplo, para referirse al carbón de entrada en el horno de coque, haciendo caso a la 
Tabla 9 y a la Fig. 18, el índice que le corresponde es el [7;3]. 

Ha habido unos flujos a los cuales se les han reservado un número en concreto ya que son 
flujos que por su naturaleza difieren con el resto. Este es el caso de la electricidad al que se le 
guarda el índice [1;j], el vapor energético que le corresponde el [2;j] y el vapor vivo que se le 
asigna el índice [3;j]. Estos tres flujos tienen carácter especial ya que la electricidad es un flujo 
energético puro y no tiene masa, y el caso de los vapores lo que ocurre es que para calcular la 
energía térmica se seguirá lo indicado en la Tabla 11 del Anexo II. 
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10.210.210.210.2 Diagramas de corrientesDiagramas de corrientesDiagramas de corrientesDiagramas de corrientes    

Estos seis diagramas (ver Fig. 22 … Fig. 27) se han incluido para ver de una manera visualmente 
sencilla las interrelaciones entre los diferentes componentes. De este modo se tiene una visión 
global mucho mejor definida. 

Tabla 10 Información del contenido de las Fig. 22 a la Fig. 27 

Fig nº Información 

Fig. 22 Flujos másicos más relevantes 

Fig. 23 Gases energéticos producidos/utilizados en la industria 

Fig. 24 Componentes con producción de CO2 

Fig. 25 Rutas del agua y de los vapores de agua 

Fig. 26 Reparto de la electricidad 

Fig. 27 Gases que aportan la ASU y la compresión de vapor 
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[1] Electricidad 

[4] O2              

[5] N2              

[6] Aire comprimido             

[7] Agua               

[8] Argón              

 

                

                (1)      [15] CO2 

[9] Arrabio               [16] CO  

[10] Chatarra            BASIC       

[11] Aditivos         OXYGEN        [17] ACERO 

FURNACE      

                

               [18] Retornos internos, Sínter 

               [19] Escorias 

                

[12] BF gas             

[13] COG              

[14] Gas natural              [20]interior [21]exterior BOF gas 

[2] Vapor               [3] 230 MJ 71.98 kg Vapor 

 

Fig. 16 Flujos input/output del Basic oxygen furnace (BOF)
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[1] Electricidad 

[4] O2              

[5] N2              

[6] Aire comprimido             

[7] Agua de refrigeración             [18] Agua de desecho 

[8] Agua de proceso              

 

[9] Sinterizado              

[10] Mena de hierro              

[11] Coque               (2)      [19] Retornos internos, Sínter 

[12] Retornos internos             [20] Retornos internos, Blast furnace 

[13] Aditivos            BLAST       

FURNACE      

[14] Petróleo                 [21] ARRABIO 

[15] Carbón               

                

                

                

[16] BF gas             

[17] BOF gas              

[2] Vapor               [22]exterior [23]interior BF gas 

 

Fig. 17 Flujos input/output del Blast furnace (BF)
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[1] Electricidad 

[4] Aire comprimido             

[5] Agua de proceso              [9] Agua de desecho 

[6] Agua de apagado              

 

                

               [10] CO2 

            (3)      [11] CO 

                

[7] Carbón         COKE       

OVEN         [12] COQUE 

                

                

               [13] Limpieza de gases 

                

                

[8] COG               [14]interior [15]exterior COG 

[2] Vapor               [3] Vapor 

 

Fig. 18 Flujos input/output del horno de coque 
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[1] Electricidad 

[4] Aire comprimido             

[5] Aire               

                

                

               [12] Escorias 

[6] Mena de hierro            (4)       

[7]BOF [8]BF Retornos internos               [13] SINTERIZADO 

[9] Aditivos        SINTER       

          PLANT       

             Limpieza  [14] Gases de extracción 

             de gases  [15] Limpieza de gases 

                

                

                

                

[10] Carbón              

[11] BF gas             

               [16] CO 

               [17] CO2 

 

Fig. 19 Flujos input/output de la planta de sinterizado 
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[1] Electricidad 

                

                

                

                

                

              (5)        [7] O2 

             [5] Corriente O2  (95.17%)   

[4] Aire de entrada            ASU        [8]Total [10]exterior [11]interior N2 

             [6] Corriente N2  (99%)   

                 [9]Total [12]exterior [13]interior Ar 

                

                

                

                

 

Fig. 20 Flujos input/output de la planta de separación de aire (ASU) 
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[1] Electricidad 

                

                

                

                

                

                       (6)       

                

[4] Aire de entrada        COMPRESIÓN      [5] Aire comprimido 

                 DE AIRE      

                

                

                

                

                

                

 

Fig. 21 Flujos input/output de la etapa de compresión de aire 



Eloy Pueyo Casabón, 2012 

Anexo I: INDUSTRIA DE LA SIDERURGIA 

 
 

- 100 - 

 

      

   Comp. aire        ASU 

            

                

                

                

                

      Coque     Arrabio       Acero 

    Coke     BF     BOF     

                    

                

         Retornos internos. BF        

                

                 

     Sinterizado           

   Sinter             

                

   Retornos internos. Sinter             

                

                

 

Fig. 22 Diagrama de flujos de los materiales más significativos 
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   Comp. aire        ASU 

            

                

 Gas natural              

                

                  BF gas 

                  BF gas          

  COG  Coke     BF    COG BOF    BOF gas 

                    

                  COG 

                 

        BOF gas        

  BF gas               
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Fig. 23 Diagrama de flujos de los gases energéticos de producción en la siderurgia 



Eloy Pueyo Casabón, 2012 

Anexo I: INDUSTRIA DE LA SIDERURGIA 

 
 

- 102 - 

 

      

   Comp. aire        ASU 

            

                

                

                

                 

                 

    Coke     BF     BOF   

                 

                 

                

                

                

                  CO2 

   Sinter             

                

                

                

                

 

Fig. 24 Diagrama de flujos de la producción de CO2 
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Fig. 25 Diagrama de flujos del vapor y del agua 
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Fig. 26 Diagramas de flujos de la electricidad 
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Fig. 27 Diagramas de flujo del aire comprimido, oxígeno, nitrógeno y argón 
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1111 IdentifiIdentifiIdentifiIdentificación de las corrientes gaseosas energéticascación de las corrientes gaseosas energéticascación de las corrientes gaseosas energéticascación de las corrientes gaseosas energéticas    

Antes de enumerar las diferentes propiedades de las corrientes gaseosas energéticas que se 

encuentran disponibles en una industria siderúrgica, es interesante e idóneo disponer de una 

breve identificación de las mismas. De esta manera se podrá hablar con propiedad de aquí en 

adelante para no equivocarse en la denominación de las citadas corrientes, así como tener 

definidos de la mejor manera posible el origen y el destino de estos flujos. Para este último 

propósito se pueden consultar las Fig 16 a Fig. 21 del Anexo I. 

A continuación se presentan las corrientes gaseosas energéticas que se van a considerar. La 

forma de ordenarlas se ha dispuesto de mayor a menor poder calorífico por cada metro cúbico 

normal. 

1.11.11.11.1 Gas naGas naGas naGas naturalturalturaltural    

El gas natural es un combustible procedente de formaciones geológicas y compuesto 

principalmente por metano [A,II - 1]. Como ya es sabido es uno de los combustibles fósiles más 

limpios y usados en la actualidad.  

Para la industria de la siderurgia, el gas natural será una materia prima energética a importar. 

Por lo tanto, la procedencia de esta corriente gaseosa no es de especial interés, aunque sí sus 

propiedades térmicas y su grado de limpieza y pureza. 

Su uso dentro de la industria siderúrgica se centra en procesos que necesitan de un 

combustible de alto poder calorífico así como de una corriente de gases de combustión 

limpios. Se usa en el BOF para el precalentamiento y como iniciador de la reacción que luego 

se mantendrá gracias a su carácter exotérmico. En el BF su uso se dirige principalmente al 

calentamiento de las stoves para la generación posterior del plasma de aire. En la planta de 

sinterizado, el uso de combustible gaseoso no está limitado pudiéndose usar cualquier tipo de 

combustibles disponibles.  

1.21.21.21.2 Coke oven gas (COG)Coke oven gas (COG)Coke oven gas (COG)Coke oven gas (COG)    

Este gas proviene de una oxidación parcial del carbón en la planta de coque. Ya que se ha 

producido la oxidación con defecto de oxígeno, lo que se encuentra es un gas con alto 

contenido en inquemados, principalmente de monóxido de carbono.  

Su procedencia, como se acaba de explicar, proviene de los hornos de coque por una reacción 

de combustión incompleta del carbón de coque. Por lo tanto se recoge exclusivamente en el 

horno de coque y de allí se distribuye al resto de procesos que lo demandan. 

El primer lugar en el cual tiene un uso el COG es en el BOF. Allí se quema junto con el gas 

natural para estabilizar la temperatura de la carga dentro del horno hasta que se consigue que 

las reacciones químicas exotérmicas mantengan la temperatura. En el BF se utiliza como 

agente reductor introduciéndolo por la parte baja del horno para que así pueda atravesar las 

diferentes capas de la carga del horno y poder reducir los elementos espurios. Se utiliza en el 

mismo horno de coque para calentar las paredes y permitir una transferencia de calor 

adecuada para que el coque pueda llevarse a cabo. Finalmente se puede usar en la planta de 

sinterizado para activar el proceso. 
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1.31.31.31.3 Basic oxygen furnace gas (BOF gas)Basic oxygen furnace gas (BOF gas)Basic oxygen furnace gas (BOF gas)Basic oxygen furnace gas (BOF gas)    

El gas proveniente del BOF se obtiene gracias a que se sopla oxígeno puro a través de las 

lanzas para que se oxiden los elementos que se desean quitar a través de las escorias. De este 

modo, mucho del carbono contenido en el arrabio se transforma en monóxido de carbono y en 

dióxido de carbono, produciendo un gas de interesante contenido calórico.  

Es un gas parecido al BF gas pero de mejores propiedades. Su uso se orienta a la reducción de 

los elementos indeseados en el BF junto con otros elementos reductores. El resto se puede 

usar para enriquecer el BF gas o para su quema posterior en otros lugares que requieran de 

energía térmica. 

1.41.41.41.4 Blast furnace gas (BF gas)Blast furnace gas (BF gas)Blast furnace gas (BF gas)Blast furnace gas (BF gas)    

Aunque se ha hablado de este gas en el apartado 4.2 del Anexo I, cabe recordar en este Anexo 

II: que el BF gas es obtenido en la parte superior del BF o tragante. Además también tiene 

trazas de azufre y cianuros, así como grandes cantidades de polvo arrastrado de las escorias. 

Lo que se sobreentiende que es el gas de peor composición y peor calidad térmica ya que se 

recoge después de que se haya hecho uso de los demás combustibles disponibles. 

La procedencia de este gas es en la parte superior o tragante del alto horno. Se recogen los 

efluvios de la carga del horno por la parte superior para posteriormente ser enfriada. Aunque 

en este trabajo fin de máster se va a considerar como una corriente separada, normalmente se 

procede a un enriquecimiento con los otros tipos de gases energéticos para mejorar la calidad 

térmica de éste gas. 

Su uso puede encontrarse en el BOF pero con una importancia pequeña en comparación con 

los otros combustibles. La reutilización en el mismo BF es más que importante para proceder a 

reducir los elementos extraños que puedan quedar y aportar el calor necesario. En el horno de 

coque su utilización es importante ya que tiene requerimientos no muy exigentes en cuanto a 

combustible a emplear. De nuevo en la planta de sinterizado su uso puede ser adecuado y su 

utilización es frecuente. 

1.51.51.51.5 Vapor energéticoVapor energéticoVapor energéticoVapor energético    

En ciertos componentes de la industria siderúrgica es necesario aportar energía térmica 

mediante una inyección de vapor. En otros procesos este vapor es necesario para que se 

produzca el reformado de diversas sustancias. Sea por un motivo o por otro, se utiliza vapor de 

agua. Este vapor de agua se deberá aportar mediante una caldera (planta siderúrgica aislada) o 

mediante diversas extracciones en las turbinas de vapor del ciclo de potencia (simbiosis con 

una central de potencia eléctrica). 

De igual manera, en alguno de los componentes de la industria siderúrgica se obtiene como 

output un vapor de alta calidad ya que se utiliza como refrigerante de los diversos 

componentes que conforman los reactores, hornos, procesos… 

Por último, en el caso de que se disponga de un sistema CCS que funcione mediante absorción 

química (aminas principalmente) al necesitar de un aporte considerable de energía térmica 

para permitir los ciclos de absorción/desorción del CO2 en los productos químicos, la manera 

de proceder será extraer esa energía térmica del vapor. 
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2222 Método para calcular las pMétodo para calcular las pMétodo para calcular las pMétodo para calcular las propiedadesropiedadesropiedadesropiedades    

Una vez identificados los puntos de generación y de distribución de las diferentes corrientes 

gaseosas que intervienen en mayor medida en la industria de la siderurgia, a continuación se 

va a tratar de caracterizar cada una de ellas en mayor profundidad. 

Para ello se va a proceder a obtener la composición elemental de cada tipo de corriente; es 

decir, proporcionar la composición en volumen de cada especie que interviene. Por ejemplo, 

encontrar el porcentaje de hidrógeno molecular, de monóxido de carbono, de metano, etc… 

2.12.12.12.1 Número de moles en la mezclaNúmero de moles en la mezclaNúmero de moles en la mezclaNúmero de moles en la mezcla    

A partir de estos datos se pueden obtener las propiedades que nos interesan. En primer lugar 

se debe obtener los moles contenidos en un metro cúbico normal, que lo tomaremos como 

unidad de medida de referencia. Esto se puede realizar mediante la ecuación eq.1: 

RT

PV
n =          (eq. 1) 

Donde n es el número de moles de cada sustancia, P es la presión (PCN=1atm), V es el volumen 

de cada sustancia, R es la constante de los gases que se ha tomado como 0.08205746 

atm·L/mol·K, y T la temperatura (TCN=273.15K). 

2.22.22.22.2 Pesos moleculares y energías de combustiónPesos moleculares y energías de combustiónPesos moleculares y energías de combustiónPesos moleculares y energías de combustión    

A continuación se deben disponer de varios datos para cada tipo de especie molecular que 

intervienen en las mezclas que componen las diferentes corrientes gaseosas. En el caso que 

trata este Anexo II: interesan los pesos moleculares [A,II - 1] y las energías de combustión de 

cada elemento. Las tablas Tabla 1 y Tabla 2 recogen los datos. 

Tabla 1 Pesos atómicos [g/mol] 

Hidrógeno Carbono Nitrógeno Oxígeno 

1,00797 12,01115 14,00670 15,99940 

 

Tabla 2 Pesos moleculares de los elementos y energías de combustión 

 Peso molecular Energía de combustión Calor específico * 

 Mr [g/mol] Ecomb [kJ/mol] Cp [kJ/kg·K] 

CO 28.1 283.0 1.049 

H2 2.02 285.8 14.42 

CO2 44.01 0.0 0.942 

N2 28.01 0.0 1.040 

CH4 16.04 887.1 2.191 

C2H6 30.07 1559.7 1.723 

C3H8 44.10 2219.2 1.642 

C4H10 58.12 2879.0 1.647 

* Ver tabla 1 del Anexo III 
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2.32.32.32.3 Poder calorífico, densidadPoder calorífico, densidadPoder calorífico, densidadPoder calorífico, densidad,,,, densidad energética densidad energética densidad energética densidad energética y calor específico y calor específico y calor específico y calor específico    

Para hallar el poder calorífico de cada molécula se procede como indica la ecuación eq.2. La 

densidad de cada sustancia se obtiene mediante la ecuación eq.3 y la densidad energética a 

través de la ecuación eq.4. El calor específico mediante la ecuación eq.5. 

1000

· ,∑
= moléculas

icombi En
PC   [MJ/Nm3]     (eq. 2) 

1000

· ,∑
= moléculas

iri Mn
ρ   [kg/Nm3]     (eq. 3) 

PC

ρε =    [kg/MJ]      (eq. 4) 

100

·% ,∑= ipi
p

C
C   [kJ/kg·K]     (eq. 5) 

2.42.42.42.4 Composición de cada tipo de combustibleComposición de cada tipo de combustibleComposición de cada tipo de combustibleComposición de cada tipo de combustible    

Este apartado trata de encontrar la composición en porcentaje de cada tipo de molécula que 

se encuentre contenida dentro de cada combustible. Por lo tanto, varias fuentes de 

información han sido consultadas. Todo ello con la finalidad de dar un contenido promedio 

para cada tipo de corriente gaseosa. 

2.4.1 Composición del gas natural 

Tabla 3 Composición elemental del gas natural [%] 

  Media  [A,II - 3] [A,II - 4] [A,II - 5] [A,II - 6] [A,II - 7] [A,II - 8] [A,II - 9] [A,II - 10] 

CO  0.0  0 0 0 0 0 0 0 0 0 0 0 

H2  0.0  0 0 0 0 0 0 0 0 0 0 0 

CO2  0.9  1 2.5 2.5 0.3 0.7 0.1 0.3 0.3 1 0.13 1.2 

N2  1.3  1 1 1 0.3 0.5 1.6 3.7 1.5 1.5 0.8 1.8 

CH4  90.9  92 82 92 91 86 96 90 96.5 93 89.5 92.3 

C2H6  5.4  5 12 3.5 7.5 12.5 1.8 4 1.4 3 5.6 3.6 

C3H8  1.1  1 2 0.7 0.8 0.3 0.3 2 0.3 1 2.9 0.8 

C4H10  0.3  0 0.5 0.3 0.1 0 0.2 0 0 0.5 1.07 0.3 

2.4.2 Composición del COG 

Tabla 4 Composición elemental del COG [%] 

  Media  
[A,II - 
11] 

[A,II - 
12] 

[A,II - 
13] 

[A,II - 
14] 

[A,II - 
15] 

[A,II - 
16] 

[A,II - 
17] 

[A,II - 
18] 

[A,II - 
19] 

[A,II - 
20] 

CO  5.9  6.3 5.5 5.5 6 6.2 6 7.3 4.6 6 5.8 

H2  57.4  62.9 63 51.9 55 51.5 61 58.1 58.2 55 57.2 

CO2  2.0  1.3 1.25 2 3 2 1.5 2.8 1.6 3 1.5 

N2  6.4  5.4 5.8 8.6 9 8.3 5.5 1.5 6.4 10 3.5 

CH4  26.9  24.1 23.5 32 25 29 26 30.3 25.2 25 29.2 

C2H6  0.9  0 0.85 0 1.2 1.9 0 0 2 0.5 2.5 

C3H8  0.5  0 0.1 0 0.8 1.1 0 0 2 0.5 0.3 

C4H10  0.0  0 0 0 0 0 0 0 0 0 0 



Eloy Pueyo Casabón, 2012 

Anexo II: PROPIEDADES DE LAS CORRIENTES GASEOSAS ENERGÉTICAS  

 - 114 - 

2.4.3 Composición del BOF gas 

Tabla 5 Composición elemental del BOF gas [%] 

  Media  [A,I – 3] [A,II - 21] [A,II - 11] 

CO  61.6  72.5 57 55.3 

H2  2.9  3.3 4.5 1 

CO2  17.0  16.2 20 14.7 

N2  18.1  8 18 28.4 

CH4  0.4  0 0.5 0.6 

C2H6  0.0  0 0 0 

C3H8  0.0  0 0 0 

C4H10  0.0  0 0 0 

 

2.4.4 Composición del BF gas 

Tabla 6 Composición elemental del BF gas [%] 

  Media  [A,I – 3] [A,II - 12] [A,II - 22] [A,II - 23] [A,II - 24] [A,II - 25] 

CO  24.3  24 24 25 22.4 22.5 22.1 27 30.3 20 25 25 

H2  2.9  3 4 2.5 2 3 5.2 3.5 6.3 0 0 2 

CO2  20  21 26 16 20.4 23 24.4 16 19.2 18 18 18 

N2  52.7  52 46 56 55.2 51.5 48.3 53 44.2 62 57 55 

CH4  0.1  0 0 0.5 0 0 0 0.5 0 0 0 0 

C2H6  0  0 0 0 0 0 0 0 0 0 0 0 

C3H8  0  0 0 0 0 0 0 0 0 0 0 0 

C4H10  0  0 0 0 0 0 0 0 0 0 0 0 

3333 Propiedades de las corrientes gaseosas energéticasPropiedades de las corrientes gaseosas energéticasPropiedades de las corrientes gaseosas energéticasPropiedades de las corrientes gaseosas energéticas    

Una vez que se tienen los datos de partida en la Tabla 2 y la composición elemental media de 

los diferentes combustibles en las tablas Tabla 4, Tabla 5 y Tabla 6; se pueden calcular las 

propiedades termo-físicas de estas corrientes gaseosas haciendo uso de las ecuaciones eq.2, 

eq.3, eq.4 y eq.5. Las siguientes tablas (Tabla 7, Tabla 8 y Tabla 9) recogen los resultados de 

aplicar la información anteriormente reseñada. 

3.13.13.13.1 Poder caloríficoPoder caloríficoPoder caloríficoPoder calorífico    

Tabla 7 Poder calorífico de las corrientes energéticas [MJ/Nm3] 

Gas natural COG BOF gas BF gas 

41.34 19.83 8.30 3.47 

3.23.23.23.2 DensidadDensidadDensidadDensidad    

Tabla 8 Densidad de las corrientes energéticas [kg/Nm3] 

Gas natural COG BOF gas BF gas 

0.789 0.459 1.335 1.358 
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3.33.33.33.3 Densidad energéticaDensidad energéticaDensidad energéticaDensidad energética    

Tabla 9 Densidad energética de las corrientes energéticas [kg/MJ] 

Gas natural COG BOF gas BF gas 

0.01909 0.02315 0.16080 0.39060 

3.43.43.43.4 Calor específicoCalor específicoCalor específicoCalor específico    

Tabla 10 Calor específico de las corrientes energéticas [kJ/kg·K] 

Gas natural COG BOF gas BF gas 

2.131 9.037 1.422 1.412 

4444 Propiedades del vaporPropiedades del vaporPropiedades del vaporPropiedades del vapor    

Este apartado está exclusivamente dedicado al vapor. En primer lugar decir, que como se va a 

disponer de un ciclo de potencia en la simbiosis con captura de CO2, entonces los aportes de 

vapor se harán mediante extracciones en las turbinas del ciclo de potencia. Los diversos flujos 

de vapor que se dispondrán en la industria de referencia serán los siguientes (ver ¡Error! No se 

encuentra el origen de la referencia.): 

· Vapor vivo: será el producido tanto en caldera auxiliar como en los flujos output de los 

diversos componentes de la industria siderúrgica. Se introducirá en la turbina de alta a 

400ºC y 50bar. 

· Vapor energético: este vapor provendrá de la extracción de vapor entre la turbina de 

alta y la turbina de media. Como condición se ha establecido que se opere a 250ºC. 

· Vapor de aporte al ciclo de absorción: se proveerá de vapor para el aporte energético 

de una extracción entre la turbina de media y la de baja. Se aportará a 130ºC que es la 

temperatura de degradación de los componentes químicos. 

· Vapor residual: se extrae la máxima energía posible del vapor restante. Las condiciones 

del vapor residual vienen impuestas por el condensador del ciclo de potencia y se ha 

fijado la presión del condensador a 0.06bares. 

Tabla 11 Puntos de operación del ciclo de potencia [A,II - 26] 

Tipo de 
vapor 

Presión Temperatura Entalpía 

 [bar] [ºC] [kJ/kg] 

Vapor vivo 50 400 3196 

Vapor 

energético 
9.635 250 2943 

Vapor de 

aminas 
2.7 130 2712 

Vapor 

residual 
0.06 36.17 2213 

 
Fig. 1 Esquema de extracciones en 
las turbinas del ciclo de potencia 
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1111 Breve introducciónBreve introducciónBreve introducciónBreve introducción    

Una vez obtenidos los datos de las corrientes gaseosas energéticas en el Anexo II, que por su 
singularidad se podían tratar de modo aparte al resto de inputs, se procederá a obtener los 
valores de las demás corrientes. 

Para empezar se obtendrán los valores de los calores específicos de cada sustancia, para luego 
intentar establecer las temperaturas de operación que se dan en los diferentes componentes 
que conforman la industria siderúrgica.  

Todo ello orientado a poder cerrar con éxito el balance de masa y el balance de energía tanto a 
nivel global como a nivel de componente. De esta manera se podrán fijar con más detalle los 
input/output de cada componente. 

2222 Calores especCalores especCalores especCalores específicosíficosíficosíficos    

A continuación en la Tabla 1 se encuentran reflejados los valores de los calores específicos de 
las diferentes sustancias que intervienen en los procesos de formación del acero en la industria 
siderúrgica. 

Tabla 1 Calores específicos de las sustancias 

Unidades Sustancia Valor [kJ/kg·K] Referencia 

[kJ/kg·K] Acero 0.5016 ---- [A,III - 1] 

[kJ/kg·K] Aditivos 0.4826 ---- [A,III - 4] 

[kJ/kg·K] Aire 1.012 ---- [A,III - 5] 

[kJ/kg·K] Alquitrán 1.47 ---- [A,III - 6] 

[kJ/kg·K] Argón 0.5203 ---- [A,III - 5] 

[kJ/kg·K] Butano 1.647 ---- [A,III - 11] 

[kJ/kg·K] CO2 0.942 ---- [A,III - 1] 

[kJ/kg·K] CO 1.049 ---- [A,III - 1] 

[kCal/kg·K] Escoria 0.19 0.7942 [A,III - 3] 

[kJ/kg·K] Etano 1.723 ---- [A,III - 11] 

[kJ/kg·K] Hierro 0.45 ---- [A,III - 5] 

[kJ/kg·K] H2 14.42 ---- [A,III - 9] 

[Btu/lb] Lime 0.20 0.4652 [A,III - 4] 

[kCal/kg·K] Limestone 0.217 0.7106 [A,III - 7] 

[kJ/kg·K] Metano 2.191 ---- [A,III - 10] 

[kCal/kg·K] Mineral de hierro 0.175 0.7315 [A,III - 7] 

[kJ/kg·K] (NH4)2SO4 3.81 ---- [A,III - 2] 

[kJ/kg·K] Nitrógeno 1.04 ---- [A,III - 5] 

[kJ/kg·K] Oxígeno 0.918 ---- [A,III - 5] 

[kCal/kg·K] Petróleo 0.50 2.09 [A,III - 7] 

[kCal/kg·K] Plomo 0.031 0.1296 [A,III - 7] 

[kJ/kg·K] Propano 1.642 ---- [A,III - 11] 

[kJ/kg·K] Vapor de agua 250ºC 1.991 ---- [A,III - 8] 

[kJ/kg·K] Vapor de agua 400ºC 2.468 ---- [A,III - 8] 

[kCal/kg·K] Zinc 0.09 0.3762 [A,III - 7] 
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Los valores representados anteriormente son para sustancias puras. Los valores que se ven 
reflejados a continuación son para mezclas de componentes. Se escogerán aquellos dos 
componentes mayoritarios de la mezcla para simplificar la obtención de un valor de calor 
específico de referencia. 

· Aditivos en el BOF. Es una mezcla al 48% de acero y al 52% de lime. Por lo tanto su 
calor específico tiene un valor de 0.4826 kJ/kg·K. 

· Retornos internos de cualquier tipo se considerarán escorias 

· Arrabio equivale a hierro 

· Aditivos en el BF y en la planta de sinterizado son equivalentes a limestone. 

· Limpieza de gases del horno de coque es una mezcla del 49% de alquitrán y 51% de 
(NH4)2SO4. Su valor de calor específico es igual a 2.66 kJ/kg·K. 

· Limpieza de gases en la planta de sinterizados formados por 74% de plomo y un 26% de 
zinc. El valor final de calor específico es de 0.192 kJ/kg·K. 

3333 Temperaturas de operaciónTemperaturas de operaciónTemperaturas de operaciónTemperaturas de operación    

3.13.13.13.1 Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)    

La Tabla 2 nos muestra los rangos de temperaturas de operación en el BOF así como las 
referencias consultadas para la obtención de dichos valores numéricos. 

Tabla 2 Temperaturas de los inputs/outputs del BOF 

Tipo de input/output Temperatura [ºC] Referencia 

Gases de escape 600-700 [A,III - 20] 

Residuos 350-500 [A,III - 20] 

Acero 411-832 / 798-1124 [A,III - 21] 

Temperatura de CO2 650-700 [A,III - 22] 

Escorias 290 [A,III - 23] 

Aire insuflado u O2 550-900 [A,III - 24] 

Arrabio 1200 [A,III - 25] 

3.23.23.23.2 Blast furnace (BF)Blast furnace (BF)Blast furnace (BF)Blast furnace (BF)    

El alto horno al ser uno de los componentes más conocidos, es de mayor facilidad encontrar 
los datos de temperaturas de operación. La Tabla 3 contiene la información del BF. 

Tabla 3 Temperaturas de los inputs/outputs del BF 

Tipo de input/output Temperatura [ºC] Referencia 

Coque 200 

Gases de escape 1100 

Escoria 1325-1500 

Gases del blast 1200 

[A,III - 12] 

Blast 1070-1200 

Oxígeno 25 

BF gas 900 

[A,III - 13] 

Agua de refrigeración 30 

Blast 1200 

[A,III - 14] 
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Agua de desecho <80 

Blast <1400 

Gas de extracción 1200 

Agua de entrada 40 

Escoria 1150 

[A,III - 15] 

Aire de los stoves 1200 

Aire combustión 25 

Coque 25 

Carbón 60 

Gas natural 25 

BF gas 179 

Arrabio 1500 

Escoria 1561 

[A,III - 16] 

Carbón 45 

Aire comprimido 327 
[A,III - 17] 

3.33.33.33.3 Coke oven (CO)Coke oven (CO)Coke oven (CO)Coke oven (CO)    

Tabla 4 Temperaturas de los inputs/outputs del CO 

Tipo de input/output Temperatura [ºC] Referencia 

Carbón 25 [A,III - 18] 

Gases de escape 90 [A,III - 19] 

3.43.43.43.4 Sinter plantSinter plantSinter plantSinter plant    

Tabla 5 Temperaturas de los inputs/outputs de sinter plant 

Tipo de input/output Temperatura [ºC] Referencia 

Sinterizado 250-400 [A,III - 26] 

Elementos del ESP 160 [A,III - 27] 

Elementos del ESP 130 [A,III - 28]  

Gases de escape 80-130 [A,III - 29] 

3.53.53.53.5 ASUASUASUASU    

Tabla 6 Temperaturas de los inputs/outputs de la ASU 

Tipo de input/output Temperatura [ºC] Referencia 

Aire de entrada 25 

Oxígeno 185 

Nitrógeno 185 

Argón 185 

Ver apartado 
8.3. del 
Anexo I 

3.63.63.63.6 Compresión de aireCompresión de aireCompresión de aireCompresión de aire    

Tabla 7 Temperaturas de los inputs/outputs de la compresión de aire 

Tipo de input/output Temperatura [ºC] Referencia 

Aire de entrada 25 Treferencia 

Aire comprimido 650 TBF,aire.comprimido 
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4444 BalanceBalanceBalanceBalancessss de masa de masa de masa de masa    

A continuación se van a plasmar los balances de masa componente a componente que 
conforman la industria siderúrgica. Para ello se debe comparar la totalidad de masa que entra 
(inputs) con la totalidad de masa que sale (outputs) de cada componente (BOF, BF, Coke oven 
y planta de sinterizado) (eq. 1). Los apartados del 4.1 al 4.4 muestran más detalladamente 
todos los inputs/outputs de los que se componen cada componente. La Tabla 8 Balance de 
masa componente a componente resume los valores desarrollados en los siguientes apartados 
y se puede comprobar fácilmente que se cumple el balance de masa. 

∑∑ =
outputsinputs

MM         (eq. 1) 

Tabla 8 Balance de masa componente a componente 

Componente Input Output 

Basic oxygen furnace 1451.8 kg 1451.8 kg 

Blast furnace 4239.2 kg 4239.2 kg 

Coke oven 750.8 kg 750.8 kg 

Sinter plant 2143.3 kg 2143.3 kg 

ASU 736.2 736.2 

Compresión de aire 83.79 83.79 

4.14.14.14.1 Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)    

Tabla 9 Lista detallada de los inputs y sus correspondientes masas en el BOF 

Inputs Masa [kg] 

Oxígeno * 85.66 

Nitrógeno * 12.5 

Aire comprimido * 21.97 

Agua 82.65 

Argón * 1.6 

Arrabio 860 

Chatarra 220 

Aditivos 119 

BF gas ** 3.79 

COG ** 9.26 

Gas natural * 7.39 

Vapor ** 27.86 

* Correspondiente a 60Nm
3
 de O2, 10 Nm

3
 de N2, 17 Nm

3
 de 

aire comprimido, 0.9 Nm
3
 de Ar 

** Correspondiente a 9,7 MJt de BFgas, 400MJt de COG, 387 
MJt de GN y 82MJt de vapor 

Tabla 10 Lista detallada de los outputs y sus correspondientes masas en el BOF 

Outputs Masa [kg] 

CO2 123.12 

CO 5.20 

Acero 1000 

Retornos internos. Sinter 84.80 

Escorias 82.20 
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BOF gas * 84.47 

Vapor * 71.98 

* Correspondiente a 525MJt de BOF gas y 230 MJt de vapor 

4.24.24.24.2 Blast furnace (BF)Blast furnace (BF)Blast furnace (BF)Blast furnace (BF)    

Tabla 11 Lista detallada de los inputs y sus correspondientes masas en el BF 

Inputs Masa [kg] 

Oxígeno * 79.23 

Nitrógeno * 73.11 

Aire comprimido * 15.12 

Agua de refrigeración 320 

Agua de proceso 1444.02 

Sinterizado 935 

Mena de hierro 155 

Coque 360 

Retornos internos 17.2 

Aditivos 22.1 

Petróleo 25.8 

Carbón 140 

BF gas ** 535.4 

BOF gas ** 84.4 

Vapor ** 33.47 

* Correspondiente a 55.5Nm
3
 de O2, 58.5 Nm

3
 de N2, 11.7 Nm

3
 

de aire comprimido 
** Correspondiente a 1368 MJt de BFgas, 525 MJt de BOF gas y 

98.5MJt de vapor 

Tabla 12 Lista detallada de los outputs y sus correspondientes masas en el BF 

Outputs Masa [kg] 

Agua de desecho 1555.9 

Retornos internos. Sinter 220.6 

Retornos internos. BF 17.2 

Arrabio 860 

BF gas * 1585.3 

* Correspondiente a 4058 MJt de BFgas 

4.34.34.34.3 Coke oven (CO)Coke oven (CO)Coke oven (CO)Coke oven (CO)    

Tabla 13 Lista detallada de los inputs y sus correspondientes masas en el coke 

oven 

Inputs Masa [kg] 

Aire comprimido * 18.61 

Agua de proceso 200 

Agua de apagado 19.46 

Carbón 465 

COG ** 29.17 

Vapor ** 18.55 

* Correspondiente a 14.4 Nm
3
 de aire comprimido 

** Correspondiente a 1260 MJt de COG y 54.6MJt de vapor 
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Tabla 14 Lista detallada de los outputs y sus correspondientes masas en el coke 

oven 

Outputs Masa [kg] 

Agua de desecho 200 

CO2 3.38 

CO 15.75 

Coque 360 

Limpieza de gases 37.5 

COG * 67.5 

Vapor * 66.66 

* Correspondiente a 2916MJt de COG y 213MJt de vapor 

4.44.44.44.4 Sinter plantSinter plantSinter plantSinter plant    

Tabla 15 Lista detallada de los inputs y sus correspondientes masas en la planta 

de sinterizado 

Inputs Masa [kg] 

Aire comprimido * 28.1 

Aire 776 

Mena de hierro 760 

Retornos internos 305.3 

Aditivos 185.5 

Carbón ** 48.13 

BF gas ** 40.19 

* Correspondiente a 21.75Nm
3
 de de aire comprimido 

** Correspondiente a 1444 MJt de carbón y 103 MJt de BF gas 

 

Tabla 16 Lista detallada de los outputs y sus correspondientes masas en la 

planta de sinterizado 

Outputs Masa [kg] 

Escorias 12.25 

Sinterizado 935 

Gases de extracción 804.1 

Limpieza de gases 14.88 

CO 53.48 

CO2 323.59 

4.54.54.54.5 ASUASUASUASU    

Tabla 17 Lista detallada de los inputs y sus correspondientes masas en la ASU 

Inputs Masa [kg] 

Aire de entrada 736.2 

 

Tabla 18 Lista detallada de los outputs y sus correspondientes masas en la ASU 

Outputs Masa [kg] 

Oxígeno 164.9 

Nitrógeno 564.8 

Argón 6.55 
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4.64.64.64.6 Compresión de aireCompresión de aireCompresión de aireCompresión de aire    

Tabla 19 Lista detallada de los inputs y sus correspondientes masas en la etapa 

de compresión de aire 

Inputs Masa [kg] 

Aire de entrada 83.79 

 

Tabla 20 Lista detallada de los outputs y sus correspondientes masas en la etapa 

de compresión de aire 

Outputs Masa [kg] 

Aire comprimido 83.79 

4.74.74.74.7 Balance de masa a la planta globalBalance de masa a la planta globalBalance de masa a la planta globalBalance de masa a la planta global    

En este apartado se hace un balance de masa (BM) pero englobando todos los procesos que 
intervienen en la fabricación del acero. De este modo, como inputs se contarán aquellos 
materiales, electricidad, gases, etc que provengan del exterior de la planta. Más comúnmente 
denominados materias primas. En el lado contrario se encuentran los productos o residuos, 
que son aquellos materiales que abandonan la planta siderúrgica como producto final o como 
sustancia a desprenderse o desechos. La Tabla 21 contiene el resumen del balance de masa 
realizado. La eq. 2 resume de forma matemática el proceso. 

∑∑ −=
plantainputsplantaoutputs

MMBM
__

       (eq. 2) 

Tabla 21 Balance de masa global descompuesto en los diferentes componentes 

 Inputs Outputs  

Basic oxygen furnace 1451.8 kg 1451.8 kg  

Blast furnace 4239.2 kg 4239.2 kg  

Coke oven 750.8 kg 750.8 kg  

Sinter plant 2143.3 kg 2143.3 kg  

ASU 736.2 kg 736.2 kg  

Compresión de aire 83.79 kg 83.79 kg  

   Balance de masa 

Total 9405.09 9405.09 +0.007731 kg 

5555 BalanceBalanceBalanceBalancessss de energía de energía de energía de energía    

Del mismo modo que se ha realizado el balance de masa componente a componente y a la 
planta global, se realiza un balance de energía. En este caso se van a emplear tanto los datos 
de masa, calores específicos (ver apartado 2) y temperaturas (ver apartado 3) de cada 
input/output de cada componente de la industria siderúrgica. Por lo tanto, la energía térmica 
asociada a cada flujo de materia se puede obtener mediante la eq. 3. Cabe destacar, que en 
cuanto a los combustibles gaseosos, se deben tratar de igual manera que cualquier otro flujo 
de masa. Es decir, la energía térmica de estos combustibles gaseosos es debido a que poseen 
una temperatura distinta a la temperatura de referencia, y en ningún caso debe relacionarse 
con la energía liberada por la combustión.  
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)·(· ,, refiipiitérmica TTcmE −=        (eq. 3) 

Siendo Tref la temperatura de referencia y se tomará igual a 25ºC que es la temperatura a 
condiciones normales. 

Tabla 22 Balance de energía componente a componente 

Componente Input Output 

Basic oxygen furnace 817 MJ 817 MJ 

Blast furnace 1407.3 MJ 1407.3 MJ 

Coke oven 347.8 MJ 347.7 MJ 

Sinter plant 168.3 MJ 168.4 MJ 

ASU 118.72 MJ 118.72 MJ 

Compresión de aire 55.36 MJ 55.36 MJ 

5.15.15.15.1 Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)Basic oxygen furnace (BOF)    

Tabla 23 Lista detallada de los inputs: masa, cp, temperatura y energía en el BOF 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Oxígeno 85.66 0.942 725 55.0 

Nitrógeno 12.5 1.045 725 9.1 

Aire comprimido 21.97 1.012 650 13.9 

Agua 82.65 4.180 25 0 

Argón 1.6 0.520 728 0.6 

Arrabio 860 0.450 1250 474.1 

Chatarra 220 0.450 25 0 

Aditivos 119 0.483 25 0 

BF gas 3.79 1.407 160 0.72 

COG 9.26 9.035 80 4.6 

Gas natural 7.39 2.131 25 0 

Vapor 27.86 ---- ---- 82 

Electricidad ---- ---- ---- 177.9 

 

Tabla 24 Lista detallada de los outputs: masa, cp, temperatura y energía en el 

BOF 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

CO2 123.12 0.942 660 73.6 

CO 5.20 1.049 660 3.5 

Acero 1000 0.500 800 388.74 

Retornos internos. Sinter 84.80 0.794 380 23.9 

Escorias 82.20 0.794 380 23.2 

BOF gas 84.47 1.426 650 74.98 

Vapor 71.98 ---- ---- 230 

 

5.25.25.25.2 Blast furnace (BF)Blast furnace (BF)Blast furnace (BF)Blast furnace (BF)    

Tabla 25 Lista detallada de los inputs: masa, cp, temperatura y energía en el BF 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Oxígeno 79.23 0.942 327 21.96 

Nitrógeno 73.11 1.045 327 22.96 
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Aire comprimido 15.12 1.012 326.9 4.6 

Agua de refrigeración 320 4.180 70 60.2 

Agua de proceso 1444.02 4.180 90 392.34 

Sinterizado 935 0.482 200 78.9 

Mena de hierro 155 0.731 25 0 

Coque 360 0.836 180 46.65 

Retornos internos 17.2 0.794 800 10.6 

Aditivos 22.1 0.907 25 0 

Petróleo 25.8 2.090 25 0 

Carbón 140 0.835 60 4.1 

BF gas 535.4 1.407 160 101.8 

BOF gas 84.4 1.426 550 62.9 

Vapor 33.47 ---- ---- 98.5 

Electricidad ---- ---- ---- 501.93 

 

Tabla 26 Lista detallada de los outputs: masa, cp, temperatura y energía en el BF 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Agua de desecho 1555.9 4.180 90 422.7 

Retornos internos. Sinter 220.6 0.794 1200 205.8 

Retornos internos. BF 17.2 0.794 1200 16 

Arrabio 860 0.450 1100 416 

BF gas 1585.3 1.407 180 346.8 

5.35.35.35.3 Coke oven (CO)Coke oven (CO)Coke oven (CO)Coke oven (CO)    

Tabla 27 Lista detallada de los inputs: masa, cp, temperatura y energía en el 

coke oven 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire comprimido 18.61 1.012 326.9 5.7 

Agua de proceso 200 4.180 60 29.3 

Agua de apagado 19.46 4.180 25 0 

Carbón 465 0.835 25 0 

COG 29.17 9.035 80 14.5 

Vapor 18.55 ---- ---- 54 

Electricidad ---- ---- ---- 243.66 

 

Tabla 28 Lista detallada de los outputs: masa, cp, temperatura y energía en el 

coke oven 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Agua de desecho 200 4.180 70 37.6 

CO2 3.38 0.942 90 0.2 

CO 15.75 1.049 90 1.1 

Coque 360 0.836 190 49.7 

Limpieza de gases 37.5 2.660 90 6.5 

COG 67.5 9.035 90 39.7 

Vapor 66.66 ---- ---- 213 
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5.45.45.45.4 Sinter plantSinter plantSinter plantSinter plant    

Tabla 29 Lista detallada de los inputs: masa, cp, temperatura y energía en la 

planta de sinterizado 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire comprimido 28.1 1.012 327 8.6 

Aire 776 1.012 25 0 

Mena de hierro 760 0.731 25 0 

Retornos internos 305.3 0.794 375 84.9 

Aditivos 185.5 0.907 25 0 

Carbón 48.13 0.835 60.2 1.4 

BF gas 40.19 1.407 160 7.7 

Electricidad ---- ---- ---- 65.8 

 

Tabla 30 Lista detallada de los outputs: masa, cp, temperatura y energía en la 

planta de sinterizado 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Escorias 12.25 0.794 250 2.2 

Sinterizado 935 0.482 250 101.4 

Gases de extracción 804.1 1.012 80 44.8 

Limpieza de gases 14.88 0.192 80 0.2 

CO 53.48 1.049 80 3.1 

CO2 323.59 0.942 80 16.8 

5.55.55.55.5 ASUASUASUASU    

Tabla 31 Lista detallada de los inputs: masa, cp, temperatura y energía en ASU 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire de entrada 736.2 1.012 25 0 

Electricidad ---- ---- ---- 118.7 

 

Tabla 32 Lista detallada de los outputs: masa, cp, temperatura y energía en ASU 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Oxígeno 164.9 0.918 185 24.21 

Nitrógeno 564.8 1.040 185 96.96 

Argón 6.55 0.5203 185 0.54 

5.65.65.65.6 Compresión de aireCompresión de aireCompresión de aireCompresión de aire    

Tabla 33 Lista detallada de los inputs: masa, cp, temperatura y energía en la 

etapa de compresión de aire 

Inputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire de entrada 83.79 1.012 25 0 

Electricidad ---- ---- ---- 55.36 
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Tabla 34 Lista detallada de los outputs: masa, cp, temperatura y energía en la 

etapa de compresión de aire 

Outputs Masa [kg] Cp [kJ/kg·K] T [ºC] E [MJ] 

Aire comprimido 83.79 1.057 650 55.36 

5.75.75.75.7 Balance de Balance de Balance de Balance de energíaenergíaenergíaenergía a la planta global a la planta global a la planta global a la planta global    

Igual que se ha procedido en el apartado 4.5, en esta ocasión se debe realizar el balance de 
energía a la totalidad de la planta. Por lo tanto como inputs se tendrán los flujos másicos que 
entran en la planta desde el exterior de la misma (materias primas) y como outputs los flujos 
que salen hacia el exterior (productos y/o desechos). Para realizar el balance de energía 
correctamente también se deben contabilizar los aportes energéticos desde el exterior (en 
este caso la electricidad) como las pérdidas hacia el exterior (en este caso térmicas ya que hay 
flujos internos que se enfrían). La eq. 4 resume la idea en una breve igualdad. La Tabla 35 
recoge el balance de energía componente a componente y el global. 











+−









= ∑∑ aporte

plantainputsplantaoutputs

EEEBE
__

    (eq. 4) 

Tabla 35 Balance de energía global descompuesto en los diferentes 

componentes 

 Inputs Aporte Outputs  

Basic oxygen furnace 640.02 177.9 817.92  

Blast furnace 905.60 501.93 1408  

Coke oven 104.04 243.66 347.70  

Sinter plant 102.55 65.8 168.35  

ASU 0 118.72 118.72  

Compresión de aire 0 55.36 55.36  

    Balance de energía 

Total 1752.22 1163.37 2916.06 +1.74 kJ 
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1111 Parámetros de funcionamiento de la calderaParámetros de funcionamiento de la calderaParámetros de funcionamiento de la calderaParámetros de funcionamiento de la caldera    

1.11.11.11.1 Rendimiento térmico de la calderaRendimiento térmico de la calderaRendimiento térmico de la calderaRendimiento térmico de la caldera    

En primer lugar se tiene que obtener un valor de uno de los parámetros más importantes del 

funcionamiento de una caldera: su rendimiento térmico. Se define como la energía que 

transporta el fluido caloportador a la salida de la caldera dividido entre la potencia que entra 

en la caldera en forma de combustible. En este caso se va a utilizar como combustible el 

carbón. Tras recopilar diversos valores de rendimiento de calderas de carbón pulverizados en 

la bibliografía científica (ver Tabla 1), se ha podido deducir un valor medio de rendimiento 

térmico promedio que se va a escoger como: 

%25.91, =calderatη  

Tabla 1 Potencia y rendimiento térmico de calderas según bibliografía 

Rendimiento [%] Potencia [MW] Ref 

89.73 160.35 [A,IV - 1] 

93.08 221.57 [A,IV - 1] 

96.98 301.17 [A,IV - 1] 

92.87 300 [A,IV - 2] 

91.65 300 [A,IV - 3] 

91.08 300 [A,IV - 4] 

90.17 300 [A,IV - 5] 

90.37 120 [A,IV - 6] 

91.13 160 [A,IV - 6] 

92.45 190 [A,IV - 6] 

89.33 150 [A,IV - 7] 

88.42 250 [A,IV - 7] 

86.53 300 [A,IV - 7] 

93.66 660 [A,IV - 8] 

1.21.21.21.2 Ratio de alimentación de carbónRatio de alimentación de carbónRatio de alimentación de carbónRatio de alimentación de carbón    

En este apartado se ha recopilado una serie de valores que nos indican los ratios de 

alimentación de carbón a las calderas, tanto de las referencias anteriores como nuevas. Todos 

los datos se exponen en la Tabla 2. Se va ha obtener un valor que no dependa de la potencia 

de la caldera, por lo tanto obtendremos el parámetro ratio de alimentación de referencia 

como indica la (eq. 1) 

Potencia

Ratio
Ratio carbóna

referenciacarbóna
.lim

..lim =      (eq. 1) 

Como valor promedio del ratio de alimentación de carbón referencia se tiene un valor de: 

MW

skg
Ratio referenciacarbóna

/
1597.0..lim =  

Aunque es un valor muy volátil ya que los máximos y mínimos obtenidos han sido de 0.0918 y 

0.2714 kg/s·MW. 
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Tabla 2 Ratios de alimentación de carbón a las calderas 

Ratio alimentación Unidades Potencia [MW] Ref 

119.00 [ton/h] 160.35 [A,IV - 1] 

155.34 [ton/h] 221.57 [A,IV - 1] 

193.30 [ton/h] 301.17 [A,IV - 1] 

39.20 [kg/s] 300 [A,IV - 2] 

72.38 [kg/s] 300 [A,IV - 3] 

81.42 [kg/s] 300 [A,IV - 5] 

73.64 [ton/h] 120 [A,IV - 6] 

105.48 [ton/h] 160 [A,IV - 6] 

112.22 [ton/h] 190 [A,IV - 6] 

79.3 [ton/h] 150 [A,IV - 7] 

121.7 [ton/h] 250 [A,IV - 7] 

146 [ton/h] 300 [A,IV - 7] 

22.25 [ton/h] 65 [A,IV - 9] 

28.73 [ton/h] 80 [A,IV - 9] 

21.15 [ton/h] 64 [A,IV - 9] 

119.4 [ton/h] 300 [A,IV - 10] 

1.31.31.31.3 Flujo de aire de combustiónFlujo de aire de combustiónFlujo de aire de combustiónFlujo de aire de combustión    

Con esta variable se está intentando buscar un valor de aire de entrada para permitir la 

combustión. Se contabiliza tanto el aire primario como el secundario ya que lo que interesa es 

la cantidad de aire que entra en la caldera (ver Tabla 3). Como ocurre en el apartado de más 

atrás, es difícil obtener un buen valor de este ratio, pero se tomará el valor promedio y se 

indicarán los máximos y mínimos observados. El ratio buscado, sin tener en cuenta la potencia 

de la caldera es el indicado por la (eq. 2). 

Potencia

Ratio
Ratio airea

referenciaairea
.lim

..lim =       (eq. 2) 

Como valor promedio del ratio de alimentación de aire de referencia se tiene un valor de: 

MW

skg
Ratio referenciaairea

/
1819.1..lim =  

Aunque es un valor volátil. los máximos y mínimos han sido de 0.7796 y 1.6512 kg/s·MW. 

Tabla 3 Cantidad de aire de alimentación a las calderas 

Alimentación Unidades Potencia [MW] Ref 

675.35 [ton/h] 160.35 [A,IV - 1] 

971.64 [ton/h] 221.57 [A,IV - 1] 

1149.16 [ton/h] 301.17 [A,IV - 1] 

365.58 [kg/s] 300 [A,IV - 2] 

412.9 [ton/h] 120 [A,IV - 6] 

491.2 [ton/h] 160 [A,IV - 6] 

533.3 [ton/h] 190 [A,IV - 6] 

152.6 [Nm
3
/s] 150 [A,IV - 7] 

213.8 [Nm
3
/s] 250 [A,IV - 7] 

259.1 [Nm
3
/s] 300 [A,IV - 7] 

338600 [kg/h] 65 [A,IV - 9] 

475550 [kg/h] 80 [A,IV - 9] 

340450 [kg/h] 64 [A,IV - 9] 
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1.41.41.41.4 Ratio de emisión de CORatio de emisión de CORatio de emisión de CORatio de emisión de CO2222    

Ya que el ratio de emisión de CO2 es muy dependiente del tipo de carbón utilizado, se va a 

proceder como en los apartados anteriores y se busca en la bibliografía existente ratios de 

emisión de CO2 para calderas reales (ver Tabla 4). De este modo se podrá calcular el ratio de 

emisión de CO2 de referencia para que el valor no dependa de la potencia de la caldera. El ratio 

buscado es el indicado por la (eq. 3). 

Potencia

Ratio
Ratio COemisión

referenciaCOemisión
2.

.2. =      (eq. 3) 

Como valor promedio del ratio de emisión de CO2 de referencia se tiene un valor de: 

MW

skg
Ratio referenciaCOemisió

/
2121.0.2. =  

Aunque es un valor muy volátil ya que los máximos y mínimos obtenidos han sido de 0.2752 y 

0.1179 kg/s·MW. 

Tabla 4 Ratio de emisión de CO2 de calderas de carbón 

Ratio de emisión Unidades Potencia [MW] Ref 

81.84 [kg/s] 300 [A,IV - 3] 

82.58 [kg/s] 300 [A,IV - 5] 

3157.2 [kton/año] 600 [A,IV - 19] 

2144.6 [kton/año] 320 [A,IV - 19] 

1987.1 [kton/año] 300 [A,IV - 19] 

2232.2 [kton/año] 600 [A,IV - 19] 

1339.3 [kton/año] 200 [A,IV - 19] 

1136.7 [kton/año] 200 [A,IV - 19] 

1127.4 [kton/año] 200 [A,IV - 19] 

1750.6 [kton/año] 300 [A,IV - 19] 

2388.4 [kton/año] 300 [A,IV - 19] 

2346.2 [kton/año] 300 [A,IV - 19] 

1826.2 [kton/año] 300 [A,IV - 19] 

158.82 [kg/s] 627 [A,IV - 20] 

136.7 [kg/s] 610 [A,IV - 20] 

13.29 [¿] 500 [A,IV - 21] 

2222 Turbina de gasTurbina de gasTurbina de gasTurbina de gas    

La inclusión de una turbina de gas en la industria de la siderurgia que se está planteando es 

debido a que hay un exceso de producción de gases con potencial para producir energía, tanto 

térmica como eléctrica. Ya que no es un elemento muy determinante a la hora de proponer la 

integración de la siderurgia con el sistema CCS, se va a tratar la turbina de gas sin entrar en 

especificaciones excesivas. Como se suele decir, se considerará a la turbina de gas como una 

‘caja negra’ de la que tenemos que obtener los parámetros más significativos para 

caracterizarla. 
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2.12.12.12.1 Caracterización de la turCaracterización de la turCaracterización de la turCaracterización de la turbina de gasbina de gasbina de gasbina de gas    

En primer lugar se debe buscar en catálogos comerciales de las empresas suministradoras las 

características de las turbinas. Para comenzar a acotar la búsqueda es necesario el rango de 

potencias en la que trabajará la turbina. Este rango de potencia nos lo da la disposición de los 

gases energéticos de la industria, a saber: BF gas, COG y BOF gas. Al haber fijado un ratio de 

producción medio ponderado (ver apartado 9 del anexo I) se puede extraer la cantidad de 

energía que nos pueden proporcionar los gases. Este valor es equivalente a 367MWt. Ya que 

los valores típicos del rendimiento de las turbinas de gas pueden oscilar entre los valores del 

30% hasta el 40%, entonces hay que buscar turbinas de gas que produzcan del orden de 110-

146 MWe.  

2.22.22.22.2 EEEEleccileccileccilección de la turbina de gas y ón de la turbina de gas y ón de la turbina de gas y ón de la turbina de gas y especificacionesespecificacionesespecificacionesespecificaciones    

Partiendo del rango de partida de potencia de la turbina de gas de entre 110 MW hasta 146 

MW eléctricos, se dispone de una turbina dentro de ese rango. Al consultar varios catálogos de 

suministradores de turbinas de gas comerciales como pueden ser Siemens [A,IV - 12], Alstom 

[A,IV - 13], AnsaldoEnergía [A,IV - 14], General Electrics, Rolls Royce… finalmente se ha 

decantado por escoger una turbina de gas de la marca Mitsubishi Heavy Industries. 

Concretamente el modelo M701DA (ver Fig. 1). Las características de esta turbina de gas [A,IV - 

11] son las reflejadas en la Tabla 5. 

 

Tabla 5 Propiedades técnicas de la turbina de gas Mitsubishi M701DA 

Potencia Rendimiento Heat rate Frecuencia rpm Ratio presión 

[MWe] [%] [kJ/kWh] [Hz] [rpm] [-] 

144 34.8 10350 50 3000 14 

Masa gases 
extracción 

Temperatura 
gases extracción 

Emisiones NOx 
Tiempo de 
encendido 

Peso Dimensiones 

[kg/s] [ºC] [ppmv] [min] [ton] [m] 

453 542 25 30 200 13x5x5 

 

 

Fig. 1 Corte de la turbina de gas M701DA 
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3333 Turbina de vaporTurbina de vaporTurbina de vaporTurbina de vapor    

3.13.13.13.1 Caracterización de laCaracterización de laCaracterización de laCaracterización de la turbina de vapor turbina de vapor turbina de vapor turbina de vapor    

Ya que las condiciones de operación de la turbina de vapor o del tren de turbinas de vapor que 

se deberá disponer en la central de potencia para obtener un ciclo combinado no están muy 

definidas, las características de las turbinas de vapor deberán ser lo más amplias posibles. Las 

condiciones de operación dependerán en gran manera de la turbina de gas de cabecera, del 

recuperador de calor, de las demandas y aportes de la siderurgia, etc… De este modo, en los 

siguientes apartados se incluyen el rango de turbinas de vapor que nos ofrecen 3 de los 

grandes productores de turbinas de vapor a nivel mundial. Seguramente entre ellas se 

encuentren en un buen grado de aproximación una o varias turbinas que se adecuen al 

funcionamiento de las simulaciones que se harán a posteriori. 

3.23.23.23.2 Catálogo SiemensCatálogo SiemensCatálogo SiemensCatálogo Siemens    

Las siguientes turbinas de vapor se encuentran descritas en [A,IV - 15] y Tabla 6. 

Tabla 6 Turbinas comerciales de la casa Siemens 

Modelo Potencia Presión Temperatura rpm 

 [MW] [bar] [ºC] [rpm] 

SST-100 8.5 65 480 7500 

SST-150 20 103 505 13300 

SST-200 10 110 520 ---- 

SST-300 50 120 520 12000 

SST-400 65 140 540 8000 

SST-500 100 30 400 15000 

SST-600 100 140 540 15000 

SST-700 175 165 585 13200 

SST-800 150 140 540 3600 

SST-900 250 165 585 13200 

 
Fig. 2 Turbina de vapor SST-600 

 

3.33.33.33.3 Catálogo MAN turboCatálogo MAN turboCatálogo MAN turboCatálogo MAN turbo    

Los datos concretos de estas turbinas de vapor están en la referencia [A,IV - 16] y en Tabla 7. 

Tabla 7 Turbinas comerciales de la casa MAN turbo 

Modelo Potencia Presión Temperatura 
Presión 
escape 

 [MW] [bar] [ºC] [bar] 

Condensación 5-120 <130 <570 >0.02 

Contrapresión 5-120 <130 <570 >40 
 

Fig. 3 Turbina MAN turbo de condensación 
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3.43.43.43.4 Catálogo General ElectricCatálogo General ElectricCatálogo General ElectricCatálogo General Electric    

En la bibliografía [A,IV - 17] se recogen datos de turbinas de vapor así como en la Tabla 8. 

Tabla 8 Turbinas comerciales de la casa GE 

Modelo Potencia Presión Temperatura rpm Contrapresión 

 [MW] [bar] [ºC] [rpm] [bar] 

SC/SAC series 2-100 140 540 15000 condensación 

SNC/SANC 

series 
2-100 140 540 15000 <60 

A5/A9 series 20-100 140 565 3600 condensación 

SG series 5-100 30 300 3600 ---- 

SDF series 5-100 30 300 15000 Condensación 

MP/MC series <40 140 540 12000 <60 

P/C series <6 80 480 15000 <20 

 
Fig. 4 Turbina GE modelo MC 

 

GE también está invirtiendo en el desarrollo de turbinas de vapor que puedan llegar a manejar 

vapor supercrítico [A,IV - 18]. De este modo la eficiencia de las centrales de carbón 

supercríticas puede mejorarse ya que una limitación es la tecnología de las turbinas de vapor. 

Según la citada referencia, GE quiere conseguir una turbina de vapor con las siguientes 

características: 

· Modelo: USC1000 

· Potencia: 1000 MW 

· Presión: 260 bar 

· Temperatura: 621 ºC 

· Presión de escape: 0.005 bar (1.5”Hg) 
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1111 IntroducciónIntroducciónIntroducciónIntroducción    

Una vez que se ha modelado la industria siderúrgica conociendo el funcionamiento básico de 

sus componentes principales, así de ratios de producción y consumos dentro del rango de 

funcionamiento de las siderurgias actuales; lo que resta es analizar las posibles adaptaciones 

de la industria siderúrgica para un mejor aprovechamiento energético. 

Al observarse una gran producción de gases con potencial energético, entre los que se 

encuentran el BOF gas, BF gas y el COG, no es descabellado pensar darles un aprovechamiento 

en vez de dispersarlos en la atmósfera. De este modo el tipo de aprovechamiento puede ser 

térmico (calefacción de distrito, agua caliente mediante calderas…) o eléctrico si la cantidad de 

energía disponible es elevada. 

Ya que el aprovechamiento térmico dentro de la propia industria siderúrgica ya se ha 

considerado al sustraer ciertos megavatios de estos gases energéticos para el funcionamiento 

de los diferentes componentes que conforman la industria (autoconsumo), el potencial de 

ahorro dentro de la propia industria es muy restringido. La otra manera de ahorrar energía 

visto desde los ojos de los inversores de la industria siderúrgica es la venta del potencial 

térmico de los gases. De este modo se tendría que disponer de ‘sumideros térmicos’ 

relativamente cercanos a la planta siderúrgica para poder acercar el calor de los gases ya sea 

mediante agua caliente o calefacción de distrito o vender los gases a otras empresas para su 

posterior quemado (como por ejemplo papeleras o cementeras). Pero esto es un factor 

circunstancial, es decir, la industria siderúrgica no tiene porqué estar rodeada de estos 

sumideros térmicos. Por lo tanto el aprovechamiento térmico podría ser una opción, pero no 

es una opción segura. 

Por lo tanto, al eliminar la opción de aprovechamiento térmico tan solo queda poder obtener 

ingresos por venta de electricidad. Lo que supone la integración de la siderurgia con una 

central de potencia (CP). Al obtener electricidad mediante el uso de generadores eléctricos 

accionados por turbinas, la venta de esta electricidad se puede hacer a mayores distancias que 

la venta de la energía térmica y además con unos ‘sumideros eléctricos’ o consumidores finales 

y/o intermedios con un número superiormente mayor. Por lo tanto es la opción más 

apetecible para rentabilizar al máximo la industria siderúrgica. 

Cambiando de tema, la integración de la siderurgia con la CP es a primera vista la opción más 

sensata. Pero cabe preguntarse qué pasaría si la industria siderúrgica se plantease abastecerse 

de sus inputs energéticos por ella misma. Lo que se traduce en que la siderurgia compraría 

toda la electricidad que necesitase de la red así como se produciría su propio vapor en una 

caldera convencional. Este caso se tratará en el apartado 2 a continuación. 

2222 Funcionamiento aislado y sin integraciónFuncionamiento aislado y sin integraciónFuncionamiento aislado y sin integraciónFuncionamiento aislado y sin integración    

2.12.12.12.1 Abastecimiento eléctricoAbastecimiento eléctricoAbastecimiento eléctricoAbastecimiento eléctrico    

En este caso la industria siderúrgica ha decidido comprar a la red la totalidad de la energía 

eléctrica que necesita para el funcionamiento de los equipos. Aunque es la manera más 

sencilla de satisfacer la demanda eléctrica, ésta conlleva un gasto económico importante y 

ningún beneficio por venta de electricidad, eso sí, no hay que hacer una inversión destinada a 

construir el ciclo de potencia. 
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Suponiendo un rendimiento eléctrico equivalente del sistema eléctrico español igual al 50%, se 

puede calcular la demanda térmica necesaria para cubrir la demanda eléctrica. Así aplicando el 

rendimiento de la caldera y los demás parámetros se puede llegar a calcular las emisiones de 

CO2 asociadas a la generación de electricidad en el mix energético español. Ver Tabla 1. 

Tabla 1 Datos para el abastecimiento eléctrico 

Energía eléctrica 
consumida 

Energía térmica 
equivalente 

Potencia caldera Carbón Aire combustión CO2 emitido 

[MWe] [kW] [kWt] [kg/s] [kg/s] [kg/s] 

111.4 222700 244000 38.98 288.5 51.77 

 

2.22.22.22.2 Abastecimiento térmicoAbastecimiento térmicoAbastecimiento térmicoAbastecimiento térmico    

Para abastecerse de energía térmica en forma de vapor se va a hacer uso de una caldera 

térmica ficticia caracterizada por los parámetros explicados en el apartado 1 del Anexo IV. Por 

lo tanto sabemos su eficiencia térmica, su ratio de combustible usado, caudal de aire necesario 

y ratio de emisión de CO2. La Tabla 2 contiene resumidos estos valores. 

Tabla 2 Datos para el abastecimiento térmico 

Potencia caldera Carbón Aire combustión CO2 emitido 

[kW] [kg/s] [kg/s] [kg/s] 

24600 3.94 29.15 5.23 

2.32.32.32.3 Datos globaleDatos globaleDatos globaleDatos globalessss    

Solamente resta sumar todos los datos compatibles y representarlos en la Tabla 3 

Tabla 3 Datos globales para abastecimiento eléctrico y térmico 

[kg/s] Carbón Aire combustión CO2 emitido 

Demanda eléctrica 38.98 288.5 51.77 

Demanda térmica 3.94 29.15 5.23 

Total 42.92 317.65 57.0 

3333 Caracterización de la siderurgiaCaracterización de la siderurgiaCaracterización de la siderurgiaCaracterización de la siderurgia    

En este apartado se va a intentar modelizar la industria de la siderurgia como una caja negra. 

El interior de esa caja negra es conocido en nuestro caso ya que se ha especificado con 

especial interés en el Anexo I en su apartado 10. La meticulosidad realizada nos ha permitido 

simular el funcionamiento de la siderurgia. Pero visto desde el punto de vista de la CP, la 

siderurgia es un elemento mucho más simple que tan solo le influye en diversos 

inputs/outputs. El resto de su funcionamiento interno no es de interés (ver Fig. 1). 

Los factores que nos interesarán a partir de ahora para el transcurso del Anexo V: serán los 

que se listan a continuación: 

Caudal de gases energéticos: 99.16 kg/s 

Energía de los gases energéticos: 367 MWt 

Caudal de aporte de vapor desde la siderurgia a la CP: 13.27 kg/s 
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Condiciones del vapor de aporte: 400ºC, 50bar 

Caudal de extracción de vapor desde la CP hacia la siderurgia: 7.65 kg/s 

Condiciones del vapor de extracción: 250ºC 

 

     SIDERURGIA   Gases energéticos 

         367 MWt 

   Vapor de aporte  Vapor de extracción  

   400ºC, 50bar  250ºC 

 

CP  

Fig. 1 Esquema de caracterización de la siderurgia [Fuente propia] 

4444 Caracterización del ciclo de gas y HRSGCaracterización del ciclo de gas y HRSGCaracterización del ciclo de gas y HRSGCaracterización del ciclo de gas y HRSG    

El ciclo de gas se coloca en cabeza de producción eléctrica. Para ello se dispone de una turbina 

de gas que nos proporcionará la electricidad y unos gases de combustión calientes que 

posteriormente se podrá recuperar energía térmica mediante una caldera de recuperación de 

calor o HRSG.  

4.14.14.14.1 Caracterización de la Caracterización de la Caracterización de la Caracterización de la turbinaturbinaturbinaturbina de gas de gas de gas de gas    

Ya que la turbina de gas (TG) no es una parta fundamental de este TFM, su modelización va a 

ser sencilla al estilo ‘caja negra’. De nuevo nos interesarán los parámetros más relevantes para 

su funcionamiento. Ya que la etapa de búsqueda de esta información se ha llevado a cabo en 

el apartado 2 del Anexo IV, tan solo se reflejarán los parámetros más importantes (Tabla 4). 

Tabla 4 Caracterización de la TG 

Modelo  Mitsubishi Heavy Industries M701DA 

Potencia nominal 144 MWe 

Potencia neta 127.7 MWe 

Caudal de gases 401.7 kg/s 

Temperatura de gases 542 ºC 

Aire de combustión 302.6 kg/s 

Rendimiento 34.8 % 

4.24.24.24.2 Caracterización del Caracterización del Caracterización del Caracterización del recuperador de calor recuperador de calor recuperador de calor recuperador de calor HRSGHRSGHRSGHRSG    

El HRSG (heat recovery steam generator) se va a caracterizar con muy pocos parámetros para 

denotar su simplicidad a la hora de simular. Un parámetro crítico es la temperatura de salida 

de los gases provenientes de la TG, ya que si se recupera mucho calor y se bajan por debajo de 

la temperatura de condensación del agua, ésto puede provocar la condensación del agua así 

como elementos nocivos para los elementos estructurales del HRSG como pueden ser el azufre 

formándose ácido sulfúrico. Se va a suponer una caída de presión en el circuito de agua/vapor 

de 10 bares. 
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       ∆ T=47ºC 

 

          Tsalida=150ºC 

 

 

Fig. 2 Esquema de funcionamiento del HRSG [Fuente propia] 

La Fig. 2 muestra la temperatura de los gases de escape de la TG (línea superior) con la 

condición impuesta de la temperatura de salida a 150ºC. Por otro lado (línea inferior), entra el 

agua proveniente de la parte del condensador del ciclo de vapor como líquido subenfriado y 

sufre un calentamiento con cambio de fase para obtener vapor a una temperatura final de 

495ºC. 

5555 Caracterización del ciclo de vaporCaracterización del ciclo de vaporCaracterización del ciclo de vaporCaracterización del ciclo de vapor    

La parte que más influye en el diseño del tren de turbinas de vapor son las 

aportaciones/extracciones de la siderurgia. Ya que se ha impuesto dos condiciones al vapor de 

aporte, el resto de las condiciones del vapor vendrán condicionadas por estas condiciones 

impuestas y por los parámetros de diseño de los elementos mecánicos. 

En primer lugar se disponen de 4 cuerpos de turbinas. Se les ha llamado turbina de alta (TA), 

turbina de media 1 (TM1), turbina de media 2 (TM2) y turbina de baja (TB). De este modo se 

dispone de 3 puntos de extracción de caudales, dos de ellos se emplean para el 

aporte/extracción a la siderurgia y el tercero de ellos para la extracción hacia el desgasificador. 

Las turbinas de alta y de baja tienen un rendimiento isoentrópico del 85% mientras que las 

turbinas de media tienen uno equivalente al 90%. La bomba de baja se supone un rendimiento 

isoentrópico del 83%. 

El condensador trabaja a 0.06 bares de presión y el desgasificador a 0.9 bares de presión. Se 

incluye un alternador eléctrico acoplado al eje mecánico de las turbinas con un rendimiento 

electromecánico del 97%. La bomba de alta produce un incremento de la temperatura del 

fluido de 2ºC. La temperatura del vapor vivo procedente del HRSG depende de la temperatura 

de entrada de gases de escape de la TG como se ha visto más atrás. 
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6666 ResultadosResultadosResultadosResultados    

 

Fig. 3 Esquema de funcionamiento de la integración de la siderurgia, ciclo de gas 
y ciclo de vapor en el caso base [Fuente propia] 

6.16.16.16.1 Ciclo de vaporCiclo de vaporCiclo de vaporCiclo de vapor    

La Tabla 7 contiene los datos termodinámicos de los fluidos que intervienen en el ciclo de 

potencia del caso base planteado (Fig. 3). 

Se necesita disponer de un caudal extra (punto [20]) destinado a la purga del vapor sobrante. 

Esto es debido a que el aporte másico de vapor de la siderurgia es positivo. Por lo que se 

introduce el caudal de purga antes de la bomba de alta para que su consumo energético sea 

menor. El caudal de purga tiene un valor de 5.6 kg/s de líquido saturado. Este valor se 

corresponde a la diferencia de caudal másico entre el aporte de vapor (punto [7]) y la 

extracción de vapor (punto [10]). 

6.26.26.26.2 Potencias y producción eléctricaPotencias y producción eléctricaPotencias y producción eléctricaPotencias y producción eléctrica    

Las Tabla 5 y Tabla 6 contienen datos relativos a potencias térmicas y eléctricas que se 

intercambian u obtienen en los diversos componentes de la CP o por los aportes de vapor 

desde la siderurgia.  

Tabla 5 Potencias térmicas de relevancia en el ciclo de vapor 

Elemento Potencia [MWt] 

HRSG 166.3 

Condensador 111.1 

Aporte vapor 42.4 

Extracción vapor 22.34 
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Tabla 6 Potencias eléctricas de relevancia en la CP 

Elemento Potencia [MWe] 

Turbina de gas 127.7 

Turbina de alta 9.6 

Turbina de media 1 19 

Turbina de media 2 28.3 

Turbina de baja 16.9 

Bomba de baja 5.7 kWe 

Bomba de alta 0.92 

TOTAL neto 198.4 

 

Tabla 7 Resultados tabulados. Caudal, presión, temperatura, entalpía, entropía y 
título de los puntos del ciclo de vapor 

 Caudal Presión Temp. Entalpía Entropía Título 

 [kg/s] [bar] [ºC] [kJ/kg] [kJ/kg·K] [%] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20  

 

En la Tabla 8 se muestra un pequeño extracto de las potencias producidas en la CP, la energía 

eléctrica demandada en la siderurgia así como el monto eléctrico a vender a la red eléctrica, lo 

que generará beneficios a la industria de la siderurgia. 

Tabla 8 Producción y demanda, potencia exportable de energía eléctrica 

Elemento Potencia [MWe] 

Demanda de la siderurgia 111.3 

Producción de la CP 198.4 

Potencia exportable 87.1 
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6.36.36.36.3 Emisiones de CO2Emisiones de CO2Emisiones de CO2Emisiones de CO2    

6.3.1 Datos resumidos 

Las emisiones de CO2 se van a dividir en dos categorías: las producidas en los procesos internos 

de la siderurgia y las producidas por la combustión de los gases energéticos. Se ha supuesto 

una combustión completa de los gases energéticos. Sabiendo la proporción de cada tipo de gas 

(BOF gas, BFgas y COG), sus composiciones molares y las propiedades de dichos gases 

(calculadas en el Anexo II) se puede llegar a obtener las emisiones representadas en la Tabla 9. 

Tabla 9 Emisiones de CO2 de la integración siderurgia-CP 

Elemento emisor Emisiones de CO2 

Industria siderúrgica 43.09 kg/s 

Combustión gases en TG 66.39 kg/s 

TOTAL emisiones 109.5 kg/s 

 

6.3.2 Emisiones de CO2 equivalente a la red eléctrica 

El CO2 equivalente a la red eléctrica es un concepto que intenta reflejar el efecto que tiene en 

la simbiosis el hecho de tener un excedente en la producción eléctrica. Ya que las emisiones de 

CO2 relacionadas con la producción en la siderurgia y en la quema del combustible en la TG ya 

han sido contabilizadas como ‘Emisiones de CO2’, a este nuevo concepto se le ha nominado 

como ‘Emisiones de CO2 equivalentes a la red eléctrica’. Este nombre deriva del hecho de que 

al volcar electricidad a la red, las emisiones de esta electricidad producida en la CP tiene un 

coste de emisión cero ya que las emisiones se las han imputado a la siderurgia y a la CP. De 

modo que se podría decir que se ha “evitado” a la red eléctrica las emisiones equivalentes de 

producirla en el mix energético español (a través de su rendimiento equivalente y de la caldera 

tipo calculados en el Anexo IV apartado 1). Ver Tabla 10. 

Tabla 10 Datos de emisiones de CO2 evitado 

Energía eléctrica 
vendida 

Energía térmica 
equivalente 

Potencia de 
caldera ficticia 

Carbón Aire combustión 
CO2 

equivalente a 
red eléctrica 

[MWe] [kWt] [kWt] [kg/s] [kg/s] [kg/s] 

87.1 174200 190900 30.48 225.62 40.49 

 

6.3.3 Reacciones químicas de combustión completas 

A continuación se presentan las reacciones de combustión (eq.1 a eq.8) empleadas en el 

cálculo de las emisiones de CO2.  

OHOH 222 2

1
⇒+         (eq. 1) 

222

1
COOCO ⇒+         (eq. 2) 

22 COCO ⇒          (eq. 3) 

22 NN ⇒          (eq. 4) 
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OHCOOCH 2224 22 +⇒+        (eq. 5) 

OHCOOHC 22262 325 +⇒+        (eq. 6) 

OHCOOHC 22283 437 +⇒+        (eq. 7) 

OHCOOHC 222104 549 +⇒+        (eq. 8) 

6.3.4 Datos de interés 

A continuación se va a calcular el ratio de emisión de CO2 asociado a la producción de 

electricidad de la CP. De un modo similar al seguido en el apartado 1.4 del Anexo IV. De esta 

manera podremos comparar el ratio de emisión del ciclo combinado de TG+TV con el de la 

caldera que se ha especificado en dicho apartado.  

De este modo teníamos que la CP producía 198.4 MW y que se emitían 66.39 kg/s de CO2. Por 

tanto el rato de emisión de CO2 en el caso base de la CP es de 0.3346 kg/s/MW. Es superior al 

valor de la caldera de referencia ya que el rendimiento térmico que se alcanza en el ciclo 

combinado es mucho menor que el que se alcanza en la caldera. 
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1111 IntroducciónIntroducciónIntroducciónIntroducción    

1.11.11.11.1 Elección y justificación del sistema CCSElección y justificación del sistema CCSElección y justificación del sistema CCSElección y justificación del sistema CCS    

Lo primero que se debe hacer antes de continuar con la simulación de la integración con un 

sistema CCS es la elección del tipo de tecnología que más se adecuará a las condiciones de 

operación de la planta siderúrgica y del ciclo de potencia. La revisión del estado del arte de las 

tecnologías disponibles actualmente se encuentra recogida en el apartado 5 de la memoria.  

Para realizar la elección adecuada, primero se debe saber las condiciones a las que se obtiene 

el CO2 y caracterizar cada tipo de flujo. Si se hace un breve recordatorio se tiene: 

· CO2 proveniente de la siderurgia. Se ha obtenido principalmente en la planta de 

sinterizado al separarlo del aire de combustión y del blast furnace separándolo de los 

gases de la tragante. En menor medida contribuye el horno de coque. Se puede decir 

que es una corriente bastante pura de CO2. El problema operativo surge al disponer de 

sistemas de separación/limpieza del resto de la corriente de gases de la cual proviene. 

· CO2 proveniente del ciclo de potencia. Este CO2 es el derivado de la quema de los gases 

energéticos en la cámara de combustión de la turbina de gas. Ya que la turbina de gas es 

un elemento volumétrico, es decir maneja grandes cantidades de volumen de gases 

principalmente debido a la gran cantidad de aire de combustión, el CO2 a la salida se 

encuentra diluido en esta corriente de gases de escape. 

Por lo tanto se dispone de una corriente de CO2 más o menos concentrada proveniente de 3 

elementos de la industria siderúrgica y de una corriente diluida de CO2 del ciclo de potencia. 

Hay que decir que la corriente del ciclo de potencia es la mayor (del orden del 60%) en la 

integración siderurgia-CP. Al añadir la integración con CCS, será necesario quemar más 

combustible para satisfacer la demanda térmica de regeneración de aminas, por lo que el CO2 

proveniente de la turbina de gas aumentará. 

Debido a que la principal fuente de emisión de CO2 vendrá dada por el ciclo de potencia a 

través de su turbina de gas, lo más conveniente es utilizar un ciclo CCS con solvente químico. 

En concreto utilizar aminas para la captura del CO2 contenido en los gases de escape. Se había 

planteado en un principio un sistema de oxicombustión, pero la necesidad de colocar un ciclo 

combinado (sustituir la caldera de oxicombustión por la cámara de combustión de la turbina 

de gas) era necesaria para obtener buenos valores de producción eléctrica y satisfacer la 

demanda térmica del regenerador. La posibilidad de introducción de un ciclo de 

carbonatación-calcinación o chemical looping se hace inviable debido a sus altos costes de 

inversión. 

Finalmente, debido a su mayor conocimiento en este tipo de tecnología, unos costes de 

inversión relativamente menores y una eficiencia de captura adecuada, se acaba escogiendo 

un sistema CCS de absorción química. A continuación se estudiarán tres tipos de aminas: MEA, 

DEA y MDEA. 

1.21.21.21.2 Reacciones de aReacciones de aReacciones de aReacciones de absorción de CObsorción de CObsorción de CObsorción de CO2222 en soluciones acuosas de aminas en soluciones acuosas de aminas en soluciones acuosas de aminas en soluciones acuosas de aminas    

Según los autores de [A,VI - 1] las reacciones típicas entre aminas-CO2 se pueden generalizar. 

Por tanto, la reacción global entre el CO2 y las aminas primarias y secundarias puede ser 

representada como:  

CO2 + 2·RNH2(2RR’NH) ↔ RNH3
+
 + (RR’NH2

+
) + RNHCOO

-
(RR’NCOO

-
) 
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Las aminas terciarias difieren de las aminas primarias y secundarias en su comportamiento 

hacia el CO2, ya que el CO2 no puede combinarse directamente con el grupo amino en el caso 

de aminas terciarias. Por lo que resulta una velocidad de reacción más pequeña para aminas 

terciarias comparada con las aminas primarias y secundarias. La reacción global entre el CO2 y 

una amina terciaria se puede representar como: 

CO2 + H2O + R3N ↔ R3NH
+
 + HCO3

- 

2222 Propiedades de las aminasPropiedades de las aminasPropiedades de las aminasPropiedades de las aminas    

2.12.12.12.1 Energía de regeneración de las aminasEnergía de regeneración de las aminasEnergía de regeneración de las aminasEnergía de regeneración de las aminas    

Ya que actualmente existen un gran número de aminas diferentes, como por ejemplo MEA 

DEA o incluso TEA o KS1, a priori no se puede elegir entre una de ellas ya que su 

comportamiento es muy diferente. Para ello se va a escoger la energía de regeneración de la 

amina como parámetro decisorio. A continuación, en la Tabla 1 se incluyen los valores de esta 

energía de regeneración según los autores de la bibliografía. 

Tabla 1 Energía de activación de las diferentes aminas. 1BTU=1055.056J; 
1lb=0.45359237kg; 1molCO2=44.01g 

MEA DEA MDEA Unidades [MJ/kgCO2] Referencia 

825 653 600 BTU/lb CO2 1.92-1.52-1.39 [A,VI - 3] 

4.8 ---- 1.2-2.4 MJ/kg CO2 ---- [A,VI - 4] 

86.9 68.9 58.8 kJ/mol CO2 1.97-1.56-1.33 [A,VI - 5] 

85.6 76.3 ---- kJ/mol CO2 1.94-1.73 [A,VI - 6] 

4.2 ---- ---- MJ/kg CO2 ---- [A,VI - 7] 

3.92 ---- ---- GJ/ton CO2 3.92 [A,VI - 8] 

3.67 ---- ---- GJ/ton CO2 3.67 [A,VI - 9] 

4.8-3.89 ---- 1.2-2.4 GJ/ton CO2 4.8-3.89-1.2-2.4 [A,VI - 10] 

4.05 ---- ---- GJ/ton CO2 4.05 [A,VI - 11] 

4700 2880 ----- kJ/kg CO2 4.7-2.88 [A,VI - 12] 

4370 2800 ---- kJ/kg CO2 4.37-2.8 [A,VI - 12] 

4.170 2.943 1.986 MJ/kg CO2 ---- Promedio 

 

2.22.22.22.2 Porcentaje de mezcla de aminasPorcentaje de mezcla de aminasPorcentaje de mezcla de aminasPorcentaje de mezcla de aminas    

En este apartado se ha buscado en la bibliografía los valores típicos de mezcla de las aminas 

con agua. Es un dato interesante ya que el valor de solubilidad del agua con el CO2 es 

prácticamente nulo a las condiciones de trabajo del absorbedor. Por lo tanto, el elemento que 

puede capturar el CO2 es la amina, siendo el agua en este caso un elemento neutro. La Tabla 2, 

Tabla 3 y Tabla 4 muestran los valores promedio para los tres tipos de aminas. 

Tabla 2 Porcentaje de mezcla de aminas MEA.  

MEA Unidades Referencia 

20 [%] [A,VI - 3] 

30 [%] [A,VI - 5] 

30 [%] [A,VI - 6] 

30 [%] [A,VI - 7] 

30 [%] [A,VI - 8] 

30 [%] [A,VI - 9] 
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30 [%] [A,VI - 10] 

30 [%] [A,VI - 11] 

28.7 [%] Promedio 

 

Tabla 3 Porcentaje de mezcla de aminas DEA.  

DEA Unidades Referencia 

30 [%] [A,VI - 3] 

30 [%] [A,VI - 5] 

34 [%] [A,VI - 6] 

31.3 [%] Promedio 

 

Tabla 4 Porcentaje de mezcla de aminas MDEA.  

MDEA Unidades Referencia 

40 [%] [A,VI - 3] 

30 [%] [A,VI - 5] 

35 [%] Promedio 

 

2.32.32.32.3 Carga de captura de COCarga de captura de COCarga de captura de COCarga de captura de CO2222 en en en en aminas aminas aminas aminas    

La carga de captura de CO2 se va a definir como la capacidad que tiene los distintos tipos de 

aminas para combinarse químicamente con el CO2. De este modo, partiendo como base de 1 

kg puro de amina, es preferible obtener valores altos de carga de CO2 ya que esto nos estaría 

indicando que con poca cantidad de amina podemos capturar la misma cantidad de CO2. Los 

valores presentados en la Tabla 5, Tabla 6 y Tabla 7 son valores típicos de funcionamiento de 

equipos industriales. Aunque teóricamente la carga de CO2 es mucho más elevada, no se 

toman valores muy altos ya que admitir mayores cantidades de CO2 producen en la solución un 

carácter ácido muy dañino para las aminas y es una penalización económica a la hora de 

reponer las aminas degradadas. 

Tabla 5 Carga de captura de CO2 en aminas MEA.  

MEA Unidades Referencia 

0.3 [molCO2/molMEA] [A,VI - 3] 

0.19 [molCO2/molMEA] [A,VI - 4] 

108 [gco2/litrosolución] [A,VI - 5] 

0.15 [molCO2/molMEA] [A,VI - 6] 

0.2 [molCO2/molMEA] [A,VI - 7] 

0.15 [molCO2/molMEA] [A,VI - 8] 

0.25 [molCO2/molMEA] [A,VI - 9] 

123 [gco2/litrosolución] [A,VI - 11] 

0.31137 [kgco2/kgMEA] Promedio 

 

Tabla 6 Carga de captura de CO2 en aminas DEA.  

DEA Unidades Referencia 

0.32 [molCO2/molDEA] [A,VI - 3] 

53 [gco2/litrosolución] [A,VI - 5] 

0.23 [molCO2/molDEA] [A,VI - 6] 

0.49687 [kgco2/kgDEA] Promedio 
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Tabla 7 Carga de captura de CO2 en aminas MDEA.  

MDEA Unidades Referencia 

0.75 [molCO2/molMDEA] [A,VI - 3] 

0.22 [molCO2/molMDEA] [A,VI - 4] 

31 [gco2/litrosolución] [A,VI - 5] 

59 [gco2/litrosolución] [A,VI - 11] 

0.59085 [kgco2/kgMDEA] Promedio 

 

2.42.42.42.4 Calor específico de las aminasCalor específico de las aminasCalor específico de las aminasCalor específico de las aminas    

Esta propiedad física de las aminas se ha incluido ya que será necesaria a la hora de calcular los 

balances energéticos en los diferentes equipos ya que el contenido de aminas en la solución 

acuosa es elevado y el calor específico de la solución varía sensiblemente con respecto al del 

agua pura. La Tabla 8, Tabla 9 y Tabla 10 contienen los valores del calor específico. 

Tabla 8 Calor específico de las aminas MEA.  

MEA Unidades [kJ/kgMEA·K] Referencia 

0.665 [cal/g·K] 2.7797 [A,VI - 13] 

1.642 [J/g·K] 1.6420 [A,VI - 14] 

0.560 [BTU/lb·ºF] 2.3446 [A,VI - 15] 

0.76 [cal/g·K] 3.1768 [A,VI - 16] 

2.4857 kJ/kgMEA·K ---- Promedio 

 

Tabla 9 Calor específico de las aminas DEA.  

DEA Unidades [kJ/kgMEA·K] Referencia 

1.552 [J/g·K] 1.5520 [A,VI - 14] 

0.690 [cal/g·K] 2.8842 [A,VI - 16] 

0.649 [BTU/lb·ºF] 2.7172 [A,VI - 17] 

2.3803 kJ/kgDEA·K ---- Promedio 

 

Tabla 10 Calor específico de las aminas MDEA.  

MDEA Unidades [kJ/kgMEA·K] Referencia 

0.59 [BTU/lb·ºF] 2.4702 [A,VI - 18] 

2.615 [kJ/kg·K] ---- [A,VI - 19] 

3.093 [kJ/kg·K] ---- [A,VI - 19] 

2.7260 kJ/kgMDEA·K  Promedio 

3333 Potencial Potencial Potencial Potencial energético de la sideenergético de la sideenergético de la sideenergético de la siderurgia pararurgia pararurgia pararurgia para captura de CO captura de CO captura de CO captura de CO2222    

3.13.13.13.1 Esquema de funcionamientoEsquema de funcionamientoEsquema de funcionamientoEsquema de funcionamiento    

A continuación, en la Fig. 1 se presenta el esquema de funcionamiento para el nuevo caso. La 

idea básica es intentar acoplar un sistema de captura de CO2 mediante aminas. Para ello, el 

factor más influyente es la cantidad de vapor que se va a tener que extraer de la CP (a unos 

130ºC) para satisfacer el aporte energético para la regeneración de las aminas y obtener de 

este modo el CO2 de manera concentrado. 
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Fig. 1 Esquema de funcionamiento del estudio del potencial energético [Fuente 
propia] 

3.23.23.23.2 Modificaciones con respecto al case baseModificaciones con respecto al case baseModificaciones con respecto al case baseModificaciones con respecto al case base    

La modificación principal de este ciclo para el estudio del potencial energético para llevar a 

cabo la captura de CO2 es la introducción del regenerador. Este regenerador es el que 

posteriormente permite la separación de las aminas del CO2 obteniéndose así un flujo de CO2 

concentrado. Pero para poder llevar a cabo esta separación química de los dos componentes 

es necesario aportar energía térmica en cantidades muy elevadas.  

Por ello, como no se sabe cómo de capaz es el ciclo base planteado a la hora de aportar ésta 

energía, se ha procedido a simular el caso de potencial térmico. Las condiciones de aporte de 

energía son que la temperatura máxima de aporte sea de 130ºC si no las aminas sufren un 

deterioro prematuro y hay que ir añadiendo un nuevo flujo de aminas elevado con el 

correspondiente aumento del coste de reposición.  

Al tener en cuenta esta restricción de los 130ºC, se va a proceder a obtener el máximo caudal 

de CO2 a capturar. Como se dispone de tres tipos de aminas, caracterizadas por su energía de 

regeneración, se obtendrán tres valores máximos de CO2 a capturar. Ya que se quiere obtener 

el máximo potencial de captura, entonces la inclusión de una turbina de baja presión no es 

necesaria ya que lo que supondría sería mermar el caudal de vapor para el aporte energético. 

Los equipos utilizados siguen siendo los mismos que se han empleado en el caso base, por lo 

que no modifican sus parámetros de funcionamiento. De este modo se puede decir que el caso 

ficticio que nos ocupa, el caso de mayor potencial energético, es de alguna manera lo más fiel 

al planteamiento inicial propuesto. 
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3.33.33.33.3 Resultados del ciclo de potencial energéticoResultados del ciclo de potencial energéticoResultados del ciclo de potencial energéticoResultados del ciclo de potencial energético    

3.3.1 Ciclo de vapor 

La Tabla 11 contiene los datos termodinámicos de los fluidos que intervienen en el ciclo de 

potencia del caso base planteado. 

Tabla 11 Resultados tabulados. Caudal, presión, temperatura, entalpía, entropía 
y título de los puntos del ciclo de vapor. Ciclo de potencial energético 

 Caudal Presión Temp. Entalpía Entropía Título 

 [kg/s] [bar] [ºC] [kJ/kg] [kJ/kg·K] [%] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14  

De nuevo se debe disponer de un caudal de purga, punto [14], para que el balance de masa se 

cumpla. Se extrae antes de la bomba para que impulse una menor cantidad de fluido y su 

consumo eléctrico sea inferior. Habrá que purgar del orden de 5.6 kg/s de líquido saturado 

proveniente de la salida del regenerador de aminas. 

3.3.2 Potencias y producción eléctrica 

Las Tabla 12 y Tabla 13 contienen datos relativos a potencias térmicas y eléctricas que se 

intercambian u obtienen en los diversos componentes de la CP o por los aportes de vapor 

desde la siderurgia. El más significativo es la potencia térmica intercambiada en el 

regenerador, que equivale a 134.95 MWt. Se podría decir que el regenerador funciona como 

condensador de la planta de potencia, pero en un sistema de turbinas a contrapresión.  

Tabla 12 Potencias térmicas de relevancia en el ciclo de vapor 

Elemento Potencia [MWt] 

HRSG 166.3 

Regenerador 134.95 

Aporte vapor 42.4 

Extracción vapor 22.34 

 

Tabla 13 Potencias eléctricas de relevancia en la CP 

Elemento Potencia [MWe] 

Turbina de gas 127.7 

Turbina de alta 10 

Turbina de media 1 19.8 
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Turbina de media 2 19.4 

Bomba de alta 0.92 

TOTAL neto 174.6 

 

En la Tabla 14 se muestra un pequeño extracto de las potencias producidas en la CP, la energía 

eléctrica demandada en la siderurgia. 

Tabla 14 Producción y demanda, potencia exportable de energía eléctrica 

Elemento Potencia [MWe] 

Demanda de la siderurgia 111.3 

Producción de la CP 174.6 

Potencia exportable 63.2 

 

3.3.3 Emisiones de CO2 

Como emisiones de CO2 se van a tener las mismas que en el caso base, ya que tanto la 

siderurgia como el TG funcionan en el mismo régimen. La Tabla 15 hace un resumen de las 

emisiones de CO2 que produce la industria.  

Tabla 15 Emisiones de CO2 de la integración siderurgia-CP 

Elemento emisor Emisiones de CO2 

Industria siderúrgica 43.09 kg/s 

Combustión gases en TG 66.39 kg/s 

TOTAL emisiones 109.5 kg/s 

 

Pero ya que se ha dispuesto del regenerador de aminas para la captura de CO2, ahora se puede 

estudiar el potencial de captura. Se conoce el valor del calor máximo disponible 

Qregen=134.95MWt y también las energías de regeneración de las diferentes aminas (ver Tabla 

1). De este modo se tienen 3 flujos de CO2 capturados diferentes y tres flujos de CO2 emitidos a 

la atmósfera, como indica la Tabla 16: 

Tabla 16 Potencial de captura de CO2 [kg/s] 

Tipo amina CO2 capturado CO2 emitido % Capturado 

MEA 32.36 77.14 29.55 

DEA 45.85 63.65 41.87 

MDEA 67.95 41.55 62.05 

 

3.3.4 Emisiones de CO2 equivalentes 

Al igual que se ha procedido en el apartado 6.3.2 del Anexo V, en este caso al disponer de 

potencial eléctrica exportable se puede calcular las emisiones de CO2 equivalentes evitadas a 

la red eléctrica. La Tabla 18 contiene los datos necesarios. 

Tabla 17 Datos de emisiones de CO2 evitado 

Energía eléctrica 
vendida 

Energía térmica 
equivalente 

Potencia caldera Carbón Aire combustión 
CO2 

equivalente 

[MWe] [kW] [kWt] [kg/s] [kg/s] [kg/s] 

63.2 126400 138500 22.12 163.70 29.37 
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3.43.43.43.4 Rendimiento de captura de CORendimiento de captura de CORendimiento de captura de CORendimiento de captura de CO2222 para pla para pla para pla para plantas industrialesntas industrialesntas industrialesntas industriales    

En la Tabla 18 se encuentran los valores típicos para plantas industriales o estudios académicos 

encontrados de los valores típicos del rendimiento de captura de CO2 (CO2 removal efficiency). 

Este valor indica el porcentaje total de CO2 que es capturado mediante reacción química por el 

solvente (aminas en el caso del presente TFM) del total de flujo de CO2 entrante en la columna 

de absorción.  

Tabla 18 Rendimiento de captura de CO2 con sistema de solvente químico 

Referencia Rendimiento de captura [%] 

[A,VI - 4] 90 

[A,VI - 8] 90 

[A,VI - 9] 90 

[A,VI - 20] 82 

[A,VI - 20] 90 

[A,VI - 21] 80 

[A,VI - 21] 95 

[A,VI - 22] 95.3 

[A,VI - 22] 89.1 

[A,VI - 23] 90 

Promedio 89.14% 

4444 Integración de CCSIntegración de CCSIntegración de CCSIntegración de CCS    

4.14.14.14.1 Parámetros de funcionamiento del ciclo de aminasParámetros de funcionamiento del ciclo de aminasParámetros de funcionamiento del ciclo de aminasParámetros de funcionamiento del ciclo de aminas    

4.1.1 Configuración del ciclo de aminas 

Se ha escogido para el ciclo de aminas la configuración básica (ver Fig. 2). El ciclo de aminas 

tiene unos elementos básicos que se describen a continuación: 

· Absorbedor. Es un intercambiador de calor y de masa. En el se produce la separación o 

absorción del CO2 en las aminas. Como flujos entrantes se tiene el caudal de gases de 

escape provenientes de una turbina de gas o de una caldera de combustión y el flujo de 

aminas pobre en CO2 por la parte superior. Como salidas se dispone de los gases de 

escape con un bajo contenido en CO2 (típicamente en torno al 10% del total) y el flujo de 

aminas rico en CO2. 

· Intercambiador de calor o economizador. Se coloca en medio de las dos torres y su 

cometido principal es el de repartir el calor que disponen los diferentes flujos de aminas 

de modo que se minimice el aporte/extracción de calor en cada loop. 

· Regenerador (Stripper). Es el otro intercambiador de calor y de masa. En el ocurre el 

efecto contrario que el absorbedor, el CO2 se desprende de las aminas. Todo ello es 

posible por un aporte externo de calor, típicamente por una extracción de vapor a una 

temperatura máxima de 132ºC [A,VI - 22] del ciclo de vapor de la CP. 

· Refrigerador. Este elemento es imprescindible ya que el sobrante térmico del flujo de 

aminas pobre debe ser evacuado. La temperatura de operación no es muy elevada, 

entre los 40-90ºC. 
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Fig. 2 Configuración básica del ciclo de aminas [A,VI - 22] 

4.1.2 Absorbedor 

Como parámetro de funcionamiento del absorbedor se tiene la temperatura de entrada del 

flujo pobre de aminas. Tan solo se encuentra esta temperatura (ver Tabla 19) ya que la 

temperatura de salida dependerá del balance de energía a todo el absorbedor, y por ende del 

flujo de gases de escape que entre en el absorbedor. 

Tabla 19 Temperatura del flujos de entrada al absorbedor. [ºC] 

Entrada Referencia 

40 [A,VI - 5] 

40 [A,VI - 8] 

40 [A,VI - 9] 

30-40 [A,VI - 11] 

38 [A,VI - 12] 

48 [A,VI - 20] 

43.3 [A,VI - 20] 

39.9 Promedio 

4.1.3 Regenerador 

Los parámetros de funcionamiento del regenerador vienen impuestos en condiciones de 

temperatura. Los valores de temperatura así como los valores promedio son los que se 

encuentran contenidos en la Tabla 20. 

Tabla 20 Temperaturas de los flujos de entrada y salida en el regenerador. [ºC] 

Entrada Salida Referencia 

75-85-90 110-130 [A,VI - 6] 

90-95 110-120 [A,VI - 7] 

90-95 110-113-120 [A,VI - 8] 

---- 120 [A,VI - 9] 

69-98 110 [A,VI - 12] 

---- 122 [A,VI - 22] 

87.4 116.5 Promedio 

 

De las dos temperaturas posibles, entrada y salida, la que más restricción tiene es la 

temperatura de salida. En la bibliografía se encuentra recurrentemente que el valor máximo 

admisible es de 122ºC, ya que por encima de este valor la amina sufre un proceso de 

degradación excesivo y su reposición resulta económicamente desfavorable. Ya que el 

regenerador es un intercambiador de calor, se suele fijar una temperatura mínima de 

diferencia entre los distintos flujos de 10ºC, lo que se traduce en que el vapor de aporte 

energético debe tener como mucho 132ºC. 
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4.1.4 Mezcla rica y mezcla pobre en aminas 

En el ciclo de aminas se tendrán fundamentalmente dos tipos de flujos: el que tiene alto 

contenido en CO2 denominado mezcla rica en aminas y por el contrario, el que tiene bajo 

contenido de CO2 o mezcla pobre en aminas. Como se puede deducir, en ambos flujos el 

contenido de CO2 no es nulo. Esto es debido a que tanto el absorbedor como el regenerador 

son unos intercambiadores de calor e intercambiadores de masa. Por lo que extraer todo el 

contenido de CO2, el 100%, de las aminas es un proceso costoso tanto tecnológicamente como 

económicamente creándose unos intercambiadores harto extensos. 

A continuación se presentan los contenidos de CO2 en ambas mezclas (ver Tabla 21). 

Realmente el que interesa para simular el ciclo de aminas el contenido en CO2 de la mezcla 

pobre, ya que es el remanente de CO2 que siempre estará circulando. El contenido de la 

mezcla rica vendrá condicionado por el de la mezcla pobre y por la carga de captura de CO2 de 

cada tipo de amina así como del rendimiento de captura deseado. 

Tabla 21 Contenido en CO2 de la mezcla rica y de la mezcla pobre 

Mezcla rica Mezcla pobre Unidades Referencia 

0.4-0.47 0.225 [molCO2/molamina] [A,VI - 5] 

0.5 0.15 [molCO2/molamina] [A,VI - 8] 

---- 0.25 [molCO2/molamina] [A,VI - 9] 

0.32 ---- [molCO2/molamina] [A,VI - 20] 

0.365 0.225 [molCO2/molamina] [A,VI - 21] 

---- 0.222 [molCO2/molamina] [A,VI - 22] 

0.411 0.214 [molCO2/molamina] Promedio 

0.269 0.154 [kgCO2/kgMEA] MEA 

0.172 0.090 [kgCO2/kgDEA] DEA 

0.152 0.079 [kgCO2/kgMDEA] MDEA 

 

4.1.5 Consumo eléctrico del ciclo de aminas 

Para el consumo eléctrico asociado al funcionamiento del ciclo de aminas se van a considerar 

dos tipos diferentes por tener un carácter distinto. En primer lugar el consumo eléctrico de 

bomba para la impulsión de la mezcla de agua-aminas-CO2. Por otro lugar, el consumo 

eléctrico en los compresores de CO2. 

Para el cálculo del consumo de bombas a realizar se ha supuesto una pérdida de presión de 1 

bar en cada equipo del ciclo de aminas (intercambiador (x2 pasos), regenerador y 

condensador). Por lo tanto la bomba tiene que aumentar el caudal en 4 bares que es el salto 

de presión mínimo a ejecutar. Por otro lado, la bomba tiene un consumo reflejado en la eq. 1: 

PmW Vasabomba ∆= ·min,         (eq.1) 

ν
m

mV

&
=           (eq.2) 

Por lo tanto, como se conoce el caudal que impulsa la bomba ( m& ), el volumen específico (ν ) 

que se tomará el del agua y la diferencia de presión ofrecida por la bomba, entonces se puede 

obtener el consumo de la bomba del ciclo de aminas al aplicar eq.1 y eq.2. 

Por otro lado, se tiene que contabilizar el consumo eléctrico debido a la compresión del CO2. 

Se ha considerado aparte porque es un consumo elevado que influye negativamente en el 

rendimiento global del ciclo de potencia+CCS. En un principio es del orden de 4-6 puntos 
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porcentuales negativos. Para la compresión del CO2 se va a fijar una presión final de 120 bares. 

Esto es debido a que el CO2 tiene su punto crítico en 73 bares y 31 ºC como indica la Fig. 3. A 

partir de esos valores el CO2 pasa a estado supercrítico (es un fluido gaseoso con propiedades 

de líquido) y su volumen específico disminuye drásticamente, así como su transporte y manejo 

es mucho más sencillo. 

 

Fig. 3 Diagrama P-T del CO2 

Para alcanzar la presión fijada en 120 bares en primer lugar se va a enfriar la corriente 

obtenida de CO2 hasta los 40ºC para que los compresores consuman menos energía eléctrica. 

Luego se dispondrá de 4 etapas de compresión de idéntico ratio de compresión con un 

intercooler (enfriador) intermedio que baja la temperatura hasta los 40ºC en todas las etapas. 

La idea se refleja mejor en la Fig. 4. Como la presión en el punto 40 es de 2.7 bares, el ratio de 

compresión de cada compresor es de 2.6 aproximadamente. 

 

Fig. 4 Tren de compresión del CO2 

4.24.24.24.2 Diagrama de funcionamientoDiagrama de funcionamientoDiagrama de funcionamientoDiagrama de funcionamiento    

La Fig. 5 muestra de forma gráfica la configuración del sistema final. Ahora se puede apreciar la 

integración total de la industria siderúrgica en la parte superior, el ciclo combinado en el 

centro y el sistema CCS de aminas en la parte inferior con el tren de compresión. 

La introducción del flujo 51 de gas natural es necesaria ya que la demanda en el regenerador 

no es capaz de satisfacerla los gases energéticos de la siderurgia como se ha visto en el 

apartado anterior de potencial energético. Para poder tener bien determinado todo el sistema 

es necesario imponer una condición adicional que permitirá calcular el flujo másico de gas 

natural. Para ello se ha decidido establecer como condición que m[23]=0. Lo que significa que 

la turbina de media nº3 y la turbina de baja realmente no funcionan y no producen potencia. 

Pero la simulación ha sido llevada a cabo para todos los tipos de turbinas ya que así se puede 

modificar la condición y por ejemplo, si se quiere imponer una condición de potencia (por 

ejemplo Pneta=400MWe), el modelo matemático sea capaz de resolver el sistema lo más fiel a la 

realidad. 

Por otro lado se tiene que m[6]=0. Esto no es una condición impuesta directamente por el 

diseñador de la planta, si no por otras condiciones adoptadas. En este caso influye 

directamente el porcentaje de CO2 a capturar. Al fijar el porcentaje de captura en el ciclo de 

aminas del orden del 89% y al decir que el sistema global tiene un porcentaje de captura igual 
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al porcentaje de captura del ciclo de aminas, por consiguiente el flujo de CO2 en el punto 6 

tiene que ser igual a cero y eso solo se puede cumplir si m[6]=0. 

 

Fig. 5 Esquema de funcionamiento de integración de la siderurgia, central de 
potencia y ciclo CCS [Fuente propia] 

4.34.34.34.3 Elección de turbina de gasElección de turbina de gasElección de turbina de gasElección de turbina de gas    

La elección de la turbina de gas es un proceso que se debe hacer de forma manual. De entre 

las turbinas de gas reales que tenemos a disposición (ver referencia [ANX IV – 11]) se debe 

escoger aquella que para el modo de funcionamiento del ciclo de potencia y CCS para cada 

tipo de amina cumpla en lo mejor posible las especificaciones. 

La simulación del ciclo de potencia con la integración de CCS nos ofrece el dato de partida que 

he denominado ‘Potencia térmica disponible’ que es la suma de la potencia de los gases 

energéticos provenientes de la siderurgia más el gas natural.  

El siguiente paso es ir probando turbinas de gas. Para ello se introduce en el programa de 

simulación los datos de potencia nominal, caudal de gases de escape nominal, rendimiento y 

temperatura de los gases de escape. Con estos datos se vuelve a simular el programa y se 

chequea que la potencia producida por la turbina de gas en el caso simulado y la instalada al 

introducir los datos sean prácticamente equivalentes. Si no es el caso se debe proseguir 

probando con una nueva turbina de gas. La Tabla 22 recoge las características técnicas de las 

turbinas de gas seleccionadas. 
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Tabla 22 Turbinas de gas para cada tipo de amina 

 MEA DEA MDEA 

Fabricante Mitsubishi heavy ind. General electric energy Alstom power 

Modelo M701F5 109FA GT11N2(1) 

Nº de turbinas 6 2 2 

Rendimiento 40% 42.9% 33.3% 

Potencia nominal 359MWe 254.1MWe 113.6MWe 

Relación de presión 21 16.6 16 

Caudal de gases de escape 730kg/s 655kg/s 400kg/s 

Temperatura gases de escape 611ºC 592ºC 555ºC 

 

4.44.44.44.4 Potencias y producción eléctricaPotencias y producción eléctricaPotencias y producción eléctricaPotencias y producción eléctrica    

En primer lugar se van a listar las potencias térmicas de mayor relevancia en la integración del 

CCS. Los datos están contenidos en la Tabla 23. Como novedad se tiene que el condensador no 

disipa potencia ya que la turbina de media nº3 y la turbina de baja no existen ni tiene cabida el 

condensador. Por otro lado tenemos la potencia térmica a disipar en los intercoolers, que 

tiene un valor elevado pero con una utilidad baja ya que la temperatura del CO2 en los 

intercoolers oscila entre los 40ºC y los 120ºC. Se puede usar como fuente de calor residual o 

como precalentador de otros flujos. 

Tabla 23 Potencias térmicas de relevancia [MWt] 

Elemento MEA DEA MDEA 

HRSG 1845 535 285 

Condensador 0 0 0 

Aporte vapor 42.4 42.4 42.4 

Extracción vapor 22.34 22.34 22.34 

Intercoolers 177 75.2 62.2 

 

A continuación se van a presentar los datos para la potencia eléctrica. En primera instancia se 

tiene la potencia eléctrica de relevancia en la CP, Tabla 24. En ella se detallan las potencias 

producidas por las turbinas y las potencias consumidas por las bombas. La turbina de media 3 

y la turbina de baja, así como la bomba de baja y de media tienen unas potencias nulas. Se han 

incluido para remarcar el hecho de que se podría simular aplicando otras condiciones de forma 

que produjesen/consumiesen potencia. 

Tabla 24 Potencias eléctricas de relevancia en la CP [MWe] 

Elemento MEA DEA MDEA 

Turbina de gas 2078 508.8 224.7 

Turbina de alta 184 47.8 19.5 

Turbina de media 1 176 54.3 31.2 

Turbina de media 2 190 57.0 31.8 

Turbina de media 3 0 0 0 

Turbina de baja 0 0 0 

Bomba de baja 0 0 0 

Bomba de media 0 0 0 

Bomba de alta 12 3.3 1.6 

 



Eloy Pueyo Casabón, 2012 

Anexo VI: INTEGRACIÓN DE UN SISTEMA CCS  

 - 169 - 

Para terminar con este apartado, se resumen las potencias eléctricas consumidas en los 

diferentes ciclos así como la producción bruta para finalmente extraer la potencia neta 

producida o potencia exportable a la red eléctrica. Los datos están reflejados en la Tabla 25. 

Tabla 25 Producción y demanda, potencia exportable de energía eléctrica [MWe] 

Elemento MEA DEA MDEA 

Demanda de la siderurgia 111.3 111.3 111.3 

Demanda bombeo CCS 1.65 0.424 0.275 

Compresión del CO2 84.8 36.0 29.8 

Producción de la CP 2600 659.9 303.2 

Potencia exportable 2402 512.1 161.7 

 

4.54.54.54.5 Emisiones de COEmisiones de COEmisiones de COEmisiones de CO2222    

4.5.1 Datos resumidos 

En el caso de integración total de la siderurgia con la CP y con el sistema CCS se van a tener 

tres fuentes de emisiones de CO2: la propia siderurgia, la quema de los gases energéticos 

provenientes de la siderurgia y la quema del gas natural. Aunque las emisiones de las dos 

primeras fuentes permanezcan constantes ya que el funcionamiento y la producción de la 

industria siderúrgica no se ha modificado, si que lo hará el combustible extra de gas natural. La 

Tabla 26 contiene todos los datos relativos a emisiones de CO2. 

Tabla 26 Emisiones de CO2 de la integración siderurgia-CP-CCS [kg/s] 

Elemento emisor MEA DEA MDEA 

Industria siderúrgica 43.09 43.09 43.09 

Combustión gases en TG 66.39 66.39 66.39 

Combustión GN en TG 246.5 41.8 15.72 

TOTAL CO2 producido 356 151.3 125.2 

CO2 capturado con CCS 317.3 134.9 111.6 

TOTAL emitido 38.66 16.43 13.6 

 

4.5.2 Emisiones de CO2 equivalentes a la red eléctrica 

Se va a proceder a calcular, como en los casos anteriores, las emisiones de CO2 equivalentes a 

la red eléctrica porque la planta con la integración de CP y CCS es capaz de producir un 

excedente eléctrico y volcarlo a la red. La Tabla 27 contiene los datos acostumbrados a reflejar 

en este tipo de análisis. 

Tabla 27 Datos de emisiones de CO2 equivalente 

Tipo amina 
Energía eléctrica 

vendida 
Energía térmica 

equivalente 
Potencia de 

caldera ficticia 
Carbón 

Aire de 
combustión 

CO2 
equivalentes 
red eléctrica 

 [MWe] [kWt,eq] [kWt] [kg/s] [kg/s] [kg/s] 

MEA 2402 4804000 5264600 840.7 6222.2 1116.6 

DEA 512.1 1024200 1122400 179.2 1326.5 328.0 

MDEA 161.7 323400 354400 56.6 418.8 75.1 
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1111 IntroducciónIntroducciónIntroducciónIntroducción    

En este Anexo VII: se van a plasmar los últimos resultados obtenidos de las simulaciones. Para 

ello se van a comparar dos tipos de plantas: la planta real y la planta ficticia. Ambas producen 

la misma cantidad de acero como de electricidad, pero difieren en cuanto a emisiones de CO2 y 

a necesidades de combustibles. 

El caso real se ha modelizado en el apartado 4 del Anexo VI. Pero se ha dejado como 

parámetro libre la elección del tipo de amina a utilizar por el sistema CCS. Finalmente, a la 

vista de los resultados, se ha decidido usar la amina tipo MDEA ya que presenta unos 

resultados coherentes: un ratio de captura de CO2 cercano al 90%, una energía de 

regeneración relativamente baja, un tamaño de los equipos del ciclo de potencia coherentes a 

la disponibilidad tecnológica y una producción eléctrica no muy excesiva (recordar que el 

negocio central de la integración es la producción de la siderurgia, la introducción de la CP y el 

sistema CCS es para reducir costes medioambientales y obtener un extra de beneficio por la 

venta de electricidad). 

A continuación se estudiarán aspectos económicos tales como la cantidad de CO2 evitado, el 

valor máximo de inversión para obtener una rentabilidad económica y un ligero análisis de 

sensibilidad. 

2222 MetodologíaMetodologíaMetodologíaMetodología    

2.12.12.12.1 Elección de la metodología empleadaElección de la metodología empleadaElección de la metodología empleadaElección de la metodología empleada    

Para desarrollar la última parte del TFM se va a seguir la metodología empleada por los 

autores de [A,VII - 2] que desarrollan el estudio económico basándose en el estudio previo de 

[A,VII - 1]. Ya que los dos estudios se basan en la integración de un sistema CCS con una 

cementera y una central de potencia, los pasos a seguir son prácticamente los mismos. Hay 

que decir que la integración estudiada en las referencias anteriores es tanto a nivel energético 

como de flujos de materias, caso que en la siderurgia que atañe al presente TFM la parte 

importante es la integración energética por no tener la posibilidad de una integración de 

materiales. 

2.22.22.22.2 Esquema básico de la metodologíaEsquema básico de la metodologíaEsquema básico de la metodologíaEsquema básico de la metodología    

La idea básica es tener dos estados de operación de la siderurgia. En el primero de ellos no se 

dispondrá de un sistema de CCS y se le llamará ‘Caso ficticio’. En la segunda configuración de la 

siderurgia se incluye la integración total del sistema CCS y se le denominará ‘Caso real’. 

La configuración más compleja, la que corresponde al Caso real, se tiene la siderurgia 

produciendo acero y CO2, la central de potencia produciendo electricidad y CO2 y finalmente el 

sistema de captura de CO2 que atrapa el CO2 mediante absorción química. 

En la configuración que corresponde al Caso ficticio, se tiene la misma planta siderurgia 

produciendo la misma cantidad de acero y también CO2. También se dispone del 

aprovechamiento de los gases energéticos provenientes de la siderurgia en una central de 

potencia que produce electricidad y CO2. Ya que el objetivo del cálculo del Caso ficticio es que 

produzca la misma cantidad de acero y de electricidad que el Caso real, será necesario añadir 
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una central de potencia ficticia (de ahí la denominación Caso ficticio). Esta central de potencia 

ficticia tendrá un funcionamiento similar al ciclo combinado del caso ficticio y producirá la 

energía eléctrica necesaria para que la producción final sea igual al Caso real. 

Una vez se tiene dimensionado el Caso real y el Caso ficticio, se obtienen las producciones y 

necesidades de cada configuración (ver Fig. 1). Como se impone que la producción de acero es 

igual en ambos casos (la misma siderurgia), el excedente eléctrico es el mismo, tan solo queda 

comparar las emisiones de CO2. Como cabe esperar, el Caso real al disponer de CCS emite muy 

por debajo del Caso ficticio. 

El concepto de ‘Emisiones de CO2 evitadas’ viene al poder hacer una comparación de ambos 

casos. Entonces las emisiones evitadas serán las correspondientes a la diferencia entre las 

emisiones de CO2 del caso ficticio y del caso real. 

En último lugar se van a introducir un pequeño análisis económico. En vez de seguir la misma 

metodología empleada en [A,VII - 2] que consistía en obtener los costes específicos de capital, 

costes de los equipos, intereses bancarios, precios de los combustibles y materias primas 

principales, etc... para finalmente obtener el coste de emisión marginal por tonelada de CO2 

(coste máximo a pagar por cada tonelada de CO2 para que la introducción del sistema de CCS 

sea rentable económicamente). En el caso de la siderurgia, al no disponerse de referencias que 

analicen el caso de la integración con una CP y un sistema CCS y con unos valores de 

inversiones económicas y precios de compra de equipos muy volátiles y poco fiables, la 

estrategia seguir es ligeramente distinta. 

En el estudio económico se va a plasmar la cantidad de dinero en millones de euros (M€) que 

habría que invertir para que la integración siderurgia-CP-CCS fuera rentable variando 

parámetros críticos como pueden ser los años de vida de la planta, el interés bancario y el 

precio de mercado de la tonelada de CO2. 

 

Caso ficticio Producción ficticia       

Comparativa    TonCO2 evitada         Inversión máxima 

Caso real Producción real       

Fig. 1 Esquema básico de la metodología empleada 

3333 Caso real Caso real Caso real Caso real –––– Integración CP+CCS Integración CP+CCS Integración CP+CCS Integración CP+CCS    

Este apartado tiene como fin explicar la configuración seguida para el Caso real. Gráficamente 

está explicado en la Fig. 2. La configuración es la misma que se ha planteado en el apartado 4.2 

del Anexo VI. 

Como flujos principales de cada elemento de la integración se tiene: 

· Industria siderúrgica: produce acero y CO2. También se extrae gases energéticos y 

vapor. Consume vapor y electricidad. 

· Central de potencia: produce electricidad, CO2 y la extracción de vapor hacia la 

siderurgia. Consume los gases energéticos y un extra de gas natural así como el aporte 

de vapor. 
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· CCS: ‘consume’ el CO2 de los dos casos anteriores para capturarlo y emite el porcentaje 

que se ha fijado en torno al 10%. También consume electricidad pero se le ha imputado 

a la central de potencia al ser un flujo no determinante (interesa la producción eléctrica 

final de venta). 

 

 

Fig. 2 Configuración para el Caso real 

La Tabla 1 contiene los productos finales de la integración que son el acero, las emisiones de 

CO2 y la electricidad en excedente. También se presenta la demanda de energía térmica que se 

necesita. Los valores totales son los que se compararán con el caso ficticio que se presentará 

en el apartado 4 de este anexo. 

Tabla 1 Emisiones de CO2, flujos eléctricos y requerimientos térmicos. Caso real 

 Acero CO2 Electricidad E. térmica 

 [kg/s] [kg/s] [kWe] [kWt] 

Siderurgia 95.73 43.1 -111.3 -387.1 

Central de potencia ---- 66.4 273 694.1 

Sistema CCS ---- -95.9 ---- ---- 

TOTAL 95.73 13.6 161.7 307 

4444 Caso ficticio Caso ficticio Caso ficticio Caso ficticio –––– Integración CP + CP ficticia Integración CP + CP ficticia Integración CP + CP ficticia Integración CP + CP ficticia    

En la Fig. 3 se presenta el diagrama del Caso ficticio. Se observa que no dispone de sistema 

CCS, mas en cambio se ha debido poner una central de potencia ficticia para producir la misma 

cantidad de energía eléctrica que en el Caso real. 

En este caso los requerimientos y producciones de cada elemento de la configuración son más 

sencillos y se corresponden cualitativamente (pero no cuantitativamente) en gran medida a los 

presentados en el Caso real. En esta configuración presentada, la gran incógnita es la central 

de potencia ficticia. 
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Fig. 3 Configuración para el caso ficticio 

4.14.14.14.1 Modelización de la central de potencia ficticiaModelización de la central de potencia ficticiaModelización de la central de potencia ficticiaModelización de la central de potencia ficticia    

Para la modelización de la central de potencia ficticia se debe basar en el funcionamiento de 

una central de potencia. Para ello se va a referir en la central de potencia modelizada en el 

caso base presentado en apartado 6 del Anexo V. Aunque en la Fig. 3 se disponga de dos 

centrales de potencias por separado, lo que realmente se va a hacer es ‘repotenciar’ el ciclo 

combinado existente con el objetivo de producir la misma cantidad eléctrica que en el caso 

real. Ya que la repotenciación de la planta de potencia significaría en un estudio real la 

colocación de distintos elementos como por ejemplo la TG, el funcionamiento variaría en 

mayor o menor medida. En el caso que atañe, al ser un caso ficticio, se van a suponer que los 

equipos empleados funcionan de igual manera a distintos valores de carga (por ejemplo, la TG 

funcionaría igual a un 40% de la capacidad nominal, como al 100% como al 200% en cuanto a 

rendimiento, factor de emisión de CO2, etc…). 

La Tabla 2 contiene los datos necesarios para el posterior cálculo de los parámetros que 

modelizarán la central de potencia ficticia. La producción eléctrica neta del ciclo de potencia 

original se usan 111.3 MWe para abastecer la siderurgia y se exportan 87.1 MWe a la red 

eléctrica. La central de potencia ficticia no tendrá que abastecer eléctricamente a la siderurgia, 

por lo tanto la producción eléctrica neta será equiparable a la potencia a exportar. El valor de 

emisiones de CO2 es el que se le imputa a la central de potencia ya que la industria siderúrgica 

tiene su valor de emisión de CO2 por separado. Finalmente se encuentra la energía de los gases 

energéticos que es el combustible principal y ya que queremos repotenciar la planta será 

necesario quemar más combustible. 

Tabla 2 Parámetros básicos de caracterización de la CP 

Variable Valor 

Producción eléctrica neta 198.4 MWe 

Emisión de CO2 66.39 kg/s 

Energía de gases energéticos 367 MWt 
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Con los datos contenidos en la tabla anterior, se pueden obtener los factores para modelizar la 

central de potencia ficticia: 

54.0
367

4.198

_

_Pr ===
fuelPotencia

netaoducción
CPη  

eemisión MWskgCO
netaoducción

EmisiónCO
Factor //3346.0

4.198

39.66

_Pr 2
2 ===  

Tan solo serán necesarios de conocer el rendimiento de la central de potencia y el factor de 

emisión de CO2 ya que se tienen dos incógnitas: las emisiones de CO2 y la cantidad de 

combustible a introducir para producir el defecto de energía eléctrica. El valor del rendimiento 

está acorde a los valores típicos de un ciclo combinado, pero sin llegar a los valores cercanos al 

60% que se pueden conseguir actualmente. Esto es debido a que a la salida del HRSG la 

temperatura de los gases se ha fijado en 150ºC pudiéndose enfriar más y recuperar más 

energía térmica. Pero se ha fijado en 150ºC ya que se tenía en mente colocar el sistema CCS 

que requiere un proceso de limpiado previo, donde el sistema de eliminación de los NOx 

requiere de temperaturas cercanas a 200ºC. 

4.24.24.24.2 Dimensionamiento de la central de potencia ficticiaDimensionamiento de la central de potencia ficticiaDimensionamiento de la central de potencia ficticiaDimensionamiento de la central de potencia ficticia    

Para dimensionar la central de potencia ficticia se va hacer uso de los valores obtenidos en el 

apartado anterior: el rendimiento de la CP y el factor de emisión. Para ello se debe partir de un 

dato conocido. Este dato es la energía eléctrica a producir por la central de potencia ficticia. 

Ya que el conjunto de la siderurgia, la CP y la nueva CP ficticia debe producir la misma cantidad 

de acero y de electricidad que en el Caso real, como el acero solo se produce en la siderurgia y 

ya se tiene el mismo valor, tan solo resta producir la misma cantidad eléctrica. En el caso real 

se tienen 161.7 MWe y de momento en este caso solo se producen 87.1 MWe debido a la 

integración de la CP. Por lo tanto será necesario producir 74.6 MWe para tener la misma 

producción eléctrica. 

Haciendo uso de los parámetros de caracterizan la CP ficticia presentados en el apartado 4.1 

anterior, se tiene una emisión de CO2 de 24.7 kg/s y una necesidad de fuel de 138 MWt. En la 

Fig. 3 se ha especificado que son gases energéticos ya que se ha supuesto que el 

funcionamiento de la CP no variaría. Los datos completos están en la Tabla 3. 

Tabla 3 Emisión de CO2, flujos eléctricos y requerimientos térmicos. Caso ficticio 

 Acero CO2 Electricidad E. térmica 

 [kg/s] [kg/s] [kWe] [kWt] 

Siderurgia 95.73 43.1 -111.3 -387.1 

Central de potencia ---- 66.4 198.4 694.1 

Central de potencia ficticia ---- 24.7 74.6 138 

TOTAL 95.73 134.4 161.7 445 

5555 Emisiones de COEmisiones de COEmisiones de COEmisiones de CO2222 evitadas evitadas evitadas evitadas    

En el apartado anterior se han definido el modo de funcionamiento de los dos casos a 

comparar. Se conocen los productos que interesan, acero electricidad y CO2, para poder tener 

argumentos para comparar ambos casos. Ya que se ha impuesto que ambos casos produzcan 
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el mismo acero (como se tiene la misma siderurgia en ambos casos se cumple) y la misma 

producción eléctrica (se ha añadido la central de potencia ficticia) tan solo falta comparar las 

emisiones de CO2. 

Obteniendo los valores correspondientes de las Tabla 1 y Tabla 3 se puede llegar a saber las 

emisiones de CO2 evitadas. Por lo tanto para el caso real se tienen unas emisiones de 13.6 kg/s 

de CO2 y en el caso ficticio de 134.4 kg/s. Suponiendo que el funcionamiento de la industria sea 

durante todo el año en continuo, sin paradas para mantenimiento, entonces las emisiones de 

CO2 evitadas se pueden calcular y están recogidas en la Tabla 4. 

Tabla 4 Emisiones de CO2 evitadas mensuales y anuales 

 [kg/s] [ton/mes] [ton/año] 

Caso real 13.6 35730 428760 

Caso ficticio 134.4 353310 4240000 

Emisiones evitadas 120.8 317580 3811000 

6666 Análisis económicoAnálisis económicoAnálisis económicoAnálisis económico    

6.16.16.16.1 Parámetros influyentesParámetros influyentesParámetros influyentesParámetros influyentes    

En este apartado se abordan los aspectos económicos básicos que atañen a la ejecución e 

implantación de la integración de la siderurgia con la central de potencia y con el sistema de 

captura de CO2. En un principio se va a calcular el coste económico de las emisiones de CO2 

evitadas. Más que un coste económico sería un beneficio para la empresa ya que al no emitir 

gases de efecto invernadero no tendría que pagar el correspondiente monto económico 

establecido. Si la reducción fuese muy drástica incluso se daría el caso de que la empresa 

podría vender los derechos de emisión ya que no alcanzaría su cupo máximo con lo que 

repercutiría en un beneficio mayor, aunque este caso no ha sido considerado. 

Para el análisis económico se han tenido en cuenta los siguientes factores: 

· Años de vida. Ya que la vida de funcionamiento de los equipos que se van a instalar no 

tiene una duración infinita si no limitada, se debe considerar. En esta vida no influye el 

término obsolescencia tecnológica, es decir la tecnología implantada se verá superada 

por nuevos sistemas que se descubran e implanten en un futuro. 

· Interés económico. Con esta variable se intentará dar un valor más real a los pagos de 

dinero. Esto es, si cada mes la empresa debe desembolsar la misma cantidad de dinero, 

la cantidad desembolsada en el primer día no tiene el mismo valor cualitativo que la 

desembolsada el último día ya que habrán transcurrido ‘x’ años, aunque el valor 

cuantitativo sea el mismo. Con este aspecto se introduce el término ‘depreciación 

económica’.  

· Precio de la tonelada de CO2. El precio de la tonelada de CO2 viene fijado diariamente 

por el mercado de emisiones de CO2 a nivel de la Comunidad Europea. Aunque el valor 

es fruto de las leyes de la oferta y la demanda, para este estudio preliminar se va a 

suponer constante a lo largo de toda la vida útil de la empresa. 

6.26.26.26.2 Valores de los parámetrosValores de los parámetrosValores de los parámetrosValores de los parámetros    

Una vez establecidos los parámetros más influyentes en el apartado anterior, ahora resta darle 

un valor para poder hacer la simulación y obtener los montos económicos.  
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6.2.1 Años de vida 

Para definir un valor acorde con el funcionamiento de la industria siderurgia, la central de 

potencia y el sistema CCS, se debe poner atención en el comportamiento singular de cada uno 

de ellos. Por lo tanto, el conocimiento tecnológico y los años de experiencia son esenciales a la 

hora de estimar unos años de vida coherentes.  

Tanto la industria siderúrgica como la central de potencia poseen unos valores altos en cuanto 

a conocimiento tecnológico y años de experiencia. El proceso siderúrgico descrito en el Anexo I 

no ha variado excesivamente a lo largo de los años y pequeñas mejoras se pueden 

implementar. En cuanto a la central de potencia, aunque es un campo ampliamente estudiado, 

las mejores tecnológicas en cuanto a materiales se refieren, suponen evoluciones importantes 

en los diversos componentes. 

Finalmente, para el sistema CCS al no disponerse de experiencia acumulada a niveles 

industriales y un conocimiento tecnológico en plena evolución, la instalación de un tipo de 

sistema CCS a día de hoy se podría ver ampliamente superando en cuanto a prestaciones a los 

pocos años de su puesta en marcha. 

Por lo tanto se va a suponer un valor de años de vida de 25 años, reflejando de este modo que 

aunque los diversos componentes de la planta pudieran seguir funcionando en perfectas 

condiciones una vez superados estos años, la realidad tecnológica existente nos indicaría que 

la mejor opción sería un reemplazo o una actualización de la planta. 

6.2.2 Interés económico 

El interés económico servirá para poder actualizar el coste económico de los diversos 

desembolsos en cada mes o en cada año al valor que tendría actualmente sumado. Lo que 

viene siendo el VAN (valor actual neto). 

Se partirá de un interés económico anual. Luego se puede calcular el valor del interés 

económico equivalente mensual como indica la eq.1 

12)1(1 mesaño ii +=+         (eq.1) 

Del mismo modo se podría obtener el interés trimestral, semanal, diario… colocando como 

exponente en la eq.1 el número de elementos que contiene el año entero (por ejemplo diario 

tendría un exponente 365, trimestral tendría un exponente de 4, etc…). 

Todo esto orientado a actualizar los precios de los costes para cada periodo de tiempo. El 

concepto viene recogido en la eq.2. 

p
bruto

act i

C
C

)1( +
=          (eq.2) 

Donde se tiene que Cact es el coste actualizado a día actual, Cbruto es el coste a desembolsar en 

el periodo correspondiente en la línea de tiempo, i es el interés y p es la diferencia de periodos 

entre el tiempo actual y el tiempo de desembolso de Cbruto. Por ejemplo, si se desembolsan 100 

unidades económicas en agosto y estamos en enero, el interés tendría que ser i=imes y el valor 

de p sería 9 ya que agosto es el mes 10 y enero el mes 1. 

Finalmente tan solo restaría sumar todas las cantidades actualizadas como indica la eq.3: 

∑
=

=

=
AñosVidap

p
pactCVAN

1
,         (eq.3) 
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6.2.3 Precio de la tonelada de CO2 

Aunque el precio de la tonelada de CO2 tenga un valor volátil ya que está sujeto a las 

fluctuaciones propias de un mercado liberalizado de valores, se va a intentar dar un valor fijo.  

El precio de emisión por tonelada de CO2 en el año 2012 se presenta en la Fig. 4 según datos 

de [A,VII - 3]. Se observa un valor promedio de unos 7€/tonCO2. A fecha de entrega del TFM el 

precio era de 8.25€/tonCO2. En cambio en la Fig. 5 se muestra el histórico de la evolución del 

precio de emisión por tonelada de CO2. La caída en el año 2008 se produce por efectos de la 

crisis, menor consumo implica menores emisiones de CO2 lo que baja el precio de emisión al 

haber en el mercado muchos derechos. En 2012, al entrar en vigor la nueva fase en cuanto a 

derechos de emisión se refiere, se observa una evolución con tendencia a la baja en el precio 

de emisión. 

 

Fig. 4 Precio de emisión de 

tonelada de CO2 durante 2012 
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Fig. 5 Histórico de la evolución del precio de emisión 

por tonelada de CO2 [A,VII - 4][Fuente propia] 

Aunque actualmente los precios de emisión no superan los 10€/tonCO2, esto se debe 

principalmente al efecto de la crisis y a la bajada de emisiones de CO2. Pero se pretende que se 

alcancen valores a largo plazo estables entre 20€/tonCO2 y 50€/tonCO2 según comunicaciones 

del Parlamento europeo recogidas en [A,VII - 5]. Debido a esta futura predicción, el valor final 

escogido para realizar los cálculos y ofrecer unos resultados será de 30€/tonCO2. 

6.36.36.36.3 Resultados preliminaresResultados preliminaresResultados preliminaresResultados preliminares    

Para la ejecución de los cálculos se ha procedido a calcular el desembolso económico mensual. 

Además se han utilizado los parámetros anteriores, a saber: años de vida 25 años, interés 

económico del 4% y precio por tonelada de CO2 de 30€/tonCO2.  

Con las premisas anteriores y sabiendo que se evitan 317850 tonCO2/mes, se tiene que cada 

mes se evita desembolsar un monto económico de 9527000 €/mes. Este sería el valor Cbruto a 

introducir en la eq.2. 

Al actualizar los valores mes a mes aplicando el interés económico y sumando todos los 

resultados se tiene un VAN equivalente de 1818.5 millones de €. Ver Tabla 5. 

Tabla 5 Cantidades económicas mensuales y VAN 

 Cantidad [M€] 

Desembolso mensual bruto 9.52 

VAN 1818.5 

 



Eloy Pueyo Casabón, 2012 

Anexo VII: EMISIONES DE CO2 EVITADAS  

 - 182 - 

Este valor de 1818.5M€ nos indica que si se coloca un sistema CCS como el estudiado se puede 

llegar a ahorrar 1818.5M€ por haber evitado la emisión de toneladas de CO2.  

Visto desde otro punto de vista, esta cantidad obtenida sería el máximo dinero a invertir para 

la construcción e implementación de la industria siderúrgica con su central de potencia y ciclo 

CCS. Se tendría que tener en cuenta el coste del combustible adicional, los requerimientos de 

capital para la construcción de los nuevos sistemas, etc… 

7777 Análisis de sensibilidadAnálisis de sensibilidadAnálisis de sensibilidadAnálisis de sensibilidad    

Aunque en el apartado 6.2 se han fijado unos valores para los parámetros años de vida, interés 

económico y precio de emisión de CO2, también se ha comentado que estos valores pueden 

ser fácilmente volátiles y modificar su valor. Por lo tanto es conveniente la inclusión de un 

análisis de sensibilidad con respecto a esos parámetros. 

Para realizar este análisis se van a implementar 27 casos distintos de VAN que corresponden a 

variar los valores de las tres variables en tres niveles: 

· Años de vida: se van a considerar 15, 20 y 25 años. 

· Interés económico: se estudiará para valores anuales de 4, 6 y 8 %. 

· Precio de emisión: se tendrán los valores de 20, 25 y 30 €/tonCO2. 

A continuación, en la Tabla 6 se encuentran contenidos los datos de VAN para todas las 

combinaciones posibles con los valores anteriormente señalados. 

Tabla 6 VAN para distintos valores de años de vida, interés económico y precio 

por emisión de tonelada de CO2 
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7.17.17.17.1 Influencia de los años de vidaInfluencia de los años de vidaInfluencia de los años de vidaInfluencia de los años de vida    

Como ya se ha propuesto anteriormente, los años de vida del ciclo CCS son los más restrictivos 

ya que la implementación de un nuevo sistema CCS más evolucionado tecnológicamente será 

más atractivo. Por lo tanto, el valor de 25 años es un valor muy conservador a la hora de 

obtener un buen resultado en el VAN. Se van a considerar valores de 20 y 15 años para ver la 

influencia de este parámetro.  

En la Fig. 6 se muestran las líneas de tendencia de la inversión máxima para construir la 

integración siderurgia+CP+CSS. Se observa una tendencia a la baja cuando se disminuyen los 

años de vida. Es decir, se puede gastar menos dinero si se quiere disponer de un sistema que 

dure menos años, pero este factor se puede ver mejorado por una instalación de un sistema 

evolucionado en un periodo de tiempo menor. Se tendrían que tener en cuenta los gastos de 

inversión de la sustitución del nuevo equipo. 

También se observa una caída más pronunciada en cuanto a las demás condiciones (interés y 

precio de emisión) son más benévolas. De este modo el factor años de vida cobra mayor 

importancia. De hecho, en la línea inferior (condiciones benévolas) la caída es del orden del 

40% (disminuir la vida en un 40% significa poder gastar un 40% menos). En cambio, en la línea 

superior (condiciones más rigurosas) la caída es inferior y vale un 25% (acortar la vida un 40% 

significa poder gastar un 25% menos). Se tiene una ligera tendencia cuadrática, es decir se 

podría modelar con una ecuación de segundo grado. 
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Fig. 6 Influencia del parámetro ‘Años de vida’ 

7.27.27.27.2 Influencia del interés económicoInfluencia del interés económicoInfluencia del interés económicoInfluencia del interés económico    

El interés económico se ha tratado como el concepto de depreciación del valor. Así, si se 

desembolsara la misma cantidad en un periodo de tiempo a 10 años con un interés económico 

mayor que el estudiado, la actualización de dicho desembolso daría un precio actualizado 

menor. Lo que viene a ser lo mismo que si existe un interés económico elevado lo que hace es 

que se tenga un valor VAN menor y por tanto no se pueda llegar a gastar tanto dinero en la 

instalación del sistema CCS. 

La Fig. 7 muestra los resultados en forma de gráfica y efectivamente se puede comprobar que 

tienen una tendencia a la baja al aumentar el interés que refleja de forma numérica el 

concepto explicado en el párrafo anterior. En este caso ocurre al contrario que con el 

parámetro Años de vida: cuando se tienen condiciones más benévolas (curva inferior) el 

interés económico es influyente pero con menor importancia que si se tienen condiciones 
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estrictas (curva superior) en dónde el parámetro interés económico tiene una influencia 

fuerte. 

En valores relativos, se puede comprobar dicha influencia. Por ejemplo, para la línea superior 

la variación del interés de pasar del 4% al 8% el VAN disminuye un 30% (tener un interés el 

doble de alto te sustrae un 30% de la inversión máxima inicial). En cambio para la línea inferior 

esa bajada se corresponde a 22%. La influencia es ligeramente menor, pero no tan significativa 

con el parámetro anterior. 
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Fig. 7 Influencia del parámetro ‘Interés económico’ 

7.37.37.37.3 Influencia del Influencia del Influencia del Influencia del precio de emisiónprecio de emisiónprecio de emisiónprecio de emisión    

El precio de emisión por tonelada de CO2 es un parámetro que en primer lugar se puede ver la 

importancia que va a tener. Además se puede intuir que será un parámetro con influencia 

proporcional, ya que si el parámetro aumenta el precio final va a aumentar en la misma 

proporción. 

Todas estas conjeturas se pueden ver plasmadas en la Fig. 8. Se tiene una tendencia 

proporcional positiva: a cuanto más vale emitir una tonelada, de mayor dinero se dispone para 

hacer la inversión (no hay que olvidar que emitimos ‘toneladas evitadas’). Además se observa 

que la influencia de el resto de parámetros es baja ya que las tres líneas están relativamente 

cerca (la diferencia máxima se observa en unos 50M€). 
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Fig. 8 Influencia del parámetro ‘Precio de emisión’ 
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Hablando de términos relativos como se ha hecho anteriormente se puede descubrir la 

tendencia lineal (y no parabólica o con saturación como en casos anteriores). De este modo, 

en la línea inferior tener un coste +10€/tonCO2 (supone un incremento del 50%) se traduce en 

una subida del VAN del 50%. Lo mismo ocurre para las demás curvas. 

7.47.47.47.4 Importancia de los parámetrosImportancia de los parámetrosImportancia de los parámetrosImportancia de los parámetros    

Ya que todos los parámetros influyen en mayor o menor medida en la obtención del VAN y lo 

modifican sustancialmente, se va a estudiar cual de ellos es el más influyente. 

Para ello se va a calcular, en términos globales, la variación que producen en el VAN cada tipo 

de parámetro al variarlo un 1%. Se van a tomar valores promedio. Lo que se quiere expresar es 

la importancia relativa, es decir, si se modifica un 1% el valor de un parámetro, en que 

porcentaje lo hará el VAN. Si el porcentaje de variación es inferior al 1% se puede decir que la 

importancia relativa no es muy grande, si es igual al 1% se tiene una importancia proporcional 

y si es mayor que el 1% la importancia es grande. 

Tabla 7 Importancia relativa de los parámetros 

 %variación Importancia 

Años de vida 0.481 Baja 

Interés económico -0.262 Relativamente baja 

Precio de emisión 1.000 Proporcional 

 

La Tabla 7 contiene el % de variación en tanto por 1. Este valor nos indica que si se modifica en 

un 1% el parámetro de estudio, el VAN lo hace en un ‘x’%. Hay un caso con un porcentaje de 

variación negativo que nos indica que el VAN disminuye conforme se incremente el interés 

económico, pero al ser un valor bajo no es muy importante. Más o menos se puede deducir 

que el precio de emisión por tonelada es 4 veces más importante que el interés económico y 2 

veces más importante que la vida útil de la instalación. 

 

 



Eloy Pueyo Casabón, 2012 

Anexo VII: EMISIONES DE CO2 EVITADAS  

 - 186 - 

8888 RRRReferenciaseferenciaseferenciaseferencias    AnAnAnAnexo VII:exo VII:exo VII:exo VII:    EMISIONESEMISIONESEMISIONESEMISIONES    DEDEDEDE    COCOCOCO2222 EVITADAS EVITADAS EVITADAS EVITADAS    

[A,VII - 1] D. Catalina Tomás;: Integración del funcionamiento de una cementera con una central térmica y un 

sistema de captura de CO2. Proyecto fin de carrera en Ingeniería industrial. Director: L.M. Romeo Giménez. 

Universidad de Zaragoza (2010) 

[A,VII - 2] L.M. Romeo; D. Catalina; P. Lisbona; Y. Lara; A. Martínez;: Reduction of greenhouse gas emissions by 

integration of cement plantas, power plants, and CO2 capture systems. Greenhouse gas science and 

technology I (2011) 

[A,VII - 3] Boletín mensual de estadística. Agosto-Septiembre 2012. Ministerio de agricultura, alimentación y Medio 

ambiente (2012) 

[A,VII - 4] www.sendeco2.com 

[A,VII - 5] http://www.presseurop.eu/es/content/news-brief/1314571-el-parlamento-europeo-revisa-el-precio-del-

co2 

 

 

 

 

 

 

 



· 

· 

 - 1 - 

 

Máster universitario 

Energías renovables 

y 

Eficiencia energética 

  

14 de noviembre de 2012   

 

 

 

 

ANEXO VIIIANEXO VIIIANEXO VIIIANEXO VIII    
SIMULACIÓN EESSIMULACIÓN EESSIMULACIÓN EESSIMULACIÓN EES    

 

 

 

 

 

 

 

 

Eloy Pueyo Casabón 

Director: D. Luis Miguel Romeo Giménez 
 



File:C:\TFM\ANEXO VIII - Simulación EES\ANEXO VIII - Programa EES.EES 13/11/2012 12:13:06  Page 1
EES Ver. 9.215: #3470:  For use only by students and faculty in the Departamento de Ingenieria Mecanica Universidad de Za

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

ESTUDIO DE FUNCIONAMIENTO DE LA INTEGRACIÓN DE UNA PLANTA SIDERÚRGICA CON UNA CENTRAL DE POTENCIA
Y UN SISTEMA DE CAPTURA DE CO2

 

Anexo VIII

 

Autor: Eloy Pueyo Casabón

Director: D. Luis Miguel Romeo Giménez

 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 INTRODUCCIÓN DE DATOS DEL ANEXO II 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO II - 2.2.- Pesos moleculares y energías de combustión 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Tabla 1

Pesos atómicos, [g/mol]

MrH   =  1,00797 Peso atómico del hidrógeno
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MrC   =  12,01115 Peso atómico del carbono

MrN   =  14,0067 Peso atómico del nitrógeno

MrO   =  15,9994 Peso atómico del oxígeno

MrAr   =  39,948 Peso atómico del argón

Tabla 2 - Parte 1

Pesos moleculares de los elementos, [g/mol]

Mr1   =  0  · MrH  + 1  · MrC  + 0  · MrN  + 1  · MrO Peso molecular del CO

Mr2   =  2  · MrH  + 0  · MrC  + 0  · MrN  + 0  · MrO Peso molecular del H2

Mr3   =  0  · MrH  + 1  · MrC  + 0  · MrN  + 2  · MrO Peso molecular del CO2

Mr4   =  0  · MrH  + 0  · MrC  + 2  · MrN  + 0  · MrO Peso molecular del N2

Mr5   =  4  · MrH  + 1  · MrC  + 0  · MrN  + 0  · MrO Peso molecular del CH4

Mr6   =  6  · MrH  + 2  · MrC  + 0  · MrN  + 0  · MrO Peso molecular del C2H6

Mr7   =  8  · MrH  + 3  · MrC  + 0  · MrN  + 0  · MrO Peso molecular del C3H8

Mr8   =  10  · MrH  + 4  · MrC  + 0  · MrN  + 0  · MrO Peso molecular del C4H10

Mr9   =  2  · MrO Peso molecular del O2

Mr10   =  1  – 0,21  – 
0,934

100
 · Mr4  + 0,21  · Mr9  + 

0,934

100
 · MrAr Peso molecular del aire

Mr11   =  MrAr Peso molecular del Ar

Tabla 2 - Parte 2

Energía de combustión de los elementos, [kJ/mol]

Ecomb;1   =  283 Energía de combustión del CO

Ecomb;2   =  285,8 Energía de combustión del H2

Ecomb;3   =  0 Energía de combustión del CO2

Ecomb;4   =  0 Energía de combustión del N2

Ecomb;5   =  887,1 Energía de combustión del CH4

Ecomb;6   =  1559,7 Energía de combustión del C2H6

Ecomb;7   =  2219,2 Energía de combustión del C3H8

Ecomb;8   =  2879 Energía de combustión del C4H10

Ecomb;9   =  30 Energía de combustión del carbón. [MJ/kg]

Tabla 2 - Parte 3

Calor específico de los elementos, [kJ/kg·k]

Cp;1   =  1,049 Calor específico del CO

Cp;2   =  14,42 Calor específico del H2

Cp;3   =  0,942 Calor específico del CO2

Cp;4   =  1,04 Calor específico del N2

Cp;5   =  2,191 Calor específico del CH4

Cp;6   =  1,723 Calor específico del C2H6

Cp;7   =  1,642 Calor específico del C3H8

Cp;8   =  1,647 Calor específico del C4H10
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO II - 2.4.- Composición de cada tipo de combustible 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Tabla 3 - Gas natural

gn1   =  0 Composiciones en % para el gas natural

gn2   =  0

gn3   =  0,9

gn4   =  1,3

gn5   =  90,9

gn6   =  5,4

gn7   =  1,1

gn8   =  100  – Sum gn1..7

Tabla 4 - COG

cog1   =  5,9 Composiciones en % para el COG

cog2   =  57,4

cog3   =  2

cog4   =  6,4

cog5   =  26,9

cog6   =  0,9

cog7   =  0,5

cog8   =  100  – Sum cog1..7

Tabla 5 - BOF

bof1   =  61,6 Composiciones en % para el BOF

bof2   =  2,9

bof3   =  17

bof4   =  18,1

bof5   =  0,4

bof6   =  0

bof7   =  0

bof8   =  100  – Sum bof1..7

Tabla 6 - BFgas

bfgas1   =  24,3 Composiciones en % para el BFgas

bfgas2   =  2,9

bfgas3   =  20
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bfgas4   =  52,7

bfgas5   =  0,1

bfgas6   =  0

bfgas7   =  0

bfgas8   =  100  – Sum bfgas1..7

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO II - 2.1.- Número de moles en la mezcla 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Aplicar ecuación (eq.1).   n=(PV)/(RT)

R   =  0,08205746 Constante de los gases ideales, [atm*L/mol/K]

T   =  273,15 Temperatura en condiciones normales, [K]

Obtención del nº de moles de cada sustancia dentro de cada combustible

ngn;i   =  10  · 
gn i

R  · T
        for  i  = 1  to  8 [mol/Nm3]

nCOG;i   =  10  · 
COG i

R  · T
        for  i  = 1  to  8

nBOF;i   =  10  · 
BOF i

R  · T
        for  i  = 1  to  8

nBFgas;i   =  10  · 
BFgas i

R  · T
        for  i  = 1  to  8

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO II - 2.3.- Poder calorífico, densidad, densidad energética y calor específico 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Aplicar ecuación (eq.2).   PC=(SUMni·Ecombi)/1000

Obtención del poder calorífico de cada tipo de combustible

[MJ/Nm3]

PCgn   =  

Σ
j=1

8

ngn;j Ecomb;j

1000

PCCOG   =  

Σ
j=1

8

nCOG;j Ecomb;j

1000
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PCBOF   =  

Σ
j=1

8

nBOF;j Ecomb;j

1000

PCBFgas   =  

Σ
j=1

8

nBFgas;j Ecomb;j

1000

Aplicar ecuación (eq.3).   PC=(SUMni·Mri)/1000

Obtención de la densidad del gas

[kg/Nm3]

ρgn   =  

Σ
j=1

8

ngn;j Mr j

1000

ρCOG   =  

Σ
j=1

8

nCOG;j Mr j

1000

ρBOF   =  

Σ
j=1

8

nBOF;j Mr j

1000

ρBFgas   =  

Σ
j=1

8

nBFgas;j Mr j

1000

Aplicar ecuación (eq.4).   epsilon=rho/PC

Obtención de la densidad energética

[kg/MJ]

εgn   =  
ρgn

PCgn

εCOG   =  
ρCOG

PCCOG

εBOF   =  
ρBOF

PCBOF

εBFgas   =  
ρBFgas

PCBFgas

Aplicar ecuación (eq.5).   Cp=(SUM%i·Cpi)/100

Obtención de la capacidad calorífica del gas

[kJ/kg·K]

Cp.gn   =  

Σ
j=1

8

gn j Cp;j

100

Cp.COG   =  

Σ
j=1

8

COG j Cp;j

100

Cp.BOF   =  

Σ
j=1

8

BOF j Cp;j

100
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Cp.BFgas   =  

Σ
j=1

8

BFgas j Cp;j

100
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 INTRODUCCIÓN DE DATOS DEL ANEXO III 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO III - 2.- Calores específicos 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Tabla 1 - Calores específicos de las sustancias. [kJ/kg·K]

Cp;9   =  0,5016 Calor específico del acero

Cp;10   =  0,4826 Calor específico de los aditivos

Cp;11   =  1,012 Calor específico del aire

Cp;12   =  1,47 Calor específico del alquitrán

Cp;13   =  0,5203 Calor específico del argón

Cp;14   =  0,7942 Calor específico de la escoria

Cp;15   =  0,45 Calor específico del hierro

Cp;16   =  0,4652 Calor específico del lime

Cp;17   =  0,7106 Calor específico del limestone

Cp;18   =  0,7315 Calor específico del mineral de hierro

Cp;19   =  3,81 Calor específico del (NH4)2SO4

Cp;20   =  0,918 Calor específico del oxígeno

Cp;21   =  2,09 Calor específico del petróleo

Cp;22   =  0,1296 Calor específico del plomo

Cp;23   =  0,3762 Calor específico del zinc

Cp;24   =  0,48  · Cp;9  + 0,52  · Cp;16 Calor específico de aditivos en BOF

Cp;25   =  0,49  · Cp;12  + 0,51  · Cp;19 Calor específico de limpieza de gases en coke oven

Cp;26   =  0,74  · Cp;22  + 0,26  · Cp;23 Calor específico de limpieza de gases en sinter plant

Cp;27   =  4,18 Calor específico del agua

Cp;28   =  Cp.gn Calor específico del gas natural
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Cp;29   =  Cp.COG Calor específico del COG

Cp;30   =  Cp.BOF Calor específico del BOF

Cp;31   =  Cp.BFgas Calor específico del BFgas

Cp;32   =  0,482 Calor específico del sinterizado

Cp;33   =  0,836 Calor específico del coque

Cp;34   =  0,834 Calor específico del carbón

Cp;35   =  Cp;corrienteoxigeno Calor específico de la corriente de oxígeno en ASU

Cp;36   =  Cp;corrientenitrogeno Calor específico de la corriente de nitrógeno en ASU

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Asignación de calores específicos a las corrientes input/output de cada componente 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Componente 1 - Basic oxygen furnace

Componente 2 - Blast furnace

Componente 3 - Coke oven

Componente 4 - Sinter plant

Asignación para el componente 1 - Basic oxygen furnace

Cp;4;1   =  Cp;20 Inputs

Cp;5;1   =  Cp;4

Cp;6;1   =  Cp;11

Cp;7;1   =  Cp;27

Cp;8;1   =  Cp;13

Cp;9;1   =  Cp;15

Cp;10;1   =  Cp;15

Cp;11;1   =  Cp;17

Cp;12;1   =  Cp;31

Cp;13;1   =  Cp;29

Cp;14;1   =  Cp;28

Cp;15;1   =  Cp;3 Outputs

Cp;16;1   =  Cp;1

Cp;17;1   =  Cp;9

Cp;18;1   =  Cp;14

Cp;19;1   =  Cp;14

Cp;20;1   =  Cp;30

Cp;21;1   =  Cp;30
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Asignación para el componente 2 - Blast furnace

Cp;4;2   =  Cp;20 Inputs

Cp;5;2   =  Cp;4

Cp;6;2   =  Cp;11

Cp;7;2   =  Cp;27

Cp;8;2   =  Cp;27

Cp;9;2   =  Cp;32

Cp;10;2   =  Cp;18

Cp;11;2   =  Cp;33

Cp;12;2   =  Cp;14

Cp;13;2   =  Cp;17

Cp;14;2   =  Cp;21

Cp;15;2   =  Cp;34

Cp;16;2   =  Cp;31

Cp;17;2   =  Cp;30

Cp;18;2   =  Cp;27 Outputs

Cp;19;2   =  Cp;14

Cp;20;2   =  Cp;14

Cp;21;2   =  Cp;15

Cp;22;2   =  Cp;31

Cp;23;2   =  Cp;31

Asignación para el componente 3 - Coke oven

Cp;4;3   =  Cp;11 Inputs

Cp;5;3   =  Cp;27

Cp;6;3   =  Cp;27

Cp;7;3   =  Cp;34

Cp;8;3   =  Cp;29

Cp;9;3   =  Cp;27 Outputs

Cp;10;3   =  Cp;3

Cp;11;3   =  Cp;1

Cp;12;3   =  Cp;33

Cp;13;3   =  Cp;25

Cp;14;3   =  Cp;29

Cp;15;3   =  Cp;29

Asignación para el componente 4 - Sinter plant

Cp;4;4   =  Cp;11 Inputs

Cp;5;4   =  Cp;11

Cp;6;4   =  Cp;18

Cp;7;4   =  Cp;14
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Cp;8;4   =  Cp;14

Cp;9;4   =  Cp;10

Cp;10;4   =  Cp;34

Cp;11;4   =  Cp;31

Cp;12;4   =  Cp;14 Outputs

Cp;13;4   =  Cp;32

Cp;14;4   =  Cp;11

Cp;15;4   =  Cp;26

Cp;16;4   =  Cp;1

Cp;17;4   =  Cp;3

Asignación para el componente 5 - ASU

Cp;4;5   =  Cp;11 Inputs

Cp;5;5   =  Cp;35

Cp;6;5   =  Cp;36

Cp;7;5   =  Cp;20 Outputs

Cp;8;5   =  Cp;4

Cp;9;5   =  Cp;13

Cp;10;5   =  Cp;4

Cp;11;5   =  Cp;4

Cp;12;5   =  Cp;13

Cp;13;5   =  Cp;13

Asignación para el componente 6 - Compresión de aire

Cp;4;6   =  Cp;11

Cp;5;6   =  Cp;11  + 0,04507

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO III - 3.- Temperaturas de operación. [ºC] 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

T ref   =  25 Temperatura de referencia. Condiciones normales. [ºC]

P ref   =  1 Presión de referencia. Condiciones normales. [bar]

Temperaturas del componente 1 - Basic oxygen furnace

T4;1   =  725 Inputs

T5;1   =  725

T6;1   =  650

T7;1   =  25
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T8;1   =  728

T9;1   =  1250

T10;1   =  25

T11;1   =  25

T12;1   =  160

T13;1   =  80

T14;1   =  25

T15;1   =  660 Outputs

T16;1   =  660

T17;1   =  800

T18;1   =  380

T19;1   =  380

T20;1   =  650

T21;1   =  650

Temperaturas del componente 2 - Blast furnace

T4;2   =  327 Inputs

T5;2   =  327

T6;2   =  326,9

T7;2   =  70

T8;2   =  90

T9;2   =  200

T10;2   =  25

T11;2   =  180

T12;2   =  800

T13;2   =  25

T14;2   =  25

T15;2   =  60

T16;2   =  160

T17;2   =  550

T18;2   =  90 Outputs

T19;2   =  1200

T20;2   =  1200

T21;2   =  1100

T22;2   =  180

T23;2   =  180

Temperaturas del componente 3 - Coke oven

T4;3   =  326,9 Inputs

T5;3   =  60

T6;3   =  25
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T7;3   =  25

T8;3   =  80

T9;3   =  70 Outputs

T10;3   =  90

T11;3   =  90

T12;3   =  190

T13;3   =  90

T14;3   =  90

T15;3   =  90

Temperaturas del componente 4 - Sinter plant

T4;4   =  327 Inputs

T5;4   =  25

T6;4   =  25

T7;4   =  375

T8;4   =  375

T9;4   =  25

T10;4   =  60,2

T11;4   =  160

T12;4   =  250 Outputs

T13;4   =  250

T14;4   =  80

T15;4   =  80

T16;4   =  80

T17;4   =  80

Temperaturas del componente 5 - ASU

T4;5   =  T ref Inputs

T7;5   =  184,97 Outputs

T8;5   =  T7;5

T9;5   =  T7;5

T10;5   =  T8;5

T11;5   =  T8;5

T12;5   =  T9;5

T13;5   =  T9;5

Temperaturas del componente 6 - Compresión de aire

T4;6   =  T ref

T5;6   =  T6;1

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO III - 4.- Balances de masa. [kg] 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

nCN   =  
1000

R  · T
[mol/Nm3]. P=1bar, V=1m3, T=0ºC

PACERO   =  95,72727 Producción de acero. [kg]ókg/s]

α int   =  
m17;1

1000
Coeficiente de reparto interno en el BOF. [-]

β   =  
860

1000
Coeficiente de relación entre producciones en el BF. [-]

β int   =  
m21;2

860
Coeficiente de reparto interno en el BF. [-]

γ   =  
360

1000
Coeficiente de relación entre producciones en el coke oven. [-]

γ int   =  
m12;3

360
Coeficiente de reparto interno en el coke oven. [-]

κ   =  
935

1000
Coeficiente de relación entre producciones en la sinter plant. [-]

κ int   =  
m13;4

935
Coeficiente de reparto interno en la sinter plant. [-]

Masas para el componente 1 - Basic oxygen furnace

m1;1   =  α int  · 0

m2;1   =  α int  · 
82

h2
 · 1000

m3;1   =  α int  · 
230

h1
 · 1000

m4;1   =  α int  · 60  · nCN  · 
Mr9

1000
Inputs

m5;1   =  α int  · 10  · nCN  · 
Mr4

1000

m6;1   =  α int  · 17  · nCN  · 
Mr10

1000

m7;1   =  α int  · 82,651

m8;1   =  α int  · 0,9  · nCN  · 
Mr11

1000

m9;1   =  m21;2

m10;1   =  α int  · 220

m11;1   =  α int  · 119

m12;1   =  α int  · 9,7  · εBFgas

m13;1   =  α int  · 400  · εCOG

m14;1   =  α int  · 387  · εgn

m15;1   =  α int  · 123,12 Outputs

m16;1   =  α int  · 5,2
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m17;1   =  PACERO

m18;1   =  α int  · 84,8

m19;1   =  α int  · 82,2

m20;1   =  m17;2

m21;1   =  α int  · 525  · εBOF  – m20;1

Masas para el componente 2 - Blast furnace

m1;2   =  β int  · 0

m2;2   =  β int  · 
98,5

h2
 · 1000

m3;2   =  β int  · 
0

h1
 · 1000

m4;2   =  β int  · 55,5  · nCN  · 
Mr9

1000
Inputs

m5;2   =  β int  · 58,5  · nCN  · 
Mr4

1000

m6;2   =  β int  · 11,7  · nCN  · 
Mr10

1000

m7;2   =  β int  · 320

m8;2   =  β int  · 1444,02

m9;2   =  m13;4

m10;2   =  β int  · 155

m11;2   =  m12;3

m12;2   =  m20;2

m13;2   =  β int  · 22,1

m14;2   =  β int  · 25,8

m15;2   =  β int  · 140

m16;2   =  β int  · 1368  · εBFgas

m17;2   =  β int  · 525  · εBOF

m18;2   =  β int  · 1555,9 Outputs

m19;2   =  β int  · 220,6

m20;2   =  β int  · 17,2

m21;2   =  m17;1  · β

m22;2   =  m12;1  + m16;2  + m11;4

m23;2   =  β int  · 4058  · εBFgas  – m22;2

Masas para el componente 3 - Coke oven

m1;3   =  γ int  · 0

m2;3   =  γ int  · 
54,6

h2
 · 1000

m3;3   =  γ int  · 
213

h1
 · 1000

m4;3   =  γ int  · 14,4  · nCN  · 
Mr10

1000
Inputs

m5;3   =  γ int  · 200
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m6;3   =  γ int  · 19,46

m7;3   =  γ int  · 465

m8;3   =  γ int  · 2  · 630  · εCOG

m9;3   =  m5;3 Outputs

m10;3   =  γ int  · 3,38

m11;3   =  γ int  · 15,75

m12;3   =  m17;1  · γ

m13;3   =  γ int  · 37,5

m14;3   =  m13;1  + m8;3

m15;3   =  γ int  · 2916  · εCOG  – m14;3

Masas para el componente 4 - Sinter plant

m1;4   =  κ int  · 0

m2;4   =  κ int  · 
0

h2
 · 1000

m3;4   =  κ int  · 
0

h1
 · 1000

m4;4   =  κ int  · 21,75  · nCN  · 
Mr10

1000
Inputs

m5;4   =  κ int  · 776

m6;4   =  κ int  · 760

m7;4   =  m18;1

m8;4   =  m19;2

m9;4   =  κ int  · 185,49

m10;4   =  κ int  · 
1444

Ecomb;9

m11;4   =  κ int  · 3  · 34,3  · εBFgas

m12;4   =  κ int  · 12,25 Outputs

m13;4   =  m17;1  · κ

m14;4   =  m4;4  + m5;4

m15;4   =  κ int  · 14,88

m16;4   =  κ int  · 53,48

m17;4   =  κ int  · 323,59

Masas para el componente 5 - ASU

mO2;5;5   =  mmol;5;5  · 
Comp1

100
Moles de O2 provenientes de la corriente de O2. [mol]

mO2;6;5   =  mmol;6;5  · 
Comp4

100
Moles de O2 provenientes de la corriente de N2. [mol]

mmol;5;5   =  m5;5  · 
1000

Mrcorrienteoxigeno
Moles de la corriente intermedia de O2. [mol]

mmol;6;5   =  m6;5  · 
1000

Mrcorrientenitrogeno
Moles de la corriente intermedia de N2. [mol]

mmol;7;5   =  m7;5  · 
1000

Mr9
Moles de oxígeno a la salida de la ASU. [mol]

mmol;7;5   =  mO2;5;5  + mO2;6;5 Adición del oxígeno de las corrientes intermedias. [mol]
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mN2;5;5   =  mmol;5;5  · 
Comp2

100
Moles de N2 provenientes de la corriente de O2. [mol]

mAr;5;5   =  mmol;5;5  · 
Comp3

100
Moles de Ar provenientes de la corriente de O2. [mol]

mN2;6;5   =  mmol;6;5  · 
Comp5

100
Moles de N2 provenientes de la corriente de N2. [mol]

mAr;6;5   =  mmol;6;5  · 
Comp6

100
Moles de Ar provenientes de la corriente de N2. [mol]

m1;5   =  0

m2;5   =  0

m3;5   =  0

m4;5   =  m7;5  + m8;5  + m9;5 Inputs

m5;5=Se obtiene con las demás ecuaciones para la producción de la ASU
m6;5=Se obtiene con las demás ecuaciones para la producción de la ASU

m7;5   =  m4;1  + m4;2 Outputs

m8;5   =  mN2;5;5  + mN2;6;5  · 
Mr4

1000

m9;5   =  mAr;5;5  + mAr;6;5  · 
Mr11

1000

m10;5   =  m8;5  – m11;5

m11;5   =  m5;1  + m5;2

m12;5   =  m9;5  – m13;5

m13;5   =  m8;1

Masas para el componente 6 - Compresión de aire

m1;6   =  0

m2;6   =  0

m3;6   =  0

m4;6   =  m6;1  + m6;2  + m4;3  + m4;4

m5;6   =  m4;6

 

 

 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 BALANCES DE MASA Y DE ENERGÍA 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO III - 4.- Balances de masa. [kg] 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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 Tabla 4 - Balance de masa componente a componente. [kg] 

m input;1   =  Σ
i=1

14

m i;1  – m3;1 Masa de los inputs del BOF

moutput;1   =  Σ
i=15

21

m i;1  + m3;1 Masa de los outputs del BOF

m input;2   =  Σ
i=1

17

m i;2  – m3;2 Masa de los inputs del BF

moutput;2   =  Σ
i=18

23

m i;2  + m3;2 Masa de los outputs del BF

m input;3   =  Σ
i=1

8

m i;3  – m3;3 Masa de los inputs del coke oven

moutput;3   =  Σ
i=9

15

m i;3  + m3;3 Masa de los outputs del coke oven

m input;4   =  Σ
i=1

11

m i;4  – m3;4 Masa de los inputs del sinter plant

moutput;4   =  Σ
i=12

17

m i;4  + m3;4 Masa de los outputs del sinter plant

m input;5   =  Σ
i=1

4

m i;5  – m3;5 Masa de los inputs de la ASU

moutput;5   =  Σ
i=7

9

m i;5  + m3;5 Masa de los outputs de la ASU

m input;6   =  Σ
i=1

4

m i;6  – m3;6 Masa de los inputs de la compresión de aire

moutput;6   =  Σ
i=5

5

m i;6  + m3;6 Masa de los outputs de la compresión de aire

Balances de masa componente a componente

BM t   =  moutput;t  – m input;t         for  t  = 1  to  6

BM   =  Σ
k=1

6

moutput;k  – Σ
k=1

6

m input;k Balance de masa global

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO III - 5.- Balances de energía 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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 Introducción de la eq. 5 - Energía térmica de una corriente. Et,i=mi*Cp,i*(Ti-T,ref). [kJ] 

E term;1;1   =  α int  · 177,9  · 1000 Energía de la electricidad en el BOF. [kJ]

E term;2;1   =  m2;1  · h2 Energía del vapor entrante en el BOF

E term;3;1   =  m3;1  · h1 Energía del vapor saliente en el BOF

Energía de los flujos másicos del BOF

E term;i;1   =  m i;1  · Cp;i;1  · T i;1  – T ref         for  i  = 4  to  21

E term;1;2   =  β int  · 501,93  · 1000 Energía de la electricidad en el BF. [kJ]

E term;2;2   =  m2;2  · h2 Energía del vapor entrante en el BF

E term;3;2   =  m3;2  · h1 Energía del vapor saliente en el BF

Energía de los flujos másicos del BF

E term;i;2   =  m i;2  · Cp;i;2  · T i;2  – T ref         for  i  = 4  to  23

E term;1;3   =  γ int  · 243,66  · 1000 Energía de la electricidad en el coke oven. [kJ]

E term;2;3   =  m2;3  · h2 Energía del vapor entrante en el coke oven

E term;3;3   =  m3;3  · h1 Energía del vapor saliente en el coke oven

Energía de los flujos másicos del coke oven

E term;i;3   =  m i;3  · Cp;i;3  · T i;3  – T ref         for  i  = 4  to  15

E term;1;4   =  κ int  · 65,8  · 1000 Energía de la electricidad en el sinter plant. [kJ]

E term;2;4   =  m2;4  · h2 Energía del vapor entrante en el sinter plant

E term;3;4   =  m3;4  · h1 Energía del vapor saliente en el sinter plant

Energía de los flujos másicos del sinter plant

E term;i;4   =  m i;4  · Cp;i;4  · T i;4  – T ref         for  i  = 4  to  17

E term;1;5   =  consumoesp  · 3,6  · 
m7;5

1000
 · 1000 Energía de la electricidad en la ASU. [kJ]

E term;2;5   =  m2;4  · h2 Energía del vapor entrante en la ASU

E term;3;5   =  m3;4  · h1 Energía del vapor saliente en la ASU

E term;4;5   =  m4;5  · Cp;4;5  · T4;5  – T ref Energía del aire de entrada a la ASU

Energía de los flujos másicos de la ASU

E term;i;5   =  m i;5  · Cp;i;5  · T i;5  – T ref         for  i  = 7  to  13

E term;1;6   =  Wcomp;aire Energía de la electricidad en la compresión de aire. [kJ]

E term;2;6   =  m2;6  · h2 Energía del vapor entrante en la compresión de aire

E term;3;6   =  m3;6  · h1 Energía del vapor saliente en la compresión de aire

Energía de los flujos másicos de la compresión de aire

E term;i;6   =  m i;6  · Cp;i;6  · T i;6  – T ref         for  i  = 4  to  5

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO III - Balances de energía 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

E input;1   =  Σ
i=1

14

E term;i;1  – E term;3;1 Energía de los inputs del BOF

Eoutput;1   =  Σ
i=15

21

E term;i;1  + E term;3;1 Energía de los outputs del BOF

E input;2   =  Σ
i=1

17

E term;i;2  – E term;3;2 Energía de los inputs del BF

Eoutput;2   =  Σ
i=18

23

E term;i;2  + E term;3;2 Energía de los outputs del BF

E input;3   =  Σ
i=1

8

E term;i;3  – E term;3;3 Energía de los inputs del coke oven

Eoutput;3   =  Σ
i=9

15

E term;i;3  + E term;3;3 Energía de los outputs del coke oven

E input;4   =  Σ
i=1

11

E term;i;4  – E term;3;4 Energía de los inputs del sinter plant

Eoutput;4   =  Σ
i=12

17

E term;i;4  + E term;3;4 Energía de los outputs del sinter plant

E input;5   =  Σ
i=1

4

E term;i;5  – E term;3;5 Energía de los inputs de la ASU

Eoutput;5   =  Σ
i=7

9

E term;i;5  + E term;3;5 Energía de los outputs de la ASU

E input;6   =  Σ
i=1

4

E term;i;6  – E term;3;6 Energía de los inputs de la compresión de aire

Eoutput;6   =  Σ
i=5

5

E term;i;6  + E term;3;6 Energía de los outputs de la compresión de aire

Balances de Energía componente a componente

BE t   =  Eoutput;t  – E input;t         for  t  = 1  to  6

BE   =  Σ
k=1

6

Eoutput;k  – Σ
k=1

6

E input;k Balance de Energía global
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 ASU 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ANEXO I - 8.3.- Datos de operación de las unidades ASU 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

 Introducción de la tabla 5 y tabla 6 

Comp1   =  95,17 Composición de oxígeno en la producción de O2. [%]

Comp2   =  2,08 Composición de nitrógeno en la producción de O2. [%]

Comp3   =  100  – Comp1  – Comp2 Composición de argón en la producción de O2. [%]

Comp4   =  0,9 Composición de oxígeno en la producción de N2. [%]

Comp5   =  99 Composición de nitrógeno en la producción de N2. [%]

Comp6   =  100  – Comp4  – Comp5 Composición de argón en la producción de N2. [%]

Mrcorrienteoxigeno   =  
Comp1  · Mr9  + Comp2  · Mr4  + Comp3  · Mr11

100
Peso molecular de la corriente de oxígeno. [g/mol]

Mrcorrientenitrogeno   =  
Comp4  · Mr9  + Comp5  · Mr4  + Comp6  · Mr11

100
Peso molecular de la corriente de nitrógeno. [g/mol]

Cp;corrienteoxigeno   =  
Comp1  · Cp;20  + Comp2  · Cp;4  + Comp3  · Cp;13

100
Calor específico de la corriente de oxígeno. [kJ/kg·K]

Cp;corrientenitrogeno   =  
Comp4  · Cp;20  + Comp5  · Cp;4  + Comp6  · Cp;13

100
Calor específico de la corriente de nitrogeno. [kJ/kg·K]

relproducc   =  
79,5

20,5
Relación de producción entre corriente N2/ corriente O2. [-]

relproducc   =  
mmol;6;5

mmol;5;5
Asignación de la variable relproducc a las corrientes de la ASU

consumoesp   =  200 Consumo específico. [kWh/tonO2]
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 COMPRESIÓN 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Etapa de compresión de aire atmosférico 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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η is;comp;aire   =  0,9 Caracterización del compresor a emplear

Taire;1   =  T ref Condiciones a la entrada del aire atomosférico

Paire;1   =  P ref

Condición a la salida

haire;1   =  h 'Air' ; T = Taire;1 Resto de propiedades del punto 1 del aire

saire;1   =  s 'Air' ; T = Taire;1 ; P = Paire;1

saire2s   =  saire;1 Punto isoentrópico del compresor

Paire;2   =  P 'Air' ; T = Taire2s ; s = saire2s

Taire2s   =  591

haire2s   =  h 'Air' ; T = Taire2s

η is;comp;aire   =  
haire2s  – haire;1

haire;2  – haire;1
Aplicación del rendimiento isoentrópico para el compresor

Taire;2   =  T 'Air' ; h = haire;2

saire;2   =  s 'Air' ; T = Taire;2 ; P = Paire;2

IndicadoraireComp   =  T6;1  – Taire;2 Comprobación de temperaturas

Wunit;comp;aire   =  haire;2  – haire;1 Trabajo eléctrico unitario a aportar al compresor. [kJ/kg]

Wcomp;aire   =  Wunit;comp;aire  · m4;6 Trabajo eléctrico a aportar al compresor. [kJ/kg]

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Turbina de alta

η is   =  0,9

T1   =  400 ºC

P1   =  50 bar

h1   =  h 'Steam' ; T = T1 ; P = P1

s1   =  s 'Steam' ; T = T1 ; P = P1

s2s   =  s1 isoentropica

t2s   =  250

h2s   =  h 'Steam' ; s = s2s ; T = t2s

η is   =  
h1  – h2

h1  – h2s

T2   =  250 extracción de aporte de vapor

s2   =  s 'Steam' ; T = T2 ; h = h2

P2   =  P 'Steam' ; T = T2 ; h = h2

Wta   =  h1  – h2

Turbina de media

s3s   =  s2

t3s   =  130

h3s   =  h 'Steam' ; s = s3s ; T = t3s
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η is   =  
h2  – h3

h2  – h3s

T3   =  130 extracción de aminas

s3   =  s 'Steam' ; T = T3 ; h = h3

P3   =  P 'Steam' ; T = T3 ; h = h3

Wtm   =  h2  – h3

Turbina de baja

s4s   =  s3

p4s   =  0,06

h4s   =  h 'Steam' ; s = s4s ; P = p4s

η is   =  
h3  – h4

h3  – h4s

P4   =  0,06 al condensador

s4   =  s 'Steam' ; P = P4 ; h = h4

T4   =  T 'Steam' ; P = P4 ; h = h4

Wtb   =  h3  – h4
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 INDUSTRIA SIDERÚRGICA 

 Caso base 
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 TURBINA DE GAS 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

mbase1   =  m21;1  + m23;2  + m15;3 Caudal de los gases energéticos en el punto 1

Pbase1   =  1 Se considera presión atmosférica
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PotDisponible   =  
m21;1

εBOF
 + 

m23;2

εBFgas
 + 

m15;3

εCOG
Energía contenida en los gases

ηTG   =  0,348 Rendimiento eléctrico de la TG Mitsubishi. [%]

PTGnom   =  144 Potencia nominal de la TG. [MWe]

rpTG   =  14 Relación de compresión de la TG. [-]

mextnom   =  453 Caudal nominal de gases de extracción. [kg/s]

Text   =  542 Temperatura gases de extracción. [ºC]

WbaseTG   =  PotDisponible  · ηTG Potencia desarrollada por la TG. [MWe]

mbase2   =  WbaseTG  · 
mextnom

PTGnom
Caudal de gases proporcional a la potencia. [kg/s]

mbase19   =  mbase2  – mbase1 Caudal de aire para la cámara de combustión. [kg/s]

Pbase19   =  1 Se toma aire a presión presión atmosférica

Tbase2   =  Text Temperatura de los gases de extracción de la TG. [ºC]

Pbase2   =  Pbase1  · rpTG Presión de trabajo del HRSG

Tbase3   =  150 Temperatura de expulsión de gases a la atmósfera. [ºC]

hbase2   =  h 'Air' ; T = Tbase2 Entalpía del punto 2

hbase3   =  h 'Air' ; T = Tbase3 Entalpía del punto 3

mbase3   =  mbase2 Caudal de gases de salida

Pbase3   =  Pbase2

QbaseHRSG   =  mbase2  · hbase2  – hbase3 Calor intercambiado en el HRSG. Lado gases combustión. [kW]
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 TURBINAS DE VAPOR 
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de alta - TA 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηTA   =  0,85 Rendimiento isoentrópico de turbina de alta

∆T   =  47 Diferencia de temperaturas entre entrada gases y salida vapor en HRSG

Pbase5   =  50 Presión de extracción a siderurgia

Tbase5   =  400 Temperatura de aporte desde la siderurgia
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hbase5   =  h 'Steam' ; T = Tbase5 ; P = Pbase5 Entalpía punto 5

sbase5   =  s 'Steam' ; T = Tbase5 ; P = Pbase5 Entropía punto 6

mbase5   =  mbase4

Tbase4   =  Tbase2  – ∆T Temperatura del vapor de salida del HRSG

ηTA   =  
hbase4  – hbase5

hbase4  – hbase5s
Definición del rendimiento isoentrópico

Pbase5s   =  Pbase5 Cálculo del punto isoentrópico de la TA

sbase5s   =  s 'Steam' ; h = hbase5s ; P = Pbase5s

sbase4   =  sbase5s Cálculo del punto 4

hbase4   =  h 'Steam' ; T = Tbase4 ; s = sbase4

Pbase4   =  P 'Steam' ; T = Tbase4 ; s = sbase4

mbase4   =  mbase18

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de media 1 - TM1 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηTM1   =  0,9 Rendimiento isoentrópico de la TM1

mbase7   =  Σ
i=1

6

m3;i Caudal de aporte proveniente de la siderurgia

Pbase7   =  Pbase5 Propiedades del punto 7

Tbase7   =  Tbase5

hbase7   =  hbase5

sbase7   =  sbase5

mbase6   =  mbase5  + mbase7 Suma de caudales

Tbase6   =  Tbase5 Punto 6

Pbase6   =  Pbase5

hbase6   =  h 'Steam' ; T = Tbase6 ; P = Pbase6

sbase6   =  s 'Steam' ; T = Tbase6 ; P = Pbase6

sbase6s   =  sbase6 Punto isoentrópico de la TM1

Pbase6s   =  Pbase8

hbase6s   =  h 'Steam' ; s = sbase6s ; P = Pbase6s

ηTM1   =  
hbase6  – hbase8

hbase6  – hbase6s
Definición del rendimiento isoentrópico

Tbase8   =  250 Temperatura de extracción a la siderurgia

Pbase8   =  P 'Steam' ; T = Tbase8 ; h = hbase8 Resto de propiedades del punto 8

sbase8   =  s 'Steam' ; T = Tbase8 ; h = hbase8
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mbase8   =  mbase6

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de media 2 - TM2 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηTM2   =  0,9 Rendimiento isoentrópico de la TM2

mbase10   =  Σ
i=1

6

m2;i Caudal de extracción hacia la siderurgia

Pbase10   =  Pbase8 Propiedades del punto 7

Tbase10   =  Tbase8

hbase10   =  hbase8

sbase10   =  sbase8

mbase8   =  mbase10  + mbase9 Suma de caudales

Tbase9   =  Tbase8 Punto 9

Pbase9   =  Pbase8

hbase9   =  h 'Steam' ; T = Tbase9 ; P = Pbase9

sbase9   =  s 'Steam' ; T = Tbase9 ; P = Pbase9

sbase9s   =  sbase9 Punto isoentrópico de la TM2

Pbase9s   =  Pbase11

hbase9s   =  h 'Steam' ; s = sbase9s ; P = Pbase9s

ηTM2   =  
hbase9  – hbase11

hbase9  – hbase9s
Definición del rendimiento isoentrópico

Pbase11   =  Pdesg Condición de presión del desgasificador

Tbase11   =  T 'Steam' ; P = Pbase11 ; h = hbase11 Resto de propiedades del punto 11

sbase11   =  s 'Steam' ; P = Pbase11 ; h = hbase11

mbase11   =  mbase9

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de baja - TB 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηTB   =  0,85 Rendimiento isoentrópico de la TB

Tbase12   =  Tbase11 Punto 12
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Pbase12   =  Pbase11

hbase12   =  hbase11

sbase12   =  sbase11

mbase12  + mbase16   =  mbase11 Caudales en la extracción a desgasificador

sbase12s   =  sbase12 Punto isoentrópico de la TB

Pbase12s   =  Pbase13

hbase12s   =  h 'Steam' ; s = sbase12s ; P = Pbase12s

ηTB   =  
hbase12  – hbase13

hbase12  – hbase12s
Definición del rendimiento isoentrópico

Pbase13   =  Pcond Condición de presión del condensador

Tbase13   =  T 'Steam' ; P = Pbase13 ; h = hbase13 Resto de propiedades del punto 13

sbase13   =  s 'Steam' ; P = Pbase13 ; h = hbase13

mbase13   =  mbase12

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Condensador 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Pcond   =  0,06 Presión del condensador

Pbase14   =  Pcond Condiciones del punto 14

xbase14   =  0

Tbase14   =  Tsat 'Steam' ; P = Pbase14 Tenemos líquido saturado

hbase14   =  h 'Steam' ; P = Pbase14 ; x = xbase14

sbase14   =  s 'Steam' ; x = xbase14 ; P = Pbase14

mbase14   =  mbase13

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Bomba de baja - BB 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηBB   =  0,83 Rendimiento isoentrópico de la BB

sbase14s   =  sbase14 Punto isoentrópico de la BB

Pbase14s   =  Pbase15
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hbase14s   =  h 'Steam' ; P = Pbase14s ; s = sbase14s

ηBB   =  
hbase14s  – hbase14

hbase15  – hbase14
Definición de rendimiento isoentrópico

Pbase15   =  Pdesg Punto 15

Tbase15   =  T 'Steam' ; P = Pbase15 ; h = hbase15

sbase15   =  s 'Steam' ; h = hbase15 ; P = Pbase15

mbase15   =  mbase14

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Desgasificador 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Pdesg   =  0,9 Presión del desgasificador

Pbase16   =  Pdesg Punto 16

Tbase16   =  Tbase11

hbase16   =  hbase11

sbase16   =  sbase11

mbase15  + mbase16   =  mbase17  + mbase20 Balance de masa en el desgasificador

mbase17  + mbase20  · hbase17   =  mbase16  · hbase16  + mbase15  · hbase15 Balance de energía en el desgasificador

Pbase17   =  Pdesg Punto 17

xbase17   =  0

hbase17   =  h 'Steam' ; P = Pbase17 ; x = xbase17

Tbase17   =  T 'Steam' ; P = Pbase17 ; x = xbase17

sbase17   =  s 'Steam' ; x = xbase17 ; P = Pbase17

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Bomba de alta - BA 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

∆T;BA   =  2 Diferencia de temperaturas que provoca la bomba

Tbase18   =  Tbase17  + ∆T;BA Condición de calentamiento producido por la bomba de alta

Pbase18   =  Pbase4  + ∆P;HRSG Punto 18

hbase18   =  h 'Steam' ; T = Tbase18 ; P = Pbase18

sbase18   =  s 'Steam' ; h = hbase18 ; P = Pbase18
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mbase18   =  mbase17

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 HRSG 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

∆P;HRSG   =  10 Caída de presión interna en el HRSG

QbaseHRSG   =  mbase4  · hbase4  – hbase18 Calor intercambiado en el HRSG. Lado agua/vapor. [kW]

 

 

 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 POTENCIAS DEL CICLO 
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WbaseTA   =  mbase4  · hbase4  – hbase5 Trabajo de las turbinas

WbaseTM1   =  mbase6  · hbase6  – hbase8

WbaseTM2   =  mbase9  · hbase9  – hbase11

WbaseTB   =  mbase12  · hbase12  – hbase13

WbaseBB   =  mbase14  · hbase15  – hbase14 Trabajo de las bombas

WbaseBA   =  mbase17  · hbase18  – hbase17

PbaseCond   =  mbase13  · hbase13  – hbase14 Potencia disipada en el condensador

ηalternador   =  0,97 Rendimiento electromecánico del alternador

WbaseVapor   =  WbaseTA  + WbaseTM1  + WbaseTM2  + WbaseTB  · ηalternador  – WbaseBB  + WbaseBA Trabajo del ciclo de vapor

WbaseNETO   =  WbaseVapor  + WbaseTG  · 1000 Trabajo eléctrico neto de todo el ciclo de potencia. [kW]

WbaseSID   =  Σ
i=1

6

E term;1;i Potencia demandada por la siderurgia. [kW]

WbaseEXP   =  WbaseNETO  – WbaseSID Potencia eléctrica a vender a la red. [kW]
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 ESTUDIO DE EMISIONES DE CO2 
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Combustión de los gases energéticos de la siderurgia 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Caudal másico de los gases energéticos. [kg/s]

mbasegas1   =  m21;1 Caudal másico del BOF

mbasegas2   =  m23;2 Caudal másico del BFgas

mbasegas3   =  m15;3 Caudal másico del COG

Volumen del los gases energéticos. [Nm3/s]

Volbasegas1   =  
mbasegas1

ρBOF
Volumen del BOF

Volbasegas2   =  
mbasegas2

ρBFgas
Volumen del BFgas

Volbasegas3   =  
mbasegas3

ρCOG
Volumen del COG

Moles de los elementos fundamentales. [mol/s]

molbasegas t;1   =  nBOF;t  · Volbasegas1         for  t  = 1  to  8 Moles de las especies que conforman los gases energéticos

molbasegas t;2   =  nBFgas;t  · Volbasegas2         for  t  = 1  to  8

molbasegas t;3   =  nCOG;t  · Volbasegas3         for  t  = 1  to  8

Moles totales de los elementos fundamentales. [mol/s]

Suma de los moles especie por especie

molbasetotk   =  molbasegask;1  + molbasegask;2  + molbasegask;3         for  k  = 1  to  8

Relación de emisión de CO2 mol a mol. [molCO2/molespecie]

relemisión;1   =  1 Relación de emisión para el CO

relemisión;2   =  0 Relación de emisión para el H2

relemisión;3   =  1 Relación de emisión para el CO2

relemisión;4   =  0 Relación de emisión para el N2

relemisión;5   =  1 Relación de emisión para el CH4

relemisión;6   =  2 Relación de emisión para el C2H6

relemisión;7   =  3 Relación de emisión para el C3H8

relemisión;8   =  4 Relación de emisión para el C4H10

Emisiones de CO2. [mol/s]

CO2base i   =  molbasetot i  · relemisión;i         for  i  = 1  to  8 Emisiones de CO2 debido a cada especie de los gases energéticos. [mol/s]
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CO2basegas   =  Σ
i=1

8

CO2base i  · 
Mr3

1000
Emisiones totales de CO2. [kg/s]

CO2baseindustria   =  m15;1  + m10;3  + m17;4

CO2baseTOT   =  CO2basegas  + CO2baseindustria
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 INDUSTRIA SIDERÚRGICA 

 Caso aislado 
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Demanda térmica 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηcaldera   =  0,9125 Rendimiento térmico de la caldera. [%]

ratioalim;carbon   =  0,1597 Ratio de alimentación de carbón a caldera. [kg/s/MW]

flujoaire;alim   =  1,1819 Flujo de aire de alimentación a caldera. [kg/s/MW]

ratioemision;CO2   =  0,2121 Ratio de emisión de CO2 de la caldera. [kg/s/MW]

Demandasid;ais   =  Σ
j=1

6

m2;j  · h2 Demanda térmica de vapor por parte de la siderurgia. [kW]

Potcaldera;ais   =  
Demandasid;ais

ηcaldera
Potencia nominal de la caldera para satisfacer demanda. [kW]

Alimcarbon;ais   =  ratioalim;carbon  · 
Potcaldera;ais

1000
Flujo de carbón a la caldera. [kg/s]

Airealim;ais   =  flujoaire;alim  · 
Potcaldera;ais

1000
Flujo de entrada de aire a la caldera. [kg/s]

CO2aistermico   =  ratioemision;CO2  · 
Potcaldera;ais

1000
Emisión de CO2 debido al uso de la caldera. [kg/s]
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Demanda eléctrica 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηsistemaelectrico   =  0,5 Rendimiento eléctrico del sistema eléctrico español. [%]

Demandaelec;ais   =  Σ
i=1

6

E term;1;i Potencia demandada por la siderurgia. [kW]

Demanda termeq;ais   =  
Demandaelec;ais

ηsistemaelectrico
Potencia equivalente térmica. [kW]

Potcaldera;eq;ais   =  
Demanda termeq;ais

ηcaldera
Potencia de la caldera equivalente. [kW]

Alimcarboneq;ais   =  ratioalim;carbon  · 
Potcaldera;eq;ais

1000
Flujo de carbón a la caldera. [kg/s]

Airealimeq;ais   =  flujoaire;alim  · 
Potcaldera;eq;ais

1000
Flujo de entrada de aire a la caldera. [kg/s]

CO2aistermicoqe   =  ratioemision;CO2  · 
Potcaldera;eq;ais

1000
Emisión de CO2 debido al uso de la caldera. [kg/s]
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 INDUSTRIA SIDERÚRGICA 

 Caso estudio para el potencial energético (=extracción) 
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 TURBINA DE GAS 
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mextrac1   =  m21;1  + m23;2  + m15;3 Caudal de los gases energéticos en el punto 1

Pextrac1   =  1 Se considera presión atmosférica

WextracTG   =  PotDisponible  · ηTG Potencia desarrollada por la TG. [MWe]

mextrac2   =  WextracTG  · 
mextnom

PTGnom
Caudal de gases proporcional a la potencia. [kg/s]

mextrac19   =  mextrac2  – mextrac1 Caudal de aire para la cámara de combustión. [kg/s]

Pextrac19   =  1 Se toma aire a presión presión atmosférica

Textrac2   =  Text Temperatura de los gases de extracción de la TG. [ºC]

Pextrac2   =  Pextrac1  · rpTG Presión de trabajo del HRSG

Textrac3   =  150 Temperatura de expulsión de gases a la atmósfera. [ºC]

hextrac2   =  h 'Air' ; T = Textrac2 Entalpía del punto 2

hextrac3   =  h 'Air' ; T = Textrac3 Entalpía del punto 3

mextrac3   =  mextrac2 Caudal de gases de salida

Pextrac3   =  Pextrac2

QextracHRSG   =  mextrac2  · hextrac2  – hextrac3 Calor intercambiado en el HRSG. Lado gases combustión. [kW]
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 TURBINAS DE VAPOR 
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de alta - TA 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Pextrac5   =  50 Presión de extracción a siderurgia

Textrac5   =  400 Temperatura de aporte desde la siderurgia

hextrac5   =  h 'Steam' ; T = Textrac5 ; P = Pextrac5 Entalpía punto 5

sextrac5   =  s 'Steam' ; T = Textrac5 ; P = Pextrac5 Entropía punto 6

mextrac5   =  mextrac4

Textrac4   =  Textrac2  – ∆T Temperatura del vapor de salida del HRSG

ηTA   =  
hextrac4  – hextrac5

hextrac4  – hextrac5s
Definición del rendimiento isoentrópico
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Pextrac5s   =  Pextrac5 Cálculo del punto isoentrópico de la TA

sextrac5s   =  s 'Steam' ; h = hextrac5s ; P = Pextrac5s

sextrac4   =  sextrac5s Cálculo del punto 4

hextrac4   =  h 'Steam' ; T = Textrac4 ; s = sextrac4

Pextrac4   =  P 'Steam' ; T = Textrac4 ; s = sextrac4

mextrac4   =  mextrac13 Se supone que se dispone del mismo caudal que en el caso base

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de media 1 - TM1 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

mextrac7   =  Σ
i=1

6

m3;i Caudal de aporte proveniente de la siderurgia

Pextrac7   =  Pextrac5 Propiedades del punto 7

Textrac7   =  Textrac5

hextrac7   =  hextrac5

sextrac7   =  sextrac5

mextrac6   =  mextrac5  + mextrac7 Suma de caudales

Textrac6   =  Textrac5 Punto 6

Pextrac6   =  Pextrac5

hextrac6   =  h 'Steam' ; T = Textrac6 ; P = Pextrac6

sextrac6   =  s 'Steam' ; T = Textrac6 ; P = Pextrac6

sextrac6s   =  sextrac6 Punto isoentrópico de la TM1

Pextrac6s   =  Pextrac8

hextrac6s   =  h 'Steam' ; s = sextrac6s ; P = Pextrac6s

ηTM1   =  
hextrac6  – hextrac8

hextrac6  – hextrac6s
Definición del rendimiento isoentrópico

Textrac8   =  250 Temperatura de extracción a la siderurgia

Pextrac8   =  P 'Steam' ; T = Textrac8 ; h = hextrac8 Resto de propiedades del punto 8

sextrac8   =  s 'Steam' ; T = Textrac8 ; h = hextrac8

mextrac8   =  mextrac6

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de media 2 - TM2 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

mextrac10   =  Σ
i=1

6

m2;i Caudal de extracción hacia la siderurgia

Pextrac10   =  Pextrac8 Propiedades del punto 7

Textrac10   =  Textrac8

hextrac10   =  hextrac8

sextrac10   =  sextrac8

mextrac8   =  mextrac10  + mextrac9 Suma de caudales

Textrac9   =  Textrac8 Punto 9

Pextrac9   =  Pextrac8

hextrac9   =  h 'Steam' ; T = Textrac9 ; P = Pextrac9

sextrac9   =  s 'Steam' ; T = Textrac9 ; P = Pextrac9

sextrac9s   =  sextrac9 Punto isoentrópico de la TM2

Pextrac9s   =  2,7 Presión equivalente a 130ºC

hextrac9s   =  h 'Steam' ; s = sextrac9s ; P = Pextrac9s

ηTM2   =  
hextrac9  – hextrac11

hextrac9  – hextrac9s
Definición del rendimiento isoentrópico

Pextrac11   =  2,7 Condición de presión del desgasificador

Textrac11   =  T 'Steam' ; P = Pextrac11 ; h = hextrac11 Resto de propiedades del punto 11

sextrac11   =  s 'Steam' ; P = Pextrac11 ; h = hextrac11

mextrac11   =  mextrac9

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Regenerador 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

xextrac12   =  0 Sale del regenerador como líquido saturado

Pextrac12   =  Pextrac11

Textrac12   =  T 'Steam' ; P = Pextrac12 ; x = xextrac12 Temperatura de saturación

hextrac12   =  h 'Steam' ; x = xextrac12 ; P = Pextrac12

sextrac12   =  s 'Steam' ; x = xextrac12 ; P = Pextrac12

mextrac12  + mextrac14   =  mextrac11

Qextrac;regen   =  mextrac11  · hextrac11  – hextrac12 Calor máximo a aportar al regenerador

Calculo del caudal máximo de CO2 a tratar

Eact;MEA   =  4,17 Energía de activación de las aminas MEA. [MJ/kgCO2]
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Eact;DEA   =  2,943 Energía de activación de las aminas DEA. [MJ/kgCO2]

Eact;MDEA   =  1,986 Energía de activación de las aminas MDEA. [MJ/kgCO2]

mextracCO2MEA   =  
Qextrac;regen

Eact;MEA  · 1000
Caudal máximo de CO2 a tratar con el calor del regenerador con MEA

mextracCO2DEA   =  
Qextrac;regen

Eact;DEA  · 1000
Caudal máximo de CO2 a tratar con el calor del regenerador con DEA

mextracCO2MDEA   =  
Qextrac;regen

Eact;MDEA  · 1000
Caudal máximo de CO2 a tratar con el calor del regenerador con MDEA

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Bomba de alta - BA 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Textrac13   =  Textrac12  + ∆T;BA Condición de calentamiento producido por la bomba de alta

Pextrac13   =  Pextrac4  + ∆P;HRSG Punto 13

hextrac13   =  h 'Steam' ; T = Textrac13 ; P = Pextrac13

sextrac13   =  s 'Steam' ; h = hextrac13 ; P = Pextrac13

mextrac13   =  mextrac12

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 HRSG 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

QextracHRSG   =  mextrac4  · hextrac4  – hextrac13 Calor intercambiado en el HRSG. Lado agua/vapor. [kW]
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 POTENCIAS DEL CICLO 
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WextracTA   =  mextrac4  · hextrac4  – hextrac5 Trabajo de las turbinas

WextracTM1   =  mextrac6  · hextrac6  – hextrac8

WextracTM2   =  mextrac9  · hextrac9  – hextrac11

WextracBA   =  mextrac12  · hextrac13  – hextrac12 Trabajo de las bombas

WextracVapor   =  WextracTA  + WextracTM1  + WextracTM2  · ηalternador  – WextracBA Trabajo del ciclo de vapor

WextracNETO   =  WextracVapor  + WextracTG  · 1000 Trabajo eléctrico neto de todo el ciclo de potencia. [kW]

WextracSID   =  Σ
i=1

6

E term;1;i Potencia demandada por la siderurgia. [kW]

WextracEXP   =  WextracNETO  – WextracSID Potencia eléctrica a vender a la red. [kW]
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 INDUSTRIA SIDERÚRGICA 

 Caso integración CCS1 
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||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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 CÁLCULOS PREVIOS 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

Cálculo de propiedades de la corriente 9

mccs9   =  m15;1  + m16;1  + m10;3  + m11;3  + m16;4  + m17;4 Corriente de salida de la siderurgia. CO2+CO. [kg/s]

m15;1  · T15;1  · Cp;3  + m16;1  · T16;1  · Cp;1  + m10;3  · T10;3  · Cp;3  + m11;3  · T11;3  · Cp;1  + m16;4  · T16;4  · Cp;1  + m17;4  · T17;4  · Cp;1   =  mccs9

 · hccs9

 

 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 TURBINA DE GAS - GASES DE ESCAPE 
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Caracterización de turbinas

MEAnumTurb1   =  6 Turbina Mitsubishi Heavy Industries M701F5 [ANX IV 11]

ηTGccs;1   =  0,4 Rendimiento eléctrico de la TG. [%]

PTGnomccs;1   =  359  · numTurb1 Potencia nominal de la TG. [MWe]

rpTGccs;1   =  21 Relación de compresión de la TG. [-]

mextnomccs;1   =  730  · numTurb1 Caudal nominal de gases de extracción. [kg/s]

Textccs;1   =  611 Temperatura gases de extracción. [ºC]

DEAnumTurb2   =  2 Turbina General Electric Energy 109FA [ANX IV 11]

ηTGccs;2   =  0,569  – 0,14 Rendimiento eléctrico de la TG. [%]

PTGnomccs;2   =  254,1  · numTurb2 Potencia nominal de la TG. [MWe]

rpTGccs;2   =  16,6 Relación de compresión de la TG. [-]

mextnomccs;2   =  655  · numTurb2 Caudal nominal de gases de extracción. [kg/s]

Textccs;2   =  592 Temperatura gases de extracción. [ºC]

MDEAnumTurb3   =  2 Turbina Alstom Power GT11N2(1) [ANX IV 11]

ηTGccs;3   =  0,333 Rendimiento eléctrico de la TG. [%]

PTGnomccs;3   =  113,6  · numTurb3 Potencia nominal de la TG. [MWe]

rpTGccs;3   =  16 Relación de compresión de la TG. [-]

mextnomccs;3   =  400  · numTurb3 Caudal nominal de gases de extracción. [kg/s]

Textccs;3   =  555 Temperatura gases de extracción. [ºC]

Operación de las turbinas

mccs1   =  m21;1  + m23;2  + m15;3 Caudal de los gases energéticos en el punto 1

Pccs1   =  1 Se considera presión atmosférica

PotDisponibleccs   =  
m21;1

εBOF
 + 

m23;2

εBFgas
 + 

m15;3

εCOG
 + 

mccs51

εgn
Energía contenida en los gases

WccsTG   =  PotDisponibleccs  · ηTGccs;3 Potencia desarrollada por las TGs. [MWe]

mccs3   =  WccsTG  · 
mextnomccs;3

PTGnomccs;3
Caudal de gases proporcional a la potencia. [kg/s]

mccs2  + mccs1  + mccs51   =  mccs3 Caudal de aire para la cámara de combustión. [kg/s]

Tccs2   =  25 Aire atmosférico a 25ºC

hccs2   =  h 'Air' ; T = Tccs2 Entalpía del punto 2

Pccs2   =  1 Se toma aire a presión presión atmosférica

Tccs3   =  Textccs;3 Temperatura de los gases de extracción de la TG. [ºC]

Pccs3   =  Pccs1  · rpTGccs;3 Presión de trabajo del HRSG

hccs3   =  h 'Air' ; T = Tccs3 Entalpía del punto 3
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 BY-PASS 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Pccs4   =  Pccs3 Punto 4 = Punto 3

Tccs4   =  Tccs3

hccs4   =  hccs3

Pccs7   =  Pccs3 Punto 7 = Punto 3

Tccs7   =  Tccs3

hccs7   =  hccs3

mccs3   =  mccs4  + mccs7 BM en el by-pass

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 HRSG 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Tccs5   =  150 Temperatura de extracción de los gases de escape

Pccs5   =  Pccs4

hccs5   =  h 'Air' ; T = Tccs5

mccs5   =  mccs4

QccsHRSG   =  mccs4  · hccs4  – hccs5 Calor intercambiado en el HRSG. Lado gases combustión. [kW]

QccsHRSG   =  mccs12  · hccs12  – hccs34 Calor intercambiado en el HRSG. Lado ciclo de vapor. [kW]

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 DERIVACIONES 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Derivación atmosférica

Pccs8   =  Pccs5 Punto 8 = Punto 5

Tccs8   =  Tccs5
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hccs8   =  hccs5

Pccs6   =  1 Punto 6 parecido a Punto 5

Tccs6   =  Tccs5

hccs6   =  hccs5

mccs5   =  mccs6  + mccs8 BM en la derivación atmosférica

Derivación al absorvedor

Tccs10   =  200 Punto 10

hccs10   =  h 'Air' ; T = Tccs10

Pccs10   =  Pccs7

mccs7  · hccs7  + mccs8  · hccs8  + mccs9  · hccs9   =  mccs10  · hccs10 BE en la derivación al absorvedor

mccs7  + mccs8  + mccs9   =  mccs10 BM en la derivación al absorvedor

mccs6   =  0 CONDICIÓN BM GLOBAL <-------------------------------------------------------------------------------------------------<--------------------------<-------------- <---------------<
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 TURBINAS DE VAPOR 
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de alta - TA 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηTAccs   =  0,85 Rendimiento isoentrópico de turbina de alta

Pccs13   =  50 Presión de aporte desde la siderurgia

Tccs13   =  400 Temperatura de aporte desde la siderurgia

hccs13   =  h 'Steam' ; T = Tccs13 ; P = Pccs13 Entalpía punto 13

sccs13   =  s 'Steam' ; T = Tccs13 ; P = Pccs13 Entropía punto 13

mccs12   =  mccs13

Tccs12   =  Tccs4  – ∆T Temperatura del vapor de salida del HRSG

ηTAccs   =  
hccs12  – hccs13

hccs12  – hccs12s
Definición del rendimiento isoentrópico

Pccs12s   =  Pccs13 Cálculo del punto isoentrópico de la TA

sccs12s   =  s 'Steam' ; h = hccs12s ; P = Pccs12s

sccs12   =  sccs12s Cálculo del punto 12



File:C:\TFM\ANEXO VIII - Simulación EES\ANEXO VIII - Programa EES.EES 13/11/2012 12:13:08  Page 39
EES Ver. 9.215: #3470:  For use only by students and faculty in the Departamento de Ingenieria Mecanica Universidad de Za

hccs12   =  h 'Steam' ; T = Tccs12 ; s = sccs12

Pccs12   =  P 'Steam' ; T = Tccs12 ; s = sccs12

mccs12   =  mccs34

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de media 1 - TM1 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηTM1ccs   =  0,9 Rendimiento isoentrópico de la TM1

mccs14   =  Σ
i=1

6

m3;i Caudal de aporte proveniente de la siderurgia

Pccs14   =  Pccs13 Propiedades del punto 14

Tccs14   =  Tccs13

hccs14   =  hccs13

sccs14   =  sccs13

mccs15   =  mccs13  + mccs14 Suma de caudales

Tccs15   =  Tccs13 Punto 15

Pccs15   =  Pccs13

hccs15   =  h 'Steam' ; T = Tccs15 ; P = Pccs15

sccs15   =  s 'Steam' ; T = Tccs15 ; P = Pccs15

sccs15s   =  sccs15 Punto isoentrópico de la TM1

Pccs15s   =  Pccs16

hccs15s   =  h 'Steam' ; s = sccs15s ; P = Pccs15s

ηTM1ccs   =  
hccs15  – hccs16

hccs15  – hccs15s
Definición del rendimiento isoentrópico

Tccs16   =  250 Temperatura de extracción a la siderurgia

Pccs16   =  P 'Steam' ; T = Tccs16 ; h = hccs16 Resto de propiedades del punto 16

sccs16   =  s 'Steam' ; T = Tccs16 ; h = hccs16

mccs16   =  mccs15

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de media 2 - TM2 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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ηTM2ccs   =  0,9 Rendimiento isoentrópico de la TM2

mccs17   =  Σ
i=1

6

m2;i Caudal de extracción hacia la siderurgia

Pccs17   =  Pccs16 Propiedades del punto 17

Tccs17   =  Tccs16

hccs17   =  hccs16

sccs17   =  sccs16

mccs16   =  mccs17  + mccs18 Suma de caudales

Pccs18   =  Pccs16 Propiedades del punto 18

Tccs18   =  Tccs16

hccs18   =  hccs16

sccs18   =  sccs16

sccs18s   =  sccs18 Punto isoentrópico de la TM2

Pccs18s   =  Pccs19

hccs18s   =  h 'Steam' ; s = sccs18s ; P = Pccs18s

ηTM2ccs   =  
hccs18  – hccs19

hccs18  – hccs18s
Definición del rendimiento isoentrópico

Pccs19   =  Pdesg2 Condición de presión del caudal de extracción a siderurgia = 130ºC

Tccs19   =  T 'Steam' ; P = Pccs19 ; h = hccs19 Resto de propiedades del punto 19

sccs19   =  s 'Steam' ; P = Pccs19 ; h = hccs19

mccs19   =  mccs18

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de media 3 - TM3 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηTM3ccs   =  0,88 Rendimiento isoentrópico de la TM3

Pccs20   =  Pccs19 Propiedades del punto 20

Tccs20   =  Tccs19

hccs20   =  hccs19

sccs20   =  sccs19

Pccs21   =  Pccs19 Propiedades del punto 21

Tccs21   =  Tccs19

hccs21   =  hccs19

sccs21   =  sccs19

Pccs23   =  Pccs19 Propiedades del punto 23
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Tccs23   =  Tccs19

hccs23   =  hccs19

sccs23   =  sccs19

mccs19   =  mccs20  + mccs21  + mccs23 BM para las derivaciones

mccs23   =  0 <--------------------------- CONDICIÓN CAUDAL = 0 <--------------------------- <---------------------------

sccs23s   =  sccs23 Punto isoentrópico de la TM2

Pccs23s   =  Pccs24

hccs23s   =  h 'Steam' ; s = sccs23s ; P = Pccs23s

ηTM3ccs   =  
hccs23  – hccs24

hccs23  – hccs23s
Definición del rendimiento isoentrópico

Pccs24   =  Pdesg1 Condición de presión del desgasificador

Tccs24   =  T 'Steam' ; P = Pccs24 ; h = hccs24 Resto de propiedades del punto 24

sccs24   =  s 'Steam' ; P = Pccs24 ; h = hccs24

mccs24   =  mccs23

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Turbina de baja - TB 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηTBccs   =  0,85 Rendimiento isoentrópico de la TB

Pccs25   =  Pccs24 Propiedades del punto 20

Tccs25   =  Tccs24

hccs25   =  hccs24

sccs25   =  sccs24

Pccs26   =  Pccs24 Propiedades del punto 21

Tccs26   =  Tccs24

hccs26   =  hccs24

sccs26   =  sccs24

mccs24   =  mccs25  + mccs26 BM para las derivaciones

sccs26s   =  sccs26 Punto isoentrópico de la TM2

Pccs26s   =  Pccs27

hccs26s   =  h 'Steam' ; s = sccs26s ; P = Pccs26s

ηTBccs   =  
hccs26  – hccs27

hccs26  – hccs26s
Definición del rendimiento isoentrópico

Pccs27   =  Pcond Condición de presión del condensador

Tccs27   =  T 'Steam' ; P = Pccs27 ; h = hccs27 Resto de propiedades del punto 27

sccs27   =  s 'Steam' ; P = Pccs27 ; h = hccs27
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mccs27   =  mccs26

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 CONDENSADOR 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Pccs28   =  Pcond Condiciones del punto 28

xccs28   =  0

Tccs28   =  Tsat 'Steam' ; P = Pccs28 Tenemos líquido saturado

hccs28   =  h 'Steam' ; P = Pccs28 ; x = xccs28

sccs28   =  s 'Steam' ; x = xccs28 ; P = Pccs28

mccs28   =  mccs27

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Bomba de baja - BB 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηBBccs   =  0,83 Rendimiento isoentrópico de la BB

sccs28s   =  sccs28 Punto isoentrópico de la BB

Pccs28s   =  Pccs29

hccs28s   =  h 'Steam' ; P = Pccs28s ; s = sccs28s

ηBBccs   =  
hccs28s  – hccs28

hccs29  – hccs28
Definición de rendimiento isoentrópico

Pccs29   =  Pdesg Punto 29

Tccs29   =  T 'Steam' ; P = Pccs29 ; h = hccs29

sccs29   =  s 'Steam' ; h = hccs29 ; P = Pccs29

mccs29   =  mccs28

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 DESGASIFICADOR 1. Pdesg1=0,9bar 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Pdesg1   =  0,9 Presión del desgasificador nº1. [bar]

mccs25  + mccs29   =  mccs30 Balance de masa en el desgasificador 1

mccs25  · hccs25  + mccs29  · hccs29   =  mccs30  · hccs30 Balance de energía en el desgasificador 1

Pccs30   =  Pdesg1 Punto 30

xccs30   =  0

hccs30   =  h 'Steam' ; P = Pccs30 ; x = xccs30

Tccs30   =  T 'Steam' ; P = Pccs30 ; x = xccs30

sccs30   =  s 'Steam' ; x = xccs30 ; P = Pccs30

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Bomba de media - BM 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

ηBMccs   =  0,83 Rendimiento isoentrópico de la BM

sccs30s   =  sccs30 Punto isoentrópico de la BM

Pccs30s   =  Pccs31

hccs30s   =  h 'Steam' ; P = Pccs30s ; s = sccs30s

ηBMccs   =  
hccs30s  – hccs30

hccs31  – hccs30
Definición de rendimiento isoentrópico

Pccs31   =  Pdesg2 Punto 31

Tccs31   =  T 'Steam' ; P = Pccs31 ; h = hccs31

sccs31   =  s 'Steam' ; h = hccs31 ; P = Pccs31

mccs31   =  mccs30

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 DESGASIFICADOR 2. Pdesg1=2,7bar 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Pdesg2   =  2,7 Presión del desgasificador nº2. [bar]

mccs32  + mccs33   =  mccs20  + mccs31  + mccs22 Balance de masa en el desgasificador 2

mccs32  · hccs32  + mccs33  · hccs33   =  mccs20  · hccs20  + mccs31  · hccs31  + mccs22  · hccs22 Balance de energía en el desgasificador 2

Pccs32   =  Pdesg2 Punto 32
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xccs32   =  0

hccs32   =  h 'Steam' ; P = Pccs32 ; x = xccs32

Tccs32   =  T 'Steam' ; P = Pccs32 ; x = xccs32

sccs32   =  s 'Steam' ; x = xccs32 ; P = Pccs32

Pccs33   =  Pccs32 Punto 33 (Purga)  =  Punto 32

Tccs33   =  Tccs32

hccs33   =  hccs32

sccs33   =  sccs32

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Bomba de alta - BA 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Tccs34   =  Tccs32  + ∆T;BA Condición de calentamiento producido por la bomba de alta

Pccs34   =  Pccs12  + ∆P;HRSG Punto 34

hccs34   =  h 'Steam' ; T = Tccs34 ; P = Pccs34

sccs34   =  s 'Steam' ; h = hccs34 ; P = Pccs34

mccs34   =  mccs32

mccs21   =  mccs22 Condiciones necesarias para el cálculo de caudales másicos pero...

hccs22   =  h 'Steam' ; x = 0 ; P = Pccs21 ... vienen impuestas por el ciclo de aminas que aún no se ha simulado

Esta igualdad es para poder ir operando

<---------------------------------------------------------------<--------------------------<--------------

<---------------<

 

 

 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 CCS - CICLO DE AMINAS 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Propiedades de las aminas 
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

 Energía de regeneración - Anexo VI - Tabla 1 

Eccs1   =  4,17 Energía de activación de las aminas MEA. [MJ/kgCO2]

Eccs2   =  2,943 Energía de activación de las aminas DEA. [MJ/kgCO2]

Eccs3   =  1,986 Energía de activación de las aminas MDEA. [MJ/kgCO2]

 Porcentaje de mezcla - Anexo VI - Tablas 2, 3 y 4 

Mezclaccs1   =  28,7 Porcentaje de mezcla de las aminas MEA. [%]

Mezclaccs2   =  31,3 Porcentaje de mezcla de las aminas DEA. [%]

Mezclaccs3   =  35 Porcentaje de mezcla de las aminas MDEA. [%]

 Carga de captura de CO2 - Anexo VI - Tablas 5, 6 y 7 

Cargaccs1   =  0,31137 Carga de captura de CO2 de las aminas MEA. [kgCO2/kgMEA]

Cargaccs2   =  0,49687 Carga de captura de CO2 de las aminas DEA. [kgCO2/kgDEA]

Cargaccs3   =  0,59085 Carga de captura de CO2 de las aminas MDEA. [kgCO2/kgMDEA]

 Calor específico - Anexo VI - Tablas 8, 9 y 10 

Cpccs1   =  2,4857 Calor específico de las aminas MEA. [kJ/kgMEA·K]

Cpccs2   =  2,3803 Calor específico de las aminas DEA. [kJ/kgDEA·K]

Cpccs3   =  2,726 Calor específico de las aminas MDEA. [kgJ/kgMDEA·K]

 % de mezcla pobre - Anexo VI - Tabla 20 

Mezclapobre1   =  0,154 Contenido de CO2 en la mezcla pobre de MEA. [kgCO2/kgMEA]

Mezclapobre2   =  0,09 Contenido de CO2 en la mezcla pobre de DEA. [kgCO2/kgMEA]

Mezclapobre3   =  0,079 Contenido de CO2 en la mezcla pobre de MDEA. [kgCO2/kgMEA]

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Propiedades de las plantas de post-combustión con CCS 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

 Rendimiento de captura de CO2 - Anexo VI - Tabla 17 

η removal   =  89,14 Rendimiento medio típico de un sistema CCS en post-combustión. [%]

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Caudales 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

elector   =  3 1=MEA; 2=DEA; 3=MDEA

mccsCO2   =  CO2ccsTOT Emisiones totales de CO2 antes del absorbedor. [kgCO2/s]

mccs41   =  mccsCO2  · 1  – 
η removal

100
Emisiones de CO2 a la salida del sistema CCS. [kgCO2/s]

mccs40   =  mccsCO2  · 
η removal

100
Caudal de CO2 absorbido en el absorbedor. [kgCO2/s]

mccs11   =  mccs10  – mccs41  – mccs40 Caudal de gases de escape a la atmósfera. [kg/s]

mccsamina   =  
mccs40

Cargaccs3
Flujo de aminas puro para absorber el CO2 pertinente. [kgAmina/s]

mccsagua   =  mccsamina  · 

1  – 
Mezclaccs3

100

Mezclaccs3

100

Flujo de agua pura en el ciclo de aminas. [kgAgua/s]

mccsCO2remanente   =  mccsamina  · Mezclapobre3 Flujo remanente de CO2 en el ciclo de aminas. [kgCO2/s]

Agua

Flujo de agua en cada punto del ciclo de aminas. [kg/s]

mccsagua i   =  mccsagua         for  i  = 35  to  39

Aminas

Flujo de aminas en cada punto del ciclo de aminas. [kg/s]

mccsamina i   =  mccsamina         for  i  = 35  to  39

CO2

Flujo de CO2 en cada punto del ciclo de aminas. [kg/s]

mccsCO2 i   =  mccs40  + mccsCO2remanente        for  i  = 35  to  36

Flujo de CO2 en cada punto del ciclo de aminas. [kg/s]

mccsCO2 i   =  mccsCO2remanente        for  i  = 37  to  39

Total de caudal

Flujo másico total en cada punto del ciclo de aminas. [kg/s]

mccs i   =  mccsamina i  + mccsagua i  + mccsCO2 i         for  i  = 35  to  39

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Calores específicos 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Calor específico para la mezcla de sustancias en el ciclo de aminas. [kJ/kg·K]

cpccs i   =  
mccsagua i  · Cp;27  + mccsamina i  · cpccselector  + mccsCO2 i  · Cp;3

mccsagua i  + mccsamina i  + mccsCO2 i
        for  i  = 35  to  39

Calor específico del CO2. [kJ/kg·K]



File:C:\TFM\ANEXO VIII - Simulación EES\ANEXO VIII - Programa EES.EES 13/11/2012 12:13:08  Page 47
EES Ver. 9.215: #3470:  For use only by students and faculty in the Departamento de Ingenieria Mecanica Universidad de Za

cpccs i   =  Cp;3         for  i  = 40  to  41

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 ABSORBEDOR 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Entrada

Tccs39   =  39,9  + 273,2  [K] Temperatura de entrada del flujo 39 al absorbedor. [K]

Pccs35   =  0,7 Presión del flujo 35. Presión del absorbedor. [bar]

cpccs10   =  Cp 'Air' ; T = Tccs10 Calor específico de los gases a la entrada del absorbedor

EccsAbs;e   =  mccs39  · cpccs39  · Tccs39  + mccs10  · cpccs10  · Tccs10  + 273,2  [K] Energía térmica entrante al absorbedor. [kJ]

Salida

EccsAbs;s   =  mccs35  · cpccs35  · TAbs;s  + mccs41  · cpccs41  · TAbs;s  + mccs11  · cpccs11  · TAbs;s Energía térmica saliente del absorbedor. [kJ]

Tccs35   =  TAbs;s Los tres flujos salientes lo hacen con la misma temperatura. [K] Solución aminas

Tccs41   =  TAbs;s Flujo CO2 emitido

Tccs11   =  TAbs;s  – 273,2  [K] Flujo de gases de escape a atmósfera

hccs11   =  h 'Air' ; T = Tccs11

Pccs11   =  Pccs10

cpccs11   =  Cp 'Air' ; T = TAbs;s Calor específico de los gases a la salida del absorbedor

Balance de energía

EccsAbs;e   =  EccsAbs;s Balance energético al absorbedor

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 INTERCAMBIADOR 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Pccs36   =  Pccs35  + ∆P;ccs  – ∆P;ccsEq

EccsInt;e   =  mccs35  · cpccs35  · Tccs35  + mccs37  · cpccs37  · Tccs37 Energía térmica entrante al intercambiador. [kJ]

EccsInt;s   =  mccs36  · cpccs36  · Tccs36  + mccs38  · cpccs38  · Tccs38 Energía térmica saliente del intercambiador. [kJ]

Balance de energía

EccsInt;e   =  EccsInt;s Balance energético al intercambiador

 

 



File:C:\TFM\ANEXO VIII - Simulación EES\ANEXO VIII - Programa EES.EES 13/11/2012 12:13:08  Page 48
EES Ver. 9.215: #3470:  For use only by students and faculty in the Departamento de Ingenieria Mecanica Universidad de Za

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 REGENERADOR 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Tccs36   =  273,2  [K]  + 87,4 Temperatura de entrada al regenerador. [K]

Tccs37   =  273,2  [K]  + 116,5 Temperatura de salida del regenerador. [K]

Pccs37   =  Pccs36  – ∆P;ccsEq

Tccs40   =  Tccs37 Temperatura de salida del CO2. [K]

Pccs40   =  Pccs36  – ∆P;ccsEq

EccsReg;e   =  mccs36  · cpccs36  · Tccs36 Energía térmica entrante al regenerador. [kJ]

EccsReg;s   =  mccs37  · cpccs37  · Tccs37  + mccs40  · cpccs40  · Tccs40 Energía térmica saliente al regenerador. [kJ]

EccsReg;d   =  mccs40  · Eccs3  · 1000 Energía térmica demandada para la regeneración del CO2. [kJ]

EccsReg;d   =  mccs21  · hccs21  – hccs22 Condición energética en el regenerador. Se obtiene mccs21 <-----------------------------<--------------------------<--------------

<---------------<
 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 REFRIGERADOR 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Pccs38   =  Pccs37  – ∆P;ccsEq

Pccs39   =  Pccs38  – ∆P;ccsEq

EccsRef;e   =  mccs38  · cpccs38  · Tccs38 Energía térmica entrante al refrigerador. [kJ]

EccsRef;s   =  mccs39  · cpccs39  · Tccs39 Energía térmica saliente del refrigerador. [kJ]

Balance de energía

EccsRef   =  EccsRef;e  – EccsRef;s Balance energético al refrigerador

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 BOMBEO 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

∆P;ccs   =  4 Salto de presión de la bomba de aminas. [bar]
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∆P;ccsEq   =  1 Caída de presión en cada equipo del ciclo de aminas. [bar]

vccs35   =  v 'Steam' ; T = Tccs35  – 273,2  [K]; P = Pccs35 Volumen específico del fluido 35. [m3/kg]

WccsBaminas   =  mccs35  · vccs35  · ∆P;ccs  · 
100000

1000
Trabajo de la bomba de aminas. [kJ]

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 TREN DE COMPRESIÓN DE CO2 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

mccs i   =  mccs i–1         for  i  = 43  to  50

 Condensador de agua 

TccsIntercooler   =  40 Temperatura final del intercooler. [ºC]

Tccs42   =  TccsIntercooler Se refrigera el flujo hasta la temperatura del intercooler

Pccs42   =  Pccs40

mccs42   =  mccs40

hccs40   =  h 'CarbonDioxide' ; T = Tccs40  – 273,2  [K]; P = Pccs40 Entalpía del CO2 punto 42. [kJ/kg]

 Etapa 1 

ηC1ccs   =  0,85 Rendimiento isoentrópico del compresor 1

Pobj   =  120 Presión objetivo del CO2 a la salida. [bar]

rpC1ccs   =  
Pobj

Pccs42

1  / 4

Relación de presión del compresor 1

hccs42   =  h 'CarbonDioxide' ; T = Tccs42 ; P = Pccs42 Entalpía del CO2 punto 42. [kJ/kg]

sccs42   =  s 'CarbonDioxide' ; T = Tccs42 ; P = Pccs42 Entropía del CO2 punto 42. [kJ/kg·K]

sccs42s   =  sccs42 Punto isoentrópico del C1

Pccs42s   =  Pccs43

hccs42s   =  h 'CarbonDioxide' ; s = sccs42s ; P = Pccs42s

ηC1ccs   =  
hccs42s  – hccs42

hccs43  – hccs42
Aplicación del rendimiento isoentrópico para el C1

Pccs43   =  Pccs42  · rpC1ccs Resto de propiedades del punto 43

Tccs43   =  T 'CarbonDioxide' ; P = Pccs43 ; h = hccs43

sccs43   =  s 'CarbonDioxide' ; h = hccs43 ; P = Pccs43

Tccs44   =  TccsIntercooler Se refrigera el flujo hasta la temperatura del intercooler

Pccs44   =  Pccs43

hccs44   =  h 'CarbonDioxide' ; T = Tccs44 ; P = Pccs44 Entalpía del CO2 punto 44. [kJ/kg]

sccs44   =  s 'CarbonDioxide' ; T = Tccs44 ; P = Pccs44 Entropía del CO2 punto 44. [kJ/kg·K]

 Etapa 2 

ηC2ccs   =  0,85 Rendimiento isoentrópico del compresor 2
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rpC2ccs   =  
Pobj

Pccs42

1  / 4

Relación de presión del compresor 2

sccs44s   =  sccs44 Punto isoentrópico del C2

Pccs44s   =  Pccs45

hccs44s   =  h 'CarbonDioxide' ; s = sccs44s ; P = Pccs44s

ηC2ccs   =  
hccs44s  – hccs44

hccs45  – hccs44
Aplicación del rendimiento isoentrópico para el C2

Pccs45   =  Pccs44  · rpC2ccs Resto de propiedades del punto 45

Tccs45   =  T 'CarbonDioxide' ; P = Pccs45 ; h = hccs45

sccs45   =  s 'CarbonDioxide' ; h = hccs45 ; P = Pccs45

Tccs46   =  TccsIntercooler Se refrigera el flujo hasta la temperatura del intercooler

Pccs46   =  Pccs45

hccs46   =  h 'CarbonDioxide' ; T = Tccs46 ; P = Pccs46 Entalpía del CO2 punto 46. [kJ/kg]

sccs46   =  s 'CarbonDioxide' ; T = Tccs46 ; P = Pccs46 Entropía del CO2 punto 46. [kJ/kg·K]

 Etapa 3 

ηC3ccs   =  0,85 Rendimiento isoentrópico del compresor 3

rpC3ccs   =  
Pobj

Pccs42

1  / 4

Relación de presión del compresor 3

sccs46s   =  sccs46 Punto isoentrópico del C3

Pccs46s   =  Pccs47

hccs46s   =  h 'CarbonDioxide' ; s = sccs46s ; P = Pccs46s

ηC3ccs   =  
hccs46s  – hccs46

hccs47  – hccs46
Aplicación del rendimiento isoentrópico para el C3

Pccs47   =  Pccs46  · rpC3ccs Resto de propiedades del punto 47

Tccs47   =  T 'CarbonDioxide' ; P = Pccs47 ; h = hccs47

sccs47   =  s 'CarbonDioxide' ; h = hccs47 ; P = Pccs47

Tccs48   =  TccsIntercooler Se refrigera el flujo hasta la temperatura del intercooler

Pccs48   =  Pccs47

hccs48   =  h 'CarbonDioxide' ; T = Tccs48 ; P = Pccs48 Entalpía del CO2 punto 48. [kJ/kg]

sccs48   =  s 'CarbonDioxide' ; T = Tccs48 ; P = Pccs48 Entropía del CO2 punto 48. [kJ/kg·K]

 Etapa 4 

ηC4ccs   =  0,85 Rendimiento isoentrópico del compresor 4

rpC4ccs   =  
Pobj

Pccs42

1  / 4

Relación de presión del compresor 4

sccs48s   =  sccs48 Punto isoentrópico del C4

Pccs48s   =  Pccs49

hccs48s   =  h 'CarbonDioxide' ; s = sccs48s ; P = Pccs48s

ηC4ccs   =  
hccs48s  – hccs48

hccs49  – hccs48
Aplicación del rendimiento isoentrópico para el C4

Pccs49   =  Pccs48  · rpC4ccs Resto de propiedades del punto 49

Tccs49   =  T 'CarbonDioxide' ; P = Pccs49 ; h = hccs49

sccs49   =  s 'CarbonDioxide' ; h = hccs49 ; P = Pccs49
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Tccs50   =  TccsIntercooler Se refrigera el flujo hasta la temperatura del intercooler

Pccs50   =  Pccs49

hccs50   =  h 'CarbonDioxide' ; T = Tccs50 ; P = Pccs50 Entalpía del CO2 punto 50. [kJ/kg]

sccs50   =  s 'CarbonDioxide' ; T = Tccs50 ; P = Pccs50 Entropía del CO2 punto 50. [kJ/kg·K]
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 POTENCIAS DEL CICLO 
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Potencias eléctricas

WccsTA   =  mccs12  · hccs12  – hccs13 Trabajo mecánico producido por las turbinas

WccsTM1   =  mccs15  · hccs15  – hccs16

WccsTM2   =  mccs18  · hccs18  – hccs19

WccsTM3   =  mccs23  · hccs23  – hccs24

WccsTB   =  mccs26  · hccs26  – hccs27

WccsBB   =  mccs29  · hccs29  – hccs28 Trabajo eléctrico consumido por las bombas

WccsBM   =  mccs30  · hccs30  – hccs29

WccsBA   =  mccs34  · hccs34  – hccs32

WccsC1   =  mccs42  · hccs43  – hccs42 Trabajo eléctrico consumido por el tren de compresión de CO2

WccsC2   =  mccs44  · hccs45  – hccs44

WccsC3   =  mccs46  · hccs47  – hccs46

WccsC4   =  mccs48  · hccs49  – hccs48

WccsVapor   =  WccsTA  + WccsTM1  + WccsTM2  + WccsTM3  + WccsTB  · ηalternador  – WccsBB  + WccsBM  + WccsBA Trabajo producido en
el ciclo de vapor

WccsAminas   =  WccsBaminas Trabajo eléctrico consumido por la bomba en el ciclo de aminas. [kJ]

WccsCO2   =  WccsC1  + WccsC2  + WccsC3  + WccsC4 Trabajo eléctrico consumido por los compresores de CO2. [kJ]

WccsNETO   =  WccsVapor  + WccsTG  · 1000 Trabajo eléctrico neto de todo el ciclo de potencia. [kW]

WccsSID   =  Σ
i=1

6

E term;1;i Potencia demandada por la siderurgia. [kW]

WccsAMIN   =  WccsAminas Potencia demandada por el ciclo de aminas. [kW]

WccsCARB   =  WccsCO2 Potencia demandada por el ciclo de compresión de CO2. [kW]

WccsEXP   =  WccsNETO  – WccsSID  – WccsAMIN  – WccsCARB BENEFICIO. Potencia eléctrica a vender a la red. [kW]

Potencias térmicas

PccsCond   =  mccs27  · hccs27  – hccs28 Potencia térmica disipada en el condensador
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PccsRef   =  EccsRef Potencia térmica disipada en el refrigerador del ciclo de aminas

PccsIC1;CO2   =  mccs43  · hccs43  – hccs44 Potencia térmica disipada en el intercooler 1 del CO2

PccsIC2;CO2   =  mccs45  · hccs45  – hccs46 Potencia térmica disipada en el intercooler 2 del CO2

PccsIC3;CO2   =  mccs47  · hccs47  – hccs48 Potencia térmica disipada en el intercooler 3 del CO2

PccsIC4;CO2   =  mccs49  · hccs49  – hccs50 Potencia térmica disipada en el intercooler 4 del CO2

PccsCond;CO2   =  mccs42  · hccs40  – hccs42 Potencia térmica disipada en el condensador de CO2

PccsIC   =  PccsIC1;CO2  + PccsIC2;CO2  + PccsIC3;CO2  + PccsIC4;CO2  + PccsCond;CO2

 

 

 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 ESTUDIO DE EMISIONES DE CO2 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Combustión de los gases energéticos 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 

Caudal másico de los gases energéticos. [kg/s]

mccsgas1   =  m21;1 Caudal másico del BOF

mccsgas2   =  m23;2 Caudal másico del BFgas

mccsgas3   =  m15;3 Caudal másico del COG

mccsgas4   =  mccs51 Caudal másico del GN

Volumen del los gases energéticos. [Nm3/s]

Volccsgas1   =  
mccsgas1

ρBOF
Volumen del BOF

Volccsgas2   =  
mccsgas2

ρBFgas
Volumen del BFgas

Volccsgas3   =  
mccsgas3

ρCOG
Volumen del COG

Volccsgas4   =  
mccsgas4

ρgn
Volumen del GN

Moles de los elementos fundamentales. [mol/s]

molccsgas t;1   =  nBOF;t  · Volccsgas1         for  t  = 1  to  8 Moles de las especies que conforman los gases energéticos

molccsgas t;2   =  nBFgas;t  · Volccsgas2         for  t  = 1  to  8

molccsgas t;3   =  nCOG;t  · Volccsgas3         for  t  = 1  to  8
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molccsgas t;4   =  ngn;t  · Volccsgas4         for  t  = 1  to  8

Moles totales de los elementos fundamentales. [mol/s]

Suma de los moles especie por especie

molccstotk   =  molccsgask;1  + molccsgask;2  + molccsgask;3  + molccsgask;4         for  k  = 1  to  8

Relación de emisión de CO2 mol a mol. [molCO2/molespecie]

Emisiones de CO2. [mol/s]

CO2ccs i   =  molccstot i  · relemisión;i         for  i  = 1  to  8 Emisiones de CO2 debido a cada especie de los gases energéticos. [mol/s]

CO2ccsgas   =  Σ
i=1

8

CO2ccs i  · 
Mr3

1000
Emisiones totales de CO2. [kg/s]

CO2ccsindustria   =  m15;1  + m10;3  + m17;4

CO2ccsTOT   =  CO2ccsgas  + CO2ccsindustria

CO2ccsEMIT   =  CO2ccsTOT  – mccs40 Emisiones de CO2 a la atmósfera. [kg/s]
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 INDUSTRIA SIDERÚRGICA 

 Comparativa Caso real vs. Caso ficticio equivalente 
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 Parametrización del caso real (real=CCS+MDEA) 
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Producción

Prodcomp;real;acero   =  m17;1 Producción de acero en el caso real. [kg/s]

Prodcomp;real;CO2   =  CO2ccsEMIT Emisiones de CO2 en el caso real. [kg/s]

Prodcomp;real;elect   =  WccsEXP Producción eléctrica en el caso real. [kWe]

Necesidades - Materias primas
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Neccomp;real;gnE   =  
mccs51

εgn
Necesidad de combustible de apoyo (GN) en el caso real. [MWt]

Neccomp;real;gnM   =  mccs51 Necesidad de combustible de apoyo (GN) en el caso real. [kg/s]
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 Parametrización del caso ficticio (ficticio=caso base + CPficticia) 
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Producción del caso base

Prodcomp;fict;base;acero   =  m17;1 Producción de acero en el caso ficticio. [kg/s]

Prodcomp;fict;base;CO2   =  CO2baseTOT Emisiones de CO2 en el caso base. [kg/s]

Prodcomp;fict;base;elec   =  WbaseEXP Producción eléctrica en el caso base. [kWe]

Parametrización de la CP ficticia

η te   =  
WbaseNETO

PotDisponible  · 1000
Rendimiento termo-eléctrico de la CP ficticia. [%]kWe/kWt]

factoremisión   =  
CO2basegas

WbaseNETO
Factor de emisión de CO2 de la CP ficticia. [kgCO2/s/kWe]

factor fuel   =  
mbase1

WbaseNETO
Factor de consumo de gases energéticos de la CP ficticia. [kggases/s/kWe]

energíakg fuel   =  
PotDisponible

mccs1
Más o menos es la energía de combustión de los gases energéticos. [MWt/kg/s]

Cálculos de la nueva CP ficticia

Prodcomp;fict;fict;elec   =  Prodcomp;real;elect  – Prodcomp;fict;base;elec Producción eléctrica para que el global produzca igual que caso real

Prodcomp;fict;fict;CO2   =  Prodcomp;fict;fict;elec  · factoremisión Emisiones de CO2 asociadas a la CP ficticia. [kgCO2/s]

Neccomp;fict;fict;geM   =  factor fuel  · Prodcomp;fict;fict;elec Necesidades térmicas de quema de gases energéticos. [kg/s]

Neccomp;fict;fict;geE   =  Neccomp;fict;geM  · energíakgfuel Necesidades térmicas de quema de gases energéticos. [MWt]

Producción total

Prodcomp;fict;acero   =  Prodcomp;fict;base;acero Cantidad final de producto ACERO del caso ficticio.

Prodcomp;fict;CO2   =  Prodcomp;fict;base;CO2  + Prodcomp;fict;fict;CO2 Cantidad final de producto CO2 del caso ficticio.

Prodcomp;fict;elec   =  Prodcomp;fict;base;elec  + Prodcomp;fict;fict;elec Cantidad final de producto ELECTRICIDAD del caso ficticio.

Necesidades totales

Neccomp;fict;geE   =  Neccomp;fict;fict;geE Necesidad final de gases energéticos en base energética

Neccomp;fict;geM   =  Neccomp;fict;fict;geM Necesidad final de gases energéticos en base másica
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||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

 Análisis económico 
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AñosVida   =  25 Años de vida útil de la planta CCS. [año]

i tae   =  4 Interés económico de capitalización TAE. [%]

imes   =  1  + 
i tae

100

1

12
 – 1 Interés económico equivalente mensual. [%]

precioCO2   =  30 Precio por tonelada de CO2 emitida. [¬/tonCO2]

emisionevitada   =  Prodcomp;fict;CO2  – Prodcomp;real;CO2 Emisiones evitadas=emisiones caso ficticio - emisiones caso real

emisionCO2anual   =  emisionevitada  · 3600  · 24  · 
365

1000
Emisiones evitadas al año. [tonCO2/año]

emisionCO2mensual   =  
emisionCO2anual

12
Emisiones evitadas al mes. [tonCO2/mes]

Coste económico

cashbruto;a;m   =  emisionCO2mensual  · precioCO2        for  a  = 1  to  AñosVida;  m  = 1  to  12 Precio por emitir CO2. [¬/mes]

cashact;a;m   =  
cashbruto;a;m

1  + imes
a  – 1  · 12  + m

        for  a  = 1  to  AñosVida;  m  = 1  to  12 Precio actualizado por emitir CO2. [¬/mes]

VAN - Valor Actual Neto

VANa   =  Σ
m=1

12

cashact;a;m         for  a  = 1  to  AñosVida

VAN   =  

Σ
a=1

AñosVida

VANa

1000000

SOLUTION
Unit Settings: SI C bar kJ mass deg
Airealimeq,ais  = 288,5 [kg/s]Airealimeq,ais  = 288,5 [kg/s]
Airealim,ais  = 29,15 [kg/s]Airealim,ais  = 29,15 [kg/s]
Alimcarboneq,ais  = 38,98 [kg/s]Alimcarboneq,ais  = 38,98 [kg/s]
Alimcarbon,ais  = 3,939 [kg/s]Alimcarbon,ais  = 3,939 [kg/s]

αint  = 0,09573 [-]
AñosVida  = 25 
BE  = 0,1665 [kJ]BE  = 0,1665 [kJ]

β  = 0,86 [-]

βint = 0,09573 [-]
BM  = 0,0007401 [kg]BM  = 0,0007401 [kg]
CO2aistermico = 5,231 [kg/s]CO2aistermico = 5,231 [kg/s]
CO2aistermicoqe  = 51,77 [kg/s]CO2aistermicoqe  = 51,77 [kg/s]
CO2basegas  = 66,39 [kg/s]CO2basegas  = 66,39 [kg/s]
CO2baseindustria  = 43,09 [kg/s]CO2baseindustria  = 43,09 [kg/s]
CO2baseTOT  = 109,5 [kg/s]CO2baseTOT  = 109,5 [kg/s]
CO2ccsEMIT  = 13,6 [kgCO2/s]CO2ccsEMIT  = 13,6 [kgCO2/s]
CO2ccsgas  = 82,11 
CO2ccsindustria  = 43,09 
CO2ccsTOT  = 125,2 [kgCO2/s]CO2ccsTOT  = 125,2 [kgCO2/s]
consumoesp  = 200 [kWh/ton]
Cp.BFgas  = 1,412 [kJ/kg·K]
Cp.BOF  = 1,422 [kJ/kg·K]
Cp.COG  = 9,037 [kg/s]
Cp.gn  = 2,131 [kJ/kg·K]
Cp,corrientenitrogeno  = 1,038 [kJ/kg·K]
Cp,corrienteoxigeno  = 0,9096 [kJ/kg·K]

∆P,ccs  = 4 
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∆P,ccsEq  = 1 

∆P,HRSG  = 10 

∆T  = 47 

∆T,BA = 2 
Demandaelec,ais  = 111366 [kW]Demandaelec,ais  = 111366 [kW]
Demandasid,ais  = 22505 [kW]Demandasid,ais  = 22505 [kW]
Demandatermeq,ais  = 222733 [kW]Demandatermeq,ais  = 222733 [kW]
elector  = 3 elector  = 3 
emisionCO2anual = 3,811E+06 [tonCO2/año]
emisionCO2mensual = 317580 [tonCO2/mes]
emisionevitada  = 120,8 [kgCO2/s]
energíakgfuel  = 3,701 

εBFgas  = 0,3906 [kg/MJ]

εBOF  = 0,1608 [kg/MJ]

εCOG  = 0,02315 [kg/MJ]

εgn  = 0,01909 [kg/MJ]

ηalternador  = 0,97 

ηBB  = 0,83 [%]

ηBBccs = 0,83 

ηBMccs  = 0,83 

ηC1ccs  = 0,85 

ηC2ccs  = 0,85 

ηC3ccs  = 0,85 

ηC4ccs  = 0,85 

ηcaldera  = 0,9125 

ηis  = 0,9 

ηis,comp,aire = 0,9 [-]

ηremoval = 89,14 [%]

ηsistemaelectrico  = 0,5 

ηTA  = 0,85 

ηTAccs  = 0,85 

ηTB  = 0,85 

ηTBccs  = 0,85 

ηte  = 0,5409 [[%]]

ηTG  = 0,348 

ηTM1  = 0,9 

ηTM1ccs = 0,9 

ηTM2  = 0,9 

ηTM2ccs = 0,9 

ηTM3ccs = 0,88 
Eact,DEA  = 2,943 [kWe]Eact,DEA  = 2,943 [kWe]
Eact,MDEA  = 1,986 [MJ/kgCO2]Eact,MDEA  = 1,986 [MJ/kgCO2]
Eact,MEA  = 4,17 [MJ/kgCO2]Eact,MEA  = 4,17 [MJ/kgCO2]
EccsAbs,e = 1,032E+06 
EccsAbs,s = 1,032E+06 [kg/s]
EccsInt,e = 1,533E+06 
EccsInt,s = 1,533E+06 
EccsRef  = 150761 [kW]EccsRef  = 150761 [kW]
EccsRef,e  = 775337 
EccsRef,s  = 624576 
EccsReg,d  = 221630 [kW···(CO2)]EccsReg,d  = 221630 [kW···(CO2)]
EccsReg,e  = 757247 
EccsReg,s = 818365 
factoremisión  = 0,0003345 
factorfuel  = 0,0004996 
flujoaire,alim  = 1,182 

γ = 0,36 [-]

γint  = 0,09573 [-]
h2s  = 2915 
h3s  = 2686 
h4s  = 2158 
hbase12s = 2107 
hbase14s = 151,6 
hbase5s  = 3166 [kWe]
hbase6s  = 2892 
hbase9s  = 2415 
hccs12s  = 3161 
hccs15s  = 2892 
hccs18s  = 2590 
hccs23s  = 2446 
hccs26s  = 2107 
hccs28s  = 151,6 
hccs30s  = 405,4 
hccs42s  = 72 
hccs44s  = 67,14 
hccs46s  = 53,93 
hccs48s  = 13,38 
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hextrac5s = 3166 
hextrac6s = 2892 
hextrac9s = 2590 
haire2s  = 893,2 
IndicadoraireComp  = -0,0239 [K]
imes  = 0,003274 
itae  = 4 

κ  = 0,935 [-]

κint = 0,09573 [-]
mccsagua  = 350,8 [kgAgua/s]mccsagua  = 350,8 [kgAgua/s]
mccsamina  = 188,9 [kgAmina/s]mccsamina  = 188,9 [kgAmina/s]
mccsCO2 = 125,2 [kgCO2/s]mccsCO2 = 125,2 [kgCO2/s]
mccsCO2remanente = 14,92 [kgCO2/s]mccsCO2remanente = 14,92 [kgCO2/s]
MrAr  = 39,95 [g/mol]
MrC  = 12,01 [g/mol]
Mrcorrientenitrogeno  = 28,06 [g/mol]
Mrcorrienteoxigeno  = 32,13 [g/mol]
MrH  = 1,008 [g/mol]
MrN  = 14,01 [g/mol]
MrO = 16 [g/mol]
mextnom  = 453 
mextracCO2DEA  = 45,85 [kgCO2/s]mextracCO2DEA  = 45,85 [kgCO2/s]
mextracCO2MDEA = 67,95 [kgCO2/s]mextracCO2MDEA = 67,95 [kgCO2/s]
mextracCO2MEA = 32,36 [kgCO2/s]mextracCO2MEA = 32,36 [kgCO2/s]
Neccomp,fict,fict,geE = 138 
Neccomp,fict,fict,geM  = 37,29 
Neccomp,fict,geE  = 138 [MWt]Neccomp,fict,geE  = 138 [MWt]
Neccomp,fict,geM = 37,29 [kg/s]Neccomp,fict,geM = 37,29 [kg/s]
Neccomp,real,gnE  = 307,8 [MWt]Neccomp,real,gnE  = 307,8 [MWt]
Neccomp,real,gnM  = 5,875 [kg/s]Neccomp,real,gnM  = 5,875 [kg/s]
nCN  = 44,61 [mol/Nm3]
p4s  = 0,06 
Pbase12s  = 0,06 
Pbase14s  = 0,9 
Pbase5s = 50 
Pbase6s = 15,09 
Pbase9s = 0,9 
Pccs12s  = 50 
Pccs15s  = 15,09 
Pccs18s  = 2,7 
Pccs23s  = 0,9 
Pccs26s  = 0,06 
Pccs28s  = 0,9 
Pccs30s  = 2,7 
Pccs42s  = 6,971 
Pccs44s  = 18 
Pccs46s  = 46,48 
Pccs48s  = 120 
PCBFgas  = 3,477 [MJ/Nm3]
PCBOF  = 8,306 [MJ/Nm3]
PCCOG  = 19,83 [MJ/Nm3]
PCgn = 41,34 [MJ/Nm3]
Pextrac5s  = 50 
Pextrac6s  = 15,09 
Pextrac9s  = 2,7 
PotDisponible = 367 [MWt]PotDisponible = 367 [MWt]
PotDisponibleccs  = 674,8 [kWt]PotDisponibleccs  = 674,8 [kWt]
Potcaldera,ais  = 24664 [kW]Potcaldera,ais  = 24664 [kW]
Potcaldera,eq,ais  = 244091 [kW]Potcaldera,eq,ais  = 244091 [kW]
precioCO2 = 30 
Prodcomp,fict,acero  = 95,73 [kg/s]Prodcomp,fict,acero  = 95,73 [kg/s]
Prodcomp,fict,base,acero  = 95,73 [kg/s]
Prodcomp,fict,base,CO2  = 109,5 [kg/s]
Prodcomp,fict,base,elec  = 87117 [kWe]
Prodcomp,fict,CO2  = 134,4 [kg/s]Prodcomp,fict,CO2  = 134,4 [kg/s]
Prodcomp,fict,elec  = 161756 [kWe]Prodcomp,fict,elec  = 161756 [kWe]
Prodcomp,fict,fict,CO2  = 24,97 [kg/s]
Prodcomp,fict,fict,elec = 74639 [kWe]
Prodcomp,real,acero  = 95,73 [kg/s]Prodcomp,real,acero  = 95,73 [kg/s]
Prodcomp,real,CO2  = 13,6 [kg/s]Prodcomp,real,CO2  = 13,6 [kg/s]
Prodcomp,real,elect  = 161756 [kWe]Prodcomp,real,elect  = 161756 [kWe]
PACERO  = 95,73 [kg/s]
PbaseCond  = 111163 [kW]PbaseCond  = 111163 [kW]
PccsCond  = 3,975E-46 [kW]PccsCond  = 3,975E-46 [kW]
PccsCond,CO2  = 7741 [kW]PccsCond,CO2  = 7741 [kW]
PccsIC  = 62262 [kW]PccsIC  = 62262 [kW]
PccsIC1,CO2  = 8481 [kW]PccsIC1,CO2  = 8481 [kW]
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PccsIC2,CO2  = 9037 [kW]PccsIC2,CO2  = 9037 [kW]
PccsIC3,CO2  = 11033 [kW]PccsIC3,CO2  = 11033 [kW]
PccsIC4,CO2  = 25968 [kW]PccsIC4,CO2  = 25968 [kW]
PccsRef  = 150761 [kW]PccsRef  = 150761 [kW]
Pcond = 0,06 
Pdesg = 0,9 
Pdesg1 = 0,9 
Pdesg2 = 2,7 
Pobj  = 120 
Pref  = 1 [bar]
PTGnom  = 144 [MW]
QbaseHRSG  = 166377 [kW]QbaseHRSG  = 166377 [kW]
QccsHRSG  = 285643 [kW]QccsHRSG  = 285643 [kW]
QextracHRSG  = 166377 [kW]QextracHRSG  = 166377 [kW]
Qextrac,regen  = 134950 [kW]Qextrac,regen  = 134950 [kW]
R  = 0,08206 [atm*L/mol/K]
ratioalim,carbon  = 0,1597 [kg/s/MW]
ratioemision,CO2  = 0,2121 [kgCO2/s/MW]
relproducc  = 3,878 [-]

ρBFgas  = 1,358 [kg/Nm3]

ρBOF  = 1,335 [kg/Nm3]

ρCOG = 0,4591 [kg/Nm3]

ρgn = 0,789 [kg/Nm3]
rpC1ccs  = 2,582 
rpC2ccs  = 2,582 
rpC3ccs  = 2,582 
rpC4ccs  = 2,582 
rpTG  = 14 
s2s  = 6,646 
s3s  = 6,943 
s4s  = 7,006 
sbase12s  = 6,841 
sbase14s  = 0,5208 
sbase5s  = 6,601 
sbase6s  = 6,646 
sbase9s  = 6,704 
sccs12s  = 6,594 
sccs15s  = 6,646 
sccs18s  = 6,704 
sccs23s  = 6,787 
sccs26s  = 6,844 
sccs28s  = 0,5208 
sccs30s  = 1,27 
sccs42s  = -0,1484 
sccs44s  = -0,3359 
sccs46s  = -0,5381 
sccs48s  = -0,7932 
sextrac5s  = 6,601 
sextrac6s  = 6,646 
sextrac9s  = 6,704 
saire2s  = 5,699 
T  = 273,2 [K]
t2s  = 250 
t3s  = 130 
TAbs,s  = 359,6 [K]TAbs,s  = 359,6 [K]
Taire2s  = 591 
TccsIntercooler  = 40 
Text  = 542 
Tref  = 25 [ºC]
VAN = 1818,566 [M€]VAN = 1818,566 [M€]
Wta  = 252,2 
Wtb  = 499 
Wtm  = 231,2 
WbaseBA  = 927,8 [kW]WbaseBA  = 927,8 [kW]
WbaseBB  = 5,636 [kW]WbaseBB  = 5,636 [kW]
WbaseEXP  = 87117 [kW]WbaseEXP  = 87117 [kW]
WbaseNETO = 198483 [kW]WbaseNETO = 198483 [kW]
WbaseSID  = 111366 [kW]WbaseSID  = 111366 [kW]
WbaseTA  = 9602 [kW]WbaseTA  = 9602 [kW]
WbaseTB  = 16906 [kW]WbaseTB  = 16906 [kW]
WbaseTG  = 127,7 [MW]WbaseTG  = 127,7 [MW]
WbaseTM1  = 19083 [kW]WbaseTM1  = 19083 [kW]
WbaseTM2  = 28341 [kW]WbaseTM2  = 28341 [kW]
WbaseVapor  = 70781 [kW]WbaseVapor  = 70781 [kW]
WccsAMIN  = 275,4 [kW]WccsAMIN  = 275,4 [kW]
WccsAminas  = 275,4 
WccsBA  = 1630 [kW]WccsBA  = 1630 [kW]
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WccsBaminas  = 275,4 [kW]
WccsBB  = 2,014E-50 [kW]WccsBB  = 2,014E-50 [kW]
WccsBM = 0 [kW]WccsBM = 0 [kW]
WccsC1  = 8072 [kW]WccsC1  = 8072 [kW]
WccsC2  = 7915 [kW]WccsC2  = 7915 [kW]
WccsC3  = 7501 [kW]WccsC3  = 7501 [kW]
WccsC4  = 6334 [kW]WccsC4  = 6334 [kW]
WccsCARB = 29822 [kW]WccsCARB = 29822 [kW]
WccsCO2  = 29822 [kW]WccsCO2  = 29822 [kW]
WccsEXP  = 161756 [kW]WccsEXP  = 161756 [kW]
WccsNETO = 303219 [kW]WccsNETO = 303219 [kW]
WccsSID  = 111366 [kW]WccsSID  = 111366 [kW]
WccsTA  = 19501 [kW]WccsTA  = 19501 [kW]
WccsTB  = 6,046E-47 [kW]WccsTB  = 6,046E-47 [kW]
WccsTG  = 224,7 [MWe]WccsTG  = 224,7 [MWe]
WccsTM1  = 31267 [kW]WccsTM1  = 31267 [kW]
WccsTM2  = 31865 [kW]WccsTM2  = 31865 [kW]
WccsTM3  = 0 [kW]WccsTM3  = 0 [kW]
WccsVapor  = 78524 
Wcomp,aire  = 5300 [kJ]
WextracBA  = 922,9 [kW]WextracBA  = 922,9 [kW]
WextracEXP  = 63274 [kW]WextracEXP  = 63274 [kW]
WextracNETO = 174640 [kW]WextracNETO = 174640 [kW]
WextracSID  = 111366 [kW]WextracSID  = 111366 [kW]
WextracTA  = 10083 [kW]WextracTA  = 10083 [kW]
WextracTG  = 127,7 [MW]WextracTG  = 127,7 [MW]
WextracTM1  = 19856 [kW]WextracTM1  = 19856 [kW]
WextracTM2  = 19402 [kW]WextracTM2  = 19402 [kW]
WextracVapor  = 46938 
Wunit,comp,aire  = 660,7 [kJ/kgaire]

949 potential unit problems were detected.

Arrays Table: Main

Mr i Ecomb;i bfgas i bof i cog i gn i nBFgas;i nBOF;i nCOG;i ngn;i Cp;i;1

[g/mol] [kJ/mol] [%] [%] [%] [%] [mol/Nm3] [mol/Nm3] [mol/Nm3] [mol/Nm3] [kJ/kg·k]

 1 28,01 283 24,3 61,6 5,9 0 10,84 27,48 2,632 0  
 2 2,016 285,8 2,9 2,9 57,4 0 1,294 1,294 25,61 0  
 3 44,01 0 20 17 2 0,9 8,923 7,585 0,8923 0,4015  
 4 28,01 0 52,7 18,1 6,4 1,3 23,51 8,075 2,855 0,58 0,918 
 5 16,04 887,1 0,1 0,4 26,9 90,9 0,04461 0,1785 12 40,56 1,04 
 6 30,07 1560 0 0 0,9 5,4 0 0 0,4015 2,409 1,012 
 7 44,1 2219 0 0 0,5 1,1 0 0 0,2231 0,4908 4,18 
 8 58,12 2879 0 0 -6,939E-18 0,4 0 0 -3,096E-18 0,1785 0,5203 
 9 32 30         0,45 
 10 28,96          0,45 
 11 39,95          0,7106 
 12           1,412 
 13           9,037 
 14           2,131 
 15           0,942 
 16           1,049 
 17           0,5016 
 18           0,7942 
 19           0,7942 
 20           1,422 
 21           1,422 
 22            
 23            
 24            
 25            
 26            
 27            
 28            
 29            
 30            
 31            
 32            
 33            
 34            
 35            
 36            
 37            
 38            
 39            
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Arrays Table: Main

Mr i Ecomb; i bfgas i bof i cog i gn i nBFgas; i nBOF; i nCOG;i ngn; i Cp; i;1

[g/mol] [kJ/mol] [%] [%] [%] [%] [mol/Nm3] [mol/Nm3] [mol/Nm3] [mol/Nm3] [kJ/kg·k]

 40                       
 41                       
 42                       
 43                       
 44                       
 45                       
 46                       
 47                       
 48                       
 49                       
 50                       
 51                       

Arrays Table: Main

Cp; i;2 Cp; i;3 Cp; i;4 Cp; i;5 Cp; i;6 Cp; i Ti;1 Ti;2 Ti;3 Ti;4 Ti;5 Ti;6 m i;1

[kJ/kg·k] [kJ/kg·k] [kJ/kg·k] [kJ/kg·k] [kJ/kg·k] [kJ/kg·k] [ºC] [ºC] [ºC] [ºC] [ºC] [ºC] [kg]

 1            1,049              0 
 2            14,42              2,667 
 3            0,942              6,89 
 4  0,918  1,012  1,012  1,012  1,012  1,04  725  327  326,9  327  25  25  8,2 
 5  1,04  4,18  1,012  0,9096  1,057  2,191  725  327  60  25    650  1,196 
 6  1,012  4,18  0,7315  1,038    1,723  650  326,9  25  25      2,103 
 7  4,18  0,834  0,7942  0,918    1,642  25  70  25  375  185    7,912 
 8  4,18  9,037  0,7942  1,04    1,647  728  90  80  375  185    0,1536 
 9  0,482  4,18  0,4826  0,5203    0,5016  1250  200  70  25  185    82,33 
 10  0,7315  0,942  0,834  1,04    0,4826  25  25  90  60,2  185    21,06 
 11  0,836  1,049  1,412  1,04    1,012  25  180  90  160  185    11,39 
 12  0,7942  0,836  0,7942  0,5203    1,47  160  800  190  250  185    0,3627 
 13  0,7106  2,663  0,482  0,5203    0,5203  80  25  90  250  185    0,8864 
 14  2,09  9,037  1,012      0,7942  25  25  90  80      0,7071 
 15  0,834  9,037  0,1937      0,45  660  60  90  80      11,79 
 16  1,412    1,049      0,4652  660  160    80      0,4978 
 17  1,422    0,942      0,7106  800  550    80      95,73 
 18  4,18          0,7315  380  90          8,118 
 19  0,7942          3,81  380  1200          7,869 
 20  0,7942          0,918  650  1200          8,08 
 21  0,45          2,09  650  1100          0 
 22  1,412          0,1296    180           
 23  1,412          0,3762    180           
 24            0,4827               
 25            2,663               
 26            0,1937               
 27            4,18               
 28            2,131               
 29            9,037               
 30            1,422               
 31            1,412               
 32            0,482               
 33            0,836               
 34            0,834               
 35            0,9096               
 36            1,038               
 37                           
 38                           
 39                           
 40                           
 41                           
 42                           
 43                           
 44                           
 45                           
 46                           
 47                           
 48                           
 49                           
 50                           
 51                           

Arrays Table: Main

m i;2 m i;3 m i;4 m i;5 m i;6 m input; i moutput; i BM i Pi Ti h i s i Eterm; i;1

[kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg] [bar] [ºC] [kJ/kg] [kJ/kg·K] [kJ]
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Arrays Table: Main

m i;2 m i;3 m i;4 m i;5 m i;6 m input; i moutput; i BM i Pi Ti h i s i Eterm; i;1

[kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg] [bar] [ºC] [kJ/kg] [kJ/kg·K] [kJ]

 1  0  0  0  0  0  139  139  0,002589  50  400  3196  6,646  17030 
 2  3,204  1,776  0  0  0  405,8  405,8  -0,000348  9,635  250  2943  6,943  7850 
 3  0  6,381  0  0  0  71,87  71,87  0,0001739  2,7  130  2712  7,006  22017 
 4  7,585  1,781  2,69  70,48  8,021  205,2  205,2  -0,001675  0,06  36,17  2213  7,186  5269 
 5  6,999  19,15  74,28  16,07  8,021  70,48  70,48  0          871 
 6  1,447  1,863  72,75  54,41    8,021  8,021  0          1330 
 7  30,63  44,51  8,118  15,78                  0 
 8  138,2  2,792  21,12  54,07                  56,16 
 9  89,5  19,15  17,76  0,6267                  45382 
 10  14,84  0,3236  4,608  45,87                  0 
 11  34,46  1,508  3,848  8,195                  0 
 12  1,647  34,46  1,173  0,4732                  69,13 
 13  2,116  3,59  89,5  0,1536                  440,6 
 14  2,47  3,678  76,97                    0 
 15  13,4  2,783  1,424                    7050 
 16  51,15    5,119                    331,6 
 17  8,08    30,98                    37213 
 18  148,9                        2289 
 19  21,12                        2219 
 20  1,647                        7178 
 21  82,33                        0 
 22  55,36                         
 23  96,38                         
 24                           
 25                           
 26                           
 27                           
 28                           
 29                           
 30                           
 31                           
 32                           
 33                           
 34                           
 35                           
 36                           
 37                           
 38                           
 39                           
 40                           
 41                           
 42                           
 43                           
 44                           
 45                           
 46                           
 47                           
 48                           
 49                           
 50                           
 51                           

Arrays Table: Main

Eterm; i;2 Eterm; i;3 Eterm; i;4 Eterm; i;5 Eterm; i;6 Einput; i Eoutput; i BE i Comp i mmol; i;5 mO2;i;5 mN2;i;5

[kJ] [kJ] [kJ] [kJ] [kJ] [kJ] [kJ] [kJ] [%] [mol] [mol] [mol]

 1  48048  23325  6299  11365  5300  78297  78297  -0,01967  95,17       
 2  9429  5227  0  0  0  134739  134739  0,03562  2,08       
 3  0  20390  0  0  0  33285  33285  0,06786  2,75       
 4  2103  544,2  822,2  0  0  16116  16116  0,06354  0,9       
 5  2198  2801  0    5300  11365  11365  0,03633  99  500  475,8  10,4 
 6  442,2  0  0      5300  5300  -0,01715  0,1  1939  17,45  1920 
 7  5762  0  2256  2318            493,3     
 8  37558  1388  5870  8995                 
 9  7550  3601  0  52,16                 
 10  0  19,81  135,3  7631                 
 11  4466  102,8  733,3  1363                 
 12  1013  4754  209,5  39,38                 
 13  0  621,5  9707  12,78                 
 14  0  2161  4284                   
 15  391,2  1635  15,18                   
 16  9749    295,4                   
 17  6030    1605                   
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Arrays Table: Main

Eterm; i;2 Eterm; i;3 Eterm; i;4 Eterm; i;5 Eterm; i;6 Einput; i Eoutput; i BE i Comp i mmol; i;5 mO2;i;5 mN2;i;5

[kJ] [kJ] [kJ] [kJ] [kJ] [kJ] [kJ] [kJ] [%] [mol] [mol] [mol]

 18  40468                       
 19  19706                       
 20  1536                       
 21  39825                       
 22  12115                       
 23  21089                       
 24                         
 25                         
 26                         
 27                         
 28                         
 29                         
 30                         
 31                         
 32                         
 33                         
 34                         
 35                         
 36                         
 37                         
 38                         
 39                         
 40                         
 41                         
 42                         
 43                         
 44                         
 45                         
 46                         
 47                         
 48                         
 49                         
 50                         
 51                         

Arrays Table: Main

mAr; i;5 Taire; i Paire; i haire; i saire; i mbase i Pbase i Tbase i hbase i sbase i xbase i mbasegas i

[mol] [ºC] [bar] [kJ/kg] [kJ/kg·K] [bar] [ºC] [kJ/kg] [kJ/kg·K] [%] [kg/s]

 1    25  1  298,6  5,699  99,16  1          0 
 2    650  47,33  959,2  5,773  401,7  14  542  838,9      96,38 
 3            401,7  14  150  424,8      2,783 
 4            56,52  96,58  495  3365  6,601     
 5  13,75          56,52  50  400  3196  6,646     
 6  1,939          69,79  50  400  3196  6,646     
 7            13,27  50  400  3196  6,646     
 8            69,79  15,09  250  2922  6,704     
 9            62,14  15,09  250  2922  6,704     
 10            7,646  15,09  250  2922  6,704     
 11            62,14  0,9  96,71  2466  6,841     
 12            55,33  0,9  96,71  2466  6,841     
 13            55,33  0,06  36,17  2160  7,016     
 14            55,33  0,06  36,17  151,5  0,5208  0   
 15            55,33  0,9  36,17  151,6  0,5208     
 16            6,81  0,9  96,71  2466  6,841     
 17            56,52  0,9  96,71  405,2  1,27  0   
 18            56,52  106,6  98,71  421,6  1,284     
 19            302,6  1           
 20            5,624             
 21                         
 22                         
 23                         
 24                         
 25                         
 26                         
 27                         
 28                         
 29                         
 30                         
 31                         
 32                         
 33                         
 34                         
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Arrays Table: Main

mAr; i;5 Taire; i Paire; i haire; i saire; i mbase i Pbase i Tbase i hbase i sbase i xbase i mbasegas i

[mol] [ºC] [bar] [kJ/kg] [kJ/kg·K] [bar] [ºC] [kJ/kg] [kJ/kg·K] [%] [kg/s]

 35                         
 36                         
 37                         
 38                         
 39                         
 40                         
 41                         
 42                         
 43                         
 44                         
 45                         
 46                         
 47                         
 48                         
 49                         
 50                         
 51                         

Arrays Table: Main

Volbasegas i molbasegas i;1 molbasegas i;2 molbasegas i;3 molbasetot i relemisión; i CO2base i mextrac i

[Nm3/s] [mol/s] [mol/s] [mol/s] [mol/s] [molCO2/mol] [mol/s] [kg/s]

 1  0  0  769,2  15,96  785,2  1  785,2  99,16 
 2  70,95  0  91,8  155,3  247,1  0  0  401,7 
 3  6,063  0  633,1  5,41  638,5  1  638,5  401,7 
 4    0  1668  17,31  1685  0  0  59,35 
 5    0  3,165  72,76  75,93  1  75,93  59,35 
 6    0  0  2,434  2,434  2  4,869  72,62 
 7    0  0  1,352  1,352  3  4,057  13,27 
 8    0  0  -1,877E-17  -1,877E-17  4  -7,507E-17  72,62 
 9                64,97 
 10                7,646 
 11                64,97 
 12                59,35 
 13                59,35 
 14                5,624 
 15                 
 16                 
 17                 
 18                 
 19                302,6 
 20                 
 21                 
 22                 
 23                 
 24                 
 25                 
 26                 
 27                 
 28                 
 29                 
 30                 
 31                 
 32                 
 33                 
 34                 
 35                 
 36                 
 37                 
 38                 
 39                 
 40                 
 41                 
 42                 
 43                 
 44                 
 45                 
 46                 
 47                 
 48                 
 49                 
 50                 
 51                 
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Arrays Table: Main

Pextrac i Textrac i hextrac i sextrac i xextrac i mccs i Pccs i Tccs i hccs i sccs i xccs i

[bar] [ºC] [kJ/kg] [kJ/kg·K] [%] [kg/s] [bar] [ºC] [kJ/kg] [kJ/kg·K] [%]

 1  1          99,16  1         
 2  14  542  838,9      686,1  1  25  298,6     
 3  14  150  424,8      791,2  16  555  853,3     
 4  96,58  495  3365  6,601    666,6  16  555  853,3     
 5  50  400  3196  6,646    666,6  16  150  424,8     
 6  50  400  3196  6,646    0  1  150  424,8     
 7  50  400  3196  6,646    124,6  16  555  853,3     
 8  15,09  250  2922  6,704    666,6  16  150  424,8     
 9  15,09  250  2922  6,704    50,21      216,5     
 10  15,09  250  2922  6,704    841,4  16  200  475,8     
 11  2,7  130  2623  6,787    716,2  16  86,42  360,4     
 12  2,7  130  546,4  1,635  0  101,1  105,1  508  3388  6,594   
 13  106,6  132  561,9  1,646    101,1  50  400  3196  6,646   
 14            13,27  50  400  3196  6,646   
 15            114,4  50  400  3196  6,646   
 16            114,4  15,09  250  2922  6,704   
 17            7,646  15,09  250  2922  6,704   
 18            106,7  15,09  250  2922  6,704   
 19  1          106,7  2,7  130  2623  6,787   
 20            2,744E-14  2,7  130  2623  6,787   
 21            106,7  2,7  130  2623  6,787   
 22            106,7      546,4     
 23            0  2,7  130  2623  6,787   
 24            0  0,9  96,71  2467  6,844   
 25            -1,978E-49  0,9  96,71  2467  6,844   
 26            1,978E-49  0,9  96,71  2467  6,844   
 27            1,978E-49  0,06  36,17  2161  7,019   
 28            1,978E-49  0,06  36,17  151,5  0,5208  0 
 29            1,978E-49  0,9  36,17  151,6  0,5208   
 30            0  0,9  96,71  405,2  1,27  0 
 31            0  2,7  96,73  405,4  1,27   
 32            101,1  2,7  130  546,4  1,635  0 
 33            5,624  2,7  130  546,4  1,635   
 34            101,1  115,1  132  562,5  1,645   
 35            666,2  0,7  359,6       
 36            666,2  3,7  360,6       
 37            554,6  2,7  389,7       
 38            554,6  1,7  388,6       
 39            554,6  0,7  313,1       
 40            111,6  2,7  389,7  79,88     
 41            13,6    359,6       
 42            111,6  2,7  40  10,51  -0,1484   
 43            111,6  6,971  122  82,85  -0,1206   
 44            111,6  6,971  40  6,848  -0,3359   
 45            111,6  18  122,8  77,78  -0,3086   
 46            111,6  18  40  -3,204  -0,5381   
 47            111,6  46,48  124,5  64,01  -0,5124   
 48            111,6  46,48  40  -34,86  -0,7932   
 49            111,6  120  126,1  21,9  -0,7717   
 50            111,6  120  40  -210,8  -1,447   
 51            5,875           

Arrays Table: Main

mccsagua i mccsCO2 i mccsamina i Cpccs i vccs i Eccs i Mezclaccs i Cargaccs i

[kgAgua/s] [kgCO2/s] [kgAmina/s] [kJ/kg·K] [MJ/kgCO2] [%] [kgCO2/kgAmina]

 1        2,486    4,17  28,7  0,3114 
 2        2,38    2,943  31,3  0,4969 
 3        2,726    1,986  35  0,5909 
 4                 
 5                 
 6                 
 7                 
 8                 
 9                 
 10        1,024         
 11        1,058         
 12                 
 13                 
 14                 
 15                 
 16                 
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Arrays Table: Main

mccsagua i mccsCO2 i mccsamina i Cpccs i vccs i Eccs i Mezclaccs i Cargaccs i

[kgAgua/s] [kgCO2/s] [kgAmina/s] [kJ/kg·K] [MJ/kgCO2] [%] [kgCO2/kgAmina]

 17                 
 18                 
 19                 
 20                 
 21                 
 22                 
 23                 
 24                 
 25                 
 26                 
 27                 
 28                 
 29                 
 30                 
 31                 
 32                 
 33                 
 34                 
 35  350,8  126,5  188,9  3,153  0,001033       
 36  350,8  126,5  188,9  3,153         
 37  350,8  14,92  188,9  3,598         
 38  350,8  14,92  188,9  3,598         
 39  350,8  14,92  188,9  3,598         
 40        0,942         
 41        0,942         
 42                 
 43                 
 44                 
 45                 
 46                 
 47                 
 48                 
 49                 
 50                 
 51                 

Arrays Table: Main

Mezclapobre i CO2ccs i mccsgas i Volccsgas i molccsgas i;1 molccsgas i;2 molccsgas i;3 molccsgas i;4

[kg/s] [Nm3/s] [mol/s] [mol/s] [mol/s] [mol/s]

 1  0,154  785,2  0  0  0  769,2  15,96  0 
 2  0,09  0  96,38  70,95  0  91,8  155,3  0 
 3  0,079  641,5  2,783  6,063  0  633,1  5,41  2,99 
 4    0  5,875  7,446  0  1668  17,31  4,319 
 5    377,9      0  3,165  72,76  302 
 6    40,75      0  0  2,434  17,94 
 7    15,02      0  0  1,352  3,654 
 8    5,315      0  0  -1,877E-17  1,329 
 9                 
 10                 
 11                 
 12                 
 13                 
 14                 
 15                 
 16                 
 17                 
 18                 
 19                 
 20                 
 21                 
 22                 
 23                 
 24                 
 25                 
 26                 
 27                 
 28                 
 29                 
 30                 
 31                 
 32                 
 33                 
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Arrays Table: Main

Mezclapobre i CO2ccs i mccsgas i Volccsgas i molccsgas i;1 molccsgas i;2 molccsgas i;3 molccsgas i;4

[kg/s] [Nm3/s] [mol/s] [mol/s] [mol/s] [mol/s]

 34                 
 35                 
 36                 
 37                 
 38                 
 39                 
 40                 
 41                 
 42                 
 43                 
 44                 
 45                 
 46                 
 47                 
 48                 
 49                 
 50                 
 51                 

Arrays Table: Main

molccstot i PTGnomccs; i Textccs; i ηηηηTGccs; i mextnomccs; i numTurb i rpTGccs; i cash act; i;10 cash act; i;11

[mol/s]

 1  785,2  2154  611  0,4  4380  6  21  9,221E+06  9,191E+06 
 2  247,1  508,2  592  0,429  1310  2  16,6  8,866E+06  8,837E+06 
 3  641,5  227,2  555  0,333  800  2  16  8,525E+06  8,498E+06 
 4  1690              8,197E+06  8,171E+06 
 5  377,9              7,882E+06  7,856E+06 
 6  20,37              7,579E+06  7,554E+06 
 7  5,007              7,288E+06  7,264E+06 
 8  1,329              7,007E+06  6,984E+06 
 9                6,738E+06  6,716E+06 
 10                6,479E+06  6,457E+06 
 11                6,229E+06  6,209E+06 
 12                5,990E+06  5,970E+06 
 13                5,759E+06  5,741E+06 
 14                5,538E+06  5,520E+06 
 15                5,325E+06  5,308E+06 
 16                5,120E+06  5,103E+06 
 17                4,923E+06  4,907E+06 
 18                4,734E+06  4,718E+06 
 19                4,552E+06  4,537E+06 
 20                4,377E+06  4,362E+06 
 21                4,208E+06  4,195E+06 
 22                4,047E+06  4,033E+06 
 23                3,891E+06  3,878E+06 
 24                3,741E+06  3,729E+06 
 25                3,597E+06  3,586E+06 
 26                   
 27                   
 28                   
 29                   
 30                   
 31                   
 32                   
 33                   
 34                   
 35                   
 36                   
 37                   
 38                   
 39                   
 40                   
 41                   
 42                   
 43                   
 44                   
 45                   
 46                   
 47                   
 48                   
 49                   
 50                   



File:C:\TFM\ANEXO VIII - Simulación EES\ANEXO VIII - Programa EES.EES 13/11/2012 12:13:09  Page 67
EES Ver. 9.215: #3470:  For use only by students and faculty in the Departamento de Ingenieria Mecanica Universidad de Za

Arrays Table: Main

molccstot i PTGnomccs; i Textccs; i ηηηηTGccs; i mextnomccs; i numTurb i rpTGccs; i cash act; i;10 cash act; i;11

[mol/s]

 51                   

Arrays Table: Main

cash act; i;12 cash act; i;1 cash act; i;2 cash act; i;3 cash act; i;4 cash act; i;5 cash act; i;6 cash act; i;7 cash act; i;8 cash act; i;9

 1  9,161E+06  9,496E+06  9,465E+06  9,434E+06  9,404E+06  9,373E+06  9,342E+06  9,312E+06  9,282E+06  9,251E+06 
 2  8,809E+06  9,131E+06  9,101E+06  9,072E+06  9,042E+06  9,012E+06  8,983E+06  8,954E+06  8,925E+06  8,895E+06 
 3  8,470E+06  8,780E+06  8,751E+06  8,723E+06  8,694E+06  8,666E+06  8,638E+06  8,609E+06  8,581E+06  8,553E+06 
 4  8,144E+06  8,442E+06  8,415E+06  8,387E+06  8,360E+06  8,333E+06  8,305E+06  8,278E+06  8,251E+06  8,224E+06 
 5  7,831E+06  8,117E+06  8,091E+06  8,065E+06  8,038E+06  8,012E+06  7,986E+06  7,960E+06  7,934E+06  7,908E+06 
 6  7,530E+06  7,805E+06  7,780E+06  7,754E+06  7,729E+06  7,704E+06  7,679E+06  7,654E+06  7,629E+06  7,604E+06 
 7  7,240E+06  7,505E+06  7,481E+06  7,456E+06  7,432E+06  7,408E+06  7,383E+06  7,359E+06  7,335E+06  7,311E+06 
 8  6,962E+06  7,216E+06  7,193E+06  7,169E+06  7,146E+06  7,123E+06  7,099E+06  7,076E+06  7,053E+06  7,030E+06 
 9  6,694E+06  6,939E+06  6,916E+06  6,894E+06  6,871E+06  6,849E+06  6,826E+06  6,804E+06  6,782E+06  6,760E+06 
 10  6,436E+06  6,672E+06  6,650E+06  6,629E+06  6,607E+06  6,585E+06  6,564E+06  6,542E+06  6,521E+06  6,500E+06 
 11  6,189E+06  6,415E+06  6,394E+06  6,374E+06  6,353E+06  6,332E+06  6,311E+06  6,291E+06  6,270E+06  6,250E+06 
 12  5,951E+06  6,169E+06  6,148E+06  6,128E+06  6,108E+06  6,089E+06  6,069E+06  6,049E+06  6,029E+06  6,009E+06 
 13  5,722E+06  5,931E+06  5,912E+06  5,893E+06  5,873E+06  5,854E+06  5,835E+06  5,816E+06  5,797E+06  5,778E+06 
 14  5,502E+06  5,703E+06  5,685E+06  5,666E+06  5,648E+06  5,629E+06  5,611E+06  5,592E+06  5,574E+06  5,556E+06 
 15  5,290E+06  5,484E+06  5,466E+06  5,448E+06  5,430E+06  5,413E+06  5,395E+06  5,377E+06  5,360E+06  5,342E+06 
 16  5,087E+06  5,273E+06  5,256E+06  5,239E+06  5,222E+06  5,204E+06  5,187E+06  5,171E+06  5,154E+06  5,137E+06 
 17  4,891E+06  5,070E+06  5,054E+06  5,037E+06  5,021E+06  5,004E+06  4,988E+06  4,972E+06  4,955E+06  4,939E+06 
 18  4,703E+06  4,875E+06  4,859E+06  4,843E+06  4,828E+06  4,812E+06  4,796E+06  4,780E+06  4,765E+06  4,749E+06 
 19  4,522E+06  4,688E+06  4,672E+06  4,657E+06  4,642E+06  4,627E+06  4,612E+06  4,597E+06  4,582E+06  4,567E+06 
 20  4,348E+06  4,507E+06  4,493E+06  4,478E+06  4,463E+06  4,449E+06  4,434E+06  4,420E+06  4,405E+06  4,391E+06 
 21  4,181E+06  4,334E+06  4,320E+06  4,306E+06  4,292E+06  4,278E+06  4,264E+06  4,250E+06  4,236E+06  4,222E+06 
 22  4,020E+06  4,167E+06  4,154E+06  4,140E+06  4,127E+06  4,113E+06  4,100E+06  4,086E+06  4,073E+06  4,060E+06 
 23  3,866E+06  4,007E+06  3,994E+06  3,981E+06  3,968E+06  3,955E+06  3,942E+06  3,929E+06  3,916E+06  3,904E+06 
 24  3,717E+06  3,853E+06  3,840E+06  3,828E+06  3,815E+06  3,803E+06  3,790E+06  3,778E+06  3,766E+06  3,753E+06 
 25  3,574E+06  3,705E+06  3,693E+06  3,681E+06  3,669E+06  3,657E+06  3,645E+06  3,633E+06  3,621E+06  3,609E+06 
 26                     
 27                     
 28                     
 29                     
 30                     
 31                     
 32                     
 33                     
 34                     
 35                     
 36                     
 37                     
 38                     
 39                     
 40                     
 41                     
 42                     
 43                     
 44                     
 45                     
 46                     
 47                     
 48                     
 49                     
 50                     
 51                     

Arrays Table: Main

cash bruto; i;10 cash bruto; i;11 cash bruto; i;12 cash bruto; i;1 cash bruto; i;2 cash bruto; i;3 cash bruto; i;4 cash bruto; i;5

 1  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 2  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 3  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 4  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 5  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 6  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 7  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 8  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 9  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 10  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 11  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 12  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 13  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
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Arrays Table: Main

cash bruto; i;10 cash bruto; i;11 cash bruto; i;12 cash bruto; i;1 cash bruto; i;2 cash bruto; i;3 cash bruto; i;4 cash bruto; i;5

 14  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 15  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 16  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 17  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 18  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 19  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 20  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 21  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 22  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 23  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 24  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 25  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,527E+06 
 26                 
 27                 
 28                 
 29                 
 30                 
 31                 
 32                 
 33                 
 34                 
 35                 
 36                 
 37                 
 38                 
 39                 
 40                 
 41                 
 42                 
 43                 
 44                 
 45                 
 46                 
 47                 
 48                 
 49                 
 50                 
 51                 

Arrays Table: Main

cash bruto; i;6 cash bruto; i;7 cash bruto; i;8 cash bruto; i;9 VAN i

[€/año]

 1  9,527E+06  9,527E+06  9,527E+06  9,527E+06  1,119E+08 
 2  9,527E+06  9,527E+06  9,527E+06  9,527E+06  1,076E+08 
 3  9,527E+06  9,527E+06  9,527E+06  9,527E+06  1,035E+08 
 4  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,951E+07 
 5  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,568E+07 
 6  9,527E+06  9,527E+06  9,527E+06  9,527E+06  9,200E+07 
 7  9,527E+06  9,527E+06  9,527E+06  9,527E+06  8,846E+07 
 8  9,527E+06  9,527E+06  9,527E+06  9,527E+06  8,506E+07 
 9  9,527E+06  9,527E+06  9,527E+06  9,527E+06  8,179E+07 
 10  9,527E+06  9,527E+06  9,527E+06  9,527E+06  7,864E+07 
 11  9,527E+06  9,527E+06  9,527E+06  9,527E+06  7,562E+07 
 12  9,527E+06  9,527E+06  9,527E+06  9,527E+06  7,271E+07 
 13  9,527E+06  9,527E+06  9,527E+06  9,527E+06  6,991E+07 
 14  9,527E+06  9,527E+06  9,527E+06  9,527E+06  6,722E+07 
 15  9,527E+06  9,527E+06  9,527E+06  9,527E+06  6,464E+07 
 16  9,527E+06  9,527E+06  9,527E+06  9,527E+06  6,215E+07 
 17  9,527E+06  9,527E+06  9,527E+06  9,527E+06  5,976E+07 
 18  9,527E+06  9,527E+06  9,527E+06  9,527E+06  5,746E+07 
 19  9,527E+06  9,527E+06  9,527E+06  9,527E+06  5,525E+07 
 20  9,527E+06  9,527E+06  9,527E+06  9,527E+06  5,313E+07 
 21  9,527E+06  9,527E+06  9,527E+06  9,527E+06  5,108E+07 
 22  9,527E+06  9,527E+06  9,527E+06  9,527E+06  4,912E+07 
 23  9,527E+06  9,527E+06  9,527E+06  9,527E+06  4,723E+07 
 24  9,527E+06  9,527E+06  9,527E+06  9,527E+06  4,541E+07 
 25  9,527E+06  9,527E+06  9,527E+06  9,527E+06  4,367E+07 
 26           
 27           
 28           
 29           
 30           
 31           
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Arrays Table: Main

cash bruto; i;6 cash bruto; i;7 cash bruto; i;8 cash bruto; i;9 VAN i

[€/año]

 32           
 33           
 34           
 35           
 36           
 37           
 38           
 39           
 40           
 41           
 42           
 43           
 44           
 45           
 46           
 47           
 48           
 49           
 50           
 51           

Parametric Table: Estudio variables

AñosVida itae precioCO2 VAN

[M€]

Run 1  15  4  20  862,861 
Run 2  15  4  25  1078,576 
Run 3  15  4  30  1294,291 
Run 4  15  6  20  760,403 
Run 5  15  6  25  950,504 
Run 6  15  6  30  1140,604 
Run 7  15  8  20  675,986 
Run 8  15  8  25  844,982 
Run 9  15  8  30  1013,978 
Run 10  20  4  20  1054,700 
Run 11  20  4  25  1318,375 
Run 12  20  4  30  1582,050 
Run 13  20  6  20  898,017 
Run 14  20  6  25  1122,521 
Run 15  20  6  30  1347,025 
Run 16  20  8  20  775,389 
Run 17  20  8  25  969,236 
Run 18  20  8  30  1163,084 
Run 19  25  4  20  1212,378 
Run 20  25  4  25  1515,472 
Run 21  25  4  30  1818,566 
Run 22  25  6  20  1000,850 
Run 23  25  6  25  1251,062 
Run 24  25  6  30  1501,275 
Run 25  25  8  20  843,041 
Run 26  25  8  25  1053,802 
Run 27  25  8  30  1264,562 


