
2013 27

Diego Carmelo Pérez Palacín

Extra Functional Properties
Evaluation of Self-managed

Software Systems with Formal
Methods

Departamento

Director/es

Informática e Ingeniería de Sistemas

Merseguer Hernáiz, José Javier

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Diego Carmelo Pérez Palacín

EXTRA FUNCTIONAL PROPERTIES EVALUATION
OF SELF-MANAGED SOFTWARE SYSTEMS WITH

FORMAL METHODS

Director/es

Informática e Ingeniería de Sistemas

Merseguer Hernáiz, José Javier

Tesis Doctoral

Autor

2013

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Extra Functional Properties Evaluation of

Self-managed Software Systems with Formal

Methods

Diego Pérez Palacı́n

TESIS DOCTORAL

Departamento de Informática e Ingenierı́a de Sistemas

Universidad de Zaragoza

Supervisor: José Javier Merseguer Hernáiz

December 2012

Preface

Today software applications are often intended to operate in dynamic contexts. These dy-
namic contexts can be expressed in terms of changes in the application execution environ-
ment, changes in the application requirements, changes in the workload, or changes in any-
thing the software can perceive. These software applications are not restricted to a single
domain but dynamic contexts can be found in many software domains such as: embedded
systems, service-oriented architectures, clusters for high performance computing, mobile de-
vices and networking software.

The existence of dynamic contexts discourages engineers from the development of soft-
ware that is not able to change, in some way, its execution to leverage the current context at
any moment. Then, with the intention of satisfying requirements, the software must include
mechanisms to change its configuration. Nevertheless, since context changes are frequent
and go through many devices, human intervention to manually change the software configu-
ration is not a feasible solution. To face this challenge, the Sofware Engineering community
came up with new paradigms to enable the development of software that deals with dynamic
contexts in an automatic manner; for example Autonomic Computing and self-* software
approaches. In these approaches the software manages the mechanisms to change the config-
uration, without requiring human intervention. Among the most general manners to refer to
self-* software are the terms self-adaptive and self-managed software.

An essential aspect of self-adaptive software is to plan its adaptations. Adaptation plans
determine how the system will adapt and the suitable moments to trigger these adaptations.
There is a vast set of situations for which self-adaptivity is a solution. One of these situations
is to keep the system satisfying its extra functional requirements, such as Quality of Service
(QoS) and energy consumption. This thesis investigates these situations.

One of the contributions of this thesis is to settle QoS- and energy-aware self-adaptive
systems into an architecture. For this purpose, a 3-layer architecture of reference for self-
managed systems guides our research. The goodness of using a reference architecture is that
it easily shows up new challenges for the design of this kind of systems. Of course, adaptation
planning is one of the activities that the architecture considers.

Another contribution of this thesis is to propose methods to create adaptation plans. For-
mal methods play an essential role in this activity since they help to study extra functional
properties of the system under different configurations. Markovian Petri nets are used for this
analysis. Once the adaptation plan has been created, we also investigate the evaluation of
the QoS and energy consumption of self-adaptive systems with formal methods. Thence, we

3

contribute to the QoS analysis community -whose research cares about analysis of software
systems quality properties- by investigating a particularly new and complex type of software
systems. To carry out this analysis it is required to model dynamic changes in the context,
for which a variety of formal methods can be used: Markov modulated Poisson processes to
estimate the dynamic workload parameters, and hidden Markov models to predict the envi-
ronment state. These models were used together with Petri nets to evaluate and obtain results
about QoS and energy consumption of self-adaptive systems.

During the research work, we advertised that adaptability is a system property not as
easily quantifiable as energy consumption or QoS properties -such as the response time. Re-
search was done in this direction and, as a result, this thesis contributes to quantify the adapt-
ability by proposing a set of adaptability metrics for service-based systems. Moreover, we
studied whether there is a correlation between the adaptability of a system and other of its
extra functional properties values.

For achieving these contributions, this thesis makes an intensive use of models and model
transformations; task for which best practices of the Model Driven Engineering (MDE) re-
search field are followed. The research work of this thesis in the MDE field resulted in:
enhancement of the modeling power of an already proposed software modeling language,
and transformation methods from two software modeling languages to stochastic Petri nets.

Contents

1 Introduction 1
1.1 Outline . 4

I Evaluation of Self-managed Systems 7

2 Reference Architecture for Self-managed Systems 9
2.1 Enabling software to face the unknown . 11
2.2 Self-adaptive systems manage ignorance . 12

3 Self-adaptation for Performance Engineering: Goal Management 15
3.1 Problem description . 15
3.2 3-Layer architecture for open-world software 16

3.2.1 Component control . 16
3.2.2 Change management . 17
3.2.3 Goal management . 19

3.3 Generation of strategies . 19
3.4 Example . 21

3.4.1 Strategy generation . 22
3.5 Conclusion . 26
3.6 Related work . 27

4 Self-adaptation for Performance Engineering: Change Management 31
4.1 Problem description . 31
4.2 A formal model for SOA providers . 32

4.2.1 Hidden Markov models . 32
4.2.2 HMM representation of SOA providers 34

4.3 State prediction and configuration adaptation 35
4.3.1 Prediction of the provider state . 35
4.3.2 Adaptations based on state predictions 36

4.4 Integrating the adaptive configurations into an architectural solution 40
4.5 Conclusion . 41
4.6 Related work . 42

i

ii

5 Self-adaptation for Energy Conservation 43
5.1 Motivation . 43
5.2 Architecture . 46
5.3 Workload modeling . 48
5.4 Energy modeling and analysis . 51
5.5 Performance and energy trade-off . 54

5.5.1 Generation of basic-plan . 54
5.5.2 Reconfiguration rate mitigation . 55
5.5.3 Petri net model of a plan . 58
5.5.4 The Petri net for trade-off evaluation 59

5.6 Deployment and evaluation . 60
5.6.1 Evaluation framework . 60
5.6.2 Example of evaluation: relay mail server 62

5.7 Experimenting with variable workload . 65
5.8 Conclusion . 67
5.9 Related work . 68

6 Workload Modeling for Self-adaptive Software 71
6.1 Motivation . 71
6.2 MAP’s and MMPP’s . 72

6.2.1 MMPP fitting from a workload trace 74
6.2.2 GSPN workload model . 77

6.3 Modeling transient time between states . 78
6.3.1 Problem statement . 78
6.3.2 Setting parameters of workload model 78
6.3.3 GSPN model for the transient time 81

6.4 Comprehensive workload model . 83
6.5 Experimental analysis . 85

6.5.1 Results discussion . 87
6.6 Conclusion . 88
6.7 Related work . 89

7 Measuring and Correlating System Adaptability 91
7.1 Problem statement . 91
7.2 Architectural adaptability quantification . 92

7.2.1 Architectural assumptions . 92
7.2.2 Adaptability metrics . 94

7.3 Relating adaptability to a system quality . 96
7.4 Example . 100

7.4.1 Computation of system qualities . 102
7.4.2 Relation of adaptability to availability and cost 104

7.5 Relating quality requirements . 106
7.5.1 Graphical representation . 107

7.6 Conclusion . 107
7.7 Related work . 109

iii

II Model-Driven Engineering for QoS Evaluation 111

8 Model To Model Transformations: From CSM To GSPN 117

8.1 Problem description . 117

8.2 Core Scenario Model . 118

8.3 CSM meta-classes translation . 119

8.3.1 Step translation . 120

8.3.2 Resource translation . 121

8.3.3 PathConnections translation . 122

8.3.4 Workload translation . 125

8.4 Tool development . 126

8.4.1 Tool design . 126

8.4.2 The algorithm for the translation . 130

8.4.3 Remarks on the analysis of the resulting GSPN 133

8.5 Example of system analysis . 135

8.5.1 Qualitative properties analysis . 136

8.5.2 Quantitative properties analysis . 137

8.5.3 LQN and GSPN results comparison 142

8.6 Conclusion . 143

9 Model To-Model Transformations: D-KLAPER and GSPNs 145

9.1 Motivation . 145

9.2 The D-KLAPER intermediate model . 146

9.2.1 Metamodel extension . 148

9.3 The model-driven framework for reactive systems 150

9.3.1 The basic methodology . 150

9.3.2 UML state machines as reactive systems models 152

9.3.3 Transforming UML state machines into D-KLAPER models 153

9.3.4 Transforming D-KLAPER models into Petri nets 154

9.4 Example application . 155

9.4.1 Structural specification . 155

9.4.2 Reactive specification . 157

9.4.3 Translation into D-KLAPER models 158

9.4.4 Translation into Petri nets and evaluation 160

9.5 Conclusion . 162

10 Conclusion 167

Relevant Publications Related to the Thesis 168

A Generalized Stochastic Petri Nets 173

B GSPN Composition 175

B.1 MLGSPN Composition . 175

iv

Bibliography 179

Acronyms 190

Chapter 1

Introduction

Today software applications are often intended to operate in dynamic contexts. These dy-
namic contexts can be expressed in terms of changes in the application execution environ-
ment, changes in the application requirements, changes in the workload, or changes in any-
thing the software can perceive. This feature of software applications is not restricted to a
single domain but dynamic contexts can be found in many software domains such as: embed-
ded systems, service-oriented architectures, clusters for high performance computing, mobile
devices and networking software. As an example, consider a service-based software applica-
tion or architecture (SOA) made of multiple required third-party services. These third-party
services are out of hand of the application because they are not managed by the same institu-
tion. Therefore, they can evolve in unforeseen manners while the application properties, such
as its quality of service, strongly depend on their behavior.

The existence of dynamic contexts discourages engineers from developing software that
is not able to change, in some way, its execution to accommodate the current context at any
moment. In the previous example, a third-party service can change its properties and then
it can become no longer suitable for satisfying application requirements. A solution for this
situation passes through changing the application by replacing the degraded or diminished
service by another one that allows meeting its requirements.

Then, with the intention of satisfying requirements, the software must provide mecha-
nisms to change its configuration. Nevertheless, since context changes are frequent and go
through many devices, human intervention to manually change the software configuration is
not a feasible solution. To face this challenge in modern software, the Software Engineer-
ing community came up with new paradigms that enable the development of software that
deals with dynamic contexts in an automatic manner; for example Autonomic Computing
[KC03, HM08] and self-* software approaches. In these approaches is the same software
who manages the mechanisms to change the configuration, without the need of human inter-
vention as a result.

The term self-* embraces many properties, some of them are: self-configuring, self-
optimizing, self-healing or self-protecting [KC03]. A software application that implements
one of these properties is expected to manage a subset of concerns. To generally refer to

1

2 1. Introduction

software systems that can in some way control and modify their own behavior, more gen-
eral level of autonomic systems terms are: self-governing, self-managed, self-organizing or
self-adaptive [ST09, KC03, OGT+99]. In this thesis, to refer to the most general view of
autonomic systems, self-adaptive and self-managed terms are used, having the same meaning
and therefore being interchangeable. One of the first definitions given for self-adaptive soft-
ware was provided by DARPA in [DAR, Lad99, Lad00], and dates from 1997: Self Adaptive
Software evaluates its own behavior and changes behavior when the evaluation indicates that
it is not accomplishing what the software is intended to do, or when better functionality or
performance is possible.

Due to all the intrinsic actions of self-adaptive systems -such as monitor its execution
context, evaluate its behavior in that context and change it when necessary- self-adaptive
software is not easy to design and build from scratch. Consequently, to help to construct
self-adaptive systems, during the past years there have been proposed several frameworks.
Examples are: MAPE-K structure of an autonomic element [KC03] (Monitor, Analyze, Plan,
Execute, Knowledge), CADA autonomic control loop [DDF+06, CLG+09] (Collect, Ana-
lyze, Decide, Act), the adaptation methodology in [OGT+99] and a three-layered architec-
tural approach for self-managed systems [KM07]. Part of the research done in this thesis is
built up using these frameworks. The most studied and explored framework has been the three
layer architecture for self-managed systems. It has eased the work of self-adaptive systems
study since it easily shows up the new challenges in their design.

The above mentioned frameworks share common aspects. An essential one is to plan
adaptations. Adaptation plans determines how the system will adapt and the suitable mo-
ments to trigger these adaptations. For example, the planning process is included in one of
the layers of the architecture in [KM07]; as an explicit activity in the autonomic control loop
in [KC03]; and also the methodology in [OGT+99] recognizes planning as a vital aspect
of self-adaptive systems and differentiates between two types of planning: adaptation plan-
ning and observation planning (the need to observe the context is another common aspect of
self-adaptive systems).

Thinking about “dynamic context” in broad sense, we can find a huge amount of software
systems that come under this perspective. Besides, the growth of ubiquitous and pervasive
computing just makes this amount increase [Sat01]. So, there is a vast set of situations for
which self-adaptation is a solution; some examples are: survival-critical systems that adapt by
self-healing when a problem threatens them to stop operating, web systems that adapt by self-
protecting when they detect an attack, or mobile devices that adapt to optimize their network
connectivity and bandwidth. Among all these situations, this thesis concentrates on using
self-adaptation to keep the system satisfying its extra functional requirements [CNYM99]
-such as Quality of Service (QoS) and energy consumption- under different environment
conditions.

The software QoS analysis research community has cared about software QoS assessment
for the last decades. Within this community, formal methods are a pillar for coping with
day-to-day QoS evaluation challenges, and large research advances in the formal method
theory have been achieved while pursuing this goal. Nevertheless, the nature of self-adaptive
systems and their dynamic contexts cause that some parts of QoS evaluation approaches can
hardly be completely reused; or, in case of being directly applied, the evaluation results can

3

be very far from the actual QoS. Thence, the QoS evaluation of self-adaptive systems requires
new methods and techniques that take into account the changes in the context; and even more,
it is likely that these methods have to be applied not only during development but also during
software execution. However, due to the novelty of the self-adaptive software systems and
the Software Engineering methodologies to construct them, these methods and techniques
for QoS evaluation are still a research challenge. To obtain new contributions, the work in
this thesis leans on the research advances done by the software QoS analysis community and
on their formal methods usage. This work contributes by studying new formal models, not
considered so far, that can be able to represent dynamic contexts and configuration changes
in software systems.

For the QoS analysis, this thesis contributes to two fields. The first field is the Software
Performance Engineering (SPE) [SW02b] and we contribute by investigating the adaptation
plans generation, the adaptation decisions, and the evaluation of performance-aware self-
adaptive software systems. The second field is the evaluation of availability property in
software systems. This property defines the probability of a system being available to service
requests. We investigated the evaluation of systems that must maintain an agreed level of
availability. The studied adaptations in these systems are those ones triggered by changes in
the received workload that overload the system and make it unavailable for users.

An extra functional property that is becoming more and more important for software ser-
vice provider companies is the energy consumption of computing resources. As shown in
[DKL+08, Ran10], the interest towards efficient use of technology is motivated by some
alarming trends. For example, computing equipment in the U.S. alone is estimated to con-
sume more than 20 million giga-joules of energy per year, IT analysis IDC [IDC] estimates
the total worldwide spending on power management for enterprises was likely 40 billion
dollars in 2009, and large computing infrastructures consumed in the U.S. the 1.5% of all
electrical power and it grows at an annual rate of 12% [CJH+11]. However, there is room for
power reduction: since not all computing resources are required all the time, but hardware
infrastructures are over-provisioned to cope with worst-case scenarios, infrastructure self-
adaptation is a way to save energy. In this thesis, we research in that direction by defining
adaptation plans to manage computing infrastructures with the aim of spending as less energy
as possible while satisfying the rest of its requirements.

From previous paragraphs, there can be noticed that system workload is an important
aspect; it plays a role in the evaluation of system performance, achievable availability or
power demand. The reason is that the optimal configuration of a system is different depending
on the workload it receives. Then, to perform a model-based system evaluation it is necessary
to create and attach a workload sub-model. For an accurate analysis of software systems,
this sub-model cannot represent that the workload is constant because it is far from being
stable in reality. In addition, when analyzing Internet services or networked systems, this
workload presents high variability and burstiness, i.e., irregular spikes of congestion. This
aspect must be present when analyzing self-adaptive systems. Even more, since the system
starts the adaptation when a burst of requests is near to arrive, it is not only necessary that
the sub-model accounts for bursty and regular periods but also the transient intervals between
them. In this thesis, we refine workload modeling and we propose a model that takes into
account the transient periods. Therefore, we can increase the accuracy of results obtained

4 1. Introduction

from model-based analysis.
Formal methods have been shown during the last years as a reliable analysis paradigm for

all of the above mentioned software properties. However, due to the novelty of self-adaptive
software, it is a hot topic and the research community is stepping forward in the use of formal
methods to evaluate these properties at present. In this thesis, we lean on the great background
in software analysis with formal methods and we use them to both construct the adaptation
plans and decide the appropriate moments for adaptations. Besides, we also propose formal
models to evaluate the self-adaptive system behavior. Obviously, to carry out that evaluation
it is required to model dynamic changes in the context, for which a variety of formal methods
are used; such as Markov modulated Poisson processes to estimate the dynamic workload
parameters, and hidden Markov models to predict the environment state. These models are
used together with stochastic Petri nets to evaluate and obtain results about QoS and energy
consumption of self-adaptive systems.

During the research work, we found out that QoS properties such as response time or
energy consumption were quantifiable. However, adaptability property was not. Thence,
research has been done in that direction. As a result, this thesis proposes a set of metrics
to quantify the adaptability of service-based self-adaptive systems. Moreover, it is studied
whether there is a correlation between the quantified adaptability of a system and its ex-
tra functional properties values. The theories that came out of this investigation have been
implemented into a tool that automatically executes the study receiving as input a software
architectural design.

As the reader can deduce from this introduction, thesis contributions make an intensive
use of models, model-to-model transformations and model-based analysis. For model-to-
model transformations, we use the state-of-the-art proposals of the Model Driven Engineering
(MDE). Recent studies have realized that, due to amount of software design languages and
analyzable languages, the number of model-to-model transformations required to translate
any software design model to any analyzable model increased excessively. To solve it, the
use of intermediate models and transformations in two steps have been proposed by the re-
search community: first from the design model to the intermediate model, and later from the
intermediate model to the analyzable model. In this thesis, we contribute to these challenges
by: proposing transformations from two intermediate languages to stochastic Petri nets, and
extending the modeling power of one of these intermediate languages to allow it to model
characteristics of reactive systems, category to which most self-adaptive systems belong.

1.1 Outline

The rest of this thesis comprises eight chapters, which are grouped into two parts, and a
conclusion. The balance is the following:

• The first part comprises six chapters. The first of these chapters -Chapter 2- presents
the 3-layer architecture of reference for self-managed systems we use in the course
of the thesis. Chapters 3 and 4 instantiate the reference architecture for performance-
aware self-adaptive service-oriented systems. In the former, it is investigated the upper-
most layer of the architecture and adaptation strategies are generated using Generalized

1.1. Outline 5

Stochastic Petri Nets (GSPN) [AMBC+95]. In turn, the latter investigates the middle
layer, which is in charge of deciding whether to adapt the system, and it uses the theo-
ries of Hidden Markov Models (HMM). In Chapter 5 the 3-layer reference architecture
is instantiated for energy savings. Again, GSPNs are utilized to create the adaptation
plans. In Chapter 6, we identify a weakness in the modeling of bursty workloads and
we investigate an accurate model for its representation based on GSPNs. Finally, in
Chapter 7 we research the quantification of adaptability property; being the outcome of
that research twofold: a set of metrics to measure the adaptability of software systems
and a study about the correlation between adaptability values and QoS values.

• The second part comprises an introduction and two chapters that accomplish investiga-
tion in model to model transformations. The introduction presents the motivation and
benefits of MDE paradigm. It shows up a weak point of applying MDE from software
design to formal models and also explains the proposal of the research community to
solve the weakness. After, in Chapter 8 we follow the community proposal by cre-
ating a translation theory between the Core Scenario Model (CSM) and GSPN and a
tool that implements that theory. In Chapter 9, we extend the modeling power of a
Dynamic Kernel Language for PErformance and Reliability analysis (D-KLAPER) to
represent reactive software (most self-adaptive systems are also reactive systems). In
that chapter, we propose the theory to translate UML state machine diagrams into the
extended D-KLAPER, and to translate the extended D-KLAPER into GSPN. Finally,
it is shown an example regarding the use of D-KLAPER or performance performance
evaluation of service-based software systems.

• Chapter 10 presents the conclusions of this thesis. It summarizes the contributions and
identifies future work and research directions.

6 1. Introduction

Part I

Evaluation of Self-managed
Systems

7

Chapter 2

Reference Architecture for
Self-managed Systems

Understanding all the processes under self-adaptive systems execution is complex. Also its
development has some intrinsic characteristics that make it a process harder than the devel-
opment of non-adaptive systems.

To relieve developers of the most general thinking about the software construction, there
have been proposed some frameworks for self-adaptive software design. These frameworks
include the general tasks that self-adaptive software has to execute. Four of the most impor-
tant frameworks proposed are: MAPE-K structure of an autonomic element [KC03] (Mon-
itor, Analyze, Plan, Execute, Knowledge), CADA autonomic control loop [DDF+06] (Col-
lect, Analyze, Decide, Act), the adaptation methodology in [OGT+99] and a three-layered
architectural approach for self-managed systems [KM07, KM09].

The work in this thesis uses the three-layered architectural approach in [KM07, KM09].
This architecture was not built from scratch but based on solid pillars. It was inspired by
architectural approaches already in the robotic research area -field which holds a large expe-
rience in the construction of autonomous systems-, and concretely on the Gat’s architectural
description in [GBMP97].

From that starting point, we tuned the concepts in the three layer architecture for self-
managed systems. Our purpose is the construction of software whose adaptations are trig-
gered to keep satisfied extra functional requirements -such as QoS and energy consumption-
under different execution contexts. The general view of the architecture is shown in Figure
2.1. A layer by layer description is in next paragraphs, while in next chapters we propose
fine-grained instances of this general view for each one of the challenges dealt with in this
thesis.

Component control This layer is made of the components that accomplish the software ap-
plication functionality. It also includes sensors and monitors that track the status of both the
system and environment. Some examples of monitored elements can be: component perfor-
mance, service providers performance, service providers availability, system load, hardware

9

10 2. Reference Architecture for Self-managed Systems

<<input>>

Component

Adaptation Manager

Actuators

Software Application and
Infrastructure

Sensors
and

Monitors

Plan

Adaptation

<<document>>

management

Change

Goal

management Plan
Generator

Models
Adaptation<<input>> <<input>>

<<input>>

<<document>>

Models
Environment

System

<<document>>

<<document>>

Adaptation Plan
Environment Updated Report
Plan Request

Environment status

System status

Change actions

Extra functional
goals

<<output>>

control

Figure 2.1: General architecture following the 3-layer framework for self-managed systems

status (e.g,. switched on, switched off, broken device). This sensed status information is
sent to the upper layer. Besides, this layer includes actuators, which are the elements that
effectively adapt the system execution. These actuators operate when they receive change
actions from its upper layer. Some examples of elements onto which an actuator can operate
are: software components with multiple execution configurations, replaceable software com-
ponents, and hardware infrastructure. The software application and infrastructure comprises
all the elements that allow the software to run its functionality, in which are included the
monitored elements (i.e., those for which there is a sensor connected) as well as the managed
elements (i.e., those for which there is an actuator connected).

Change management The objective of this layer is to keep the system executing in the
most appropriate configuration to satisfy application’s goals. To achieve this objective, the
main task of this layer is to decide change actions to adapt the system based on the status
reports received from the lowest layer. The software entity that executes the decision task is
called adaptation manager. To perform this decision quickly, it has stored a pre-computed
adaptation plan that contains information to guide the adaptations. In case that, in any point
in time, the stored adaptation plan does not suffice to cope with the reported status, this layer
can request for a new plan to the uppermost layer. To obtain a new adaptation plan that

2.1. Enabling software to face the unknown 11

considers the current execution environment, this layer informs the uppermost layer about
what it was found in the environment. This notification is done through an environment
updated report. Moreover, this layer can also receive a new adaptation plan that has been
proactively created by the uppermost layer; i.e., the adaptation manager had not made any
request for a new plan.

Goal management The objective of this layer is to produce adaptation plans that allow
the system to satisfy its extra-functional goals under changing environments. The software
entity that produces these plans is called adaptation plan generator and its execution requires
information regarding: extra-functional goals to achieve, application models (e.g., software
behavioral models and hardware platform models) and environment models. All these models
are subject to change, and a change in a model can make the created adaptation plan no
longer suitable. Therefore, after a change in the models, it should be triggered the generation
of a new adaptation plan and its subsequent delivery to the change management layer. For
example, changes in environment models are done when an environment updated report is
received from the lower layer.

2.1 Enabling software to face the unknown

The type of self-adaptive systems investigated in this thesis have to face unknown situations
and unpredictable environments. When software execution environment changes, the first
challenge for the system is to realize that something in the environment has actually changed.
This environmental change awareness is not always an easy task, and it becomes more diffi-
cult for slight environmental changes or when the change happens slowly. If the environment
change is realized, next step for the software is to acquire knowledge about what the new
execution environment is; i.e., not only sensors reports indicate that something has changed
in the environment but sensors reports indicate that the execution environment has changed
from context “a” to context “b”. After, software decides either to continue in the same con-
figuration (in case that the current configuration still works well in the new environment) or
change to another one (labour of the intermediate layer of the presented architecture). If it
is decided to change, software has to find out the new configuration. For cases in which the
occurrence of the new environment is predictable beforehand, the software can have stored
a set of pre-computed reconfiguration actions to take when the environmental modification
takes place. These actions are stored in an adaptation plan, which can guide the adaptations
between a set of environment states. If the environment is new and non-predictable, then the
adaptation plan followed by the software may not contain guides to adapt the configuration.
To face the unknown situation in this case, a new adaptation plan can be requested. This new
plan will contain the appropriate adaptation actions for changing from/to this new environ-
ment. Thus, in this case the labour of the uppermost layer of the architecture helps to face the
unknown.

However, not in every case the unknown situation can be solved; maybe because of lack
of information about the environment, maybe because of lack of ideal decision methods. In
this cases, software is executing in ignorance of its environment. In next subsection it is

12 2. Reference Architecture for Self-managed Systems

described how the software can manage that unavoidable ignorance.

2.2 Self-adaptive systems manage ignorance

Self-adaptive software that changes its configuration in response to unexpected changes in
its execution environment should be conscious of the fact that its sensors and prediction
algorithms are not perfect, and then it may not have the knowledge at every time about what
the real environment and its best configuration are.

To classify different types of lacks of knowledge of self-adaptive software, we describe
in the next paragraphs a comparison between the human orders of ignorance and learning
processes and the software one. We work upon the five orders of human ignorance proposed
in [Arm00], and we reason in which level our self-adaptive system is. The five levels of
ignorance in [Arm00] are briefly described as:

- 0th order of ignorance. Lack of ignorance, i.e., knowledge.

- 1st order of ignorance. Lack of knowledge. The subject lacks of knowledge about
something but he/she/it is aware of such lack.

- 2nd order of ignorance. Lack of knowledge and lack of awareness. The subject does
not know that he/she/it does not know.

- 3rd order of ignorance. Lack of process to find out the lack of awareness. The subject
does not have any way to move from not knowing that he/she/it does not know to, at
least, be aware of his/her/its ignorance.

- 4th order of ignorance. Meta ignorance. Ignorance about orders of ignorance.

Self-adaptive systems should have knowledge about its execution environment. Never-
theless, since that fact cannot be always ensured, they should at least be able to manage
its ignorance. Then, the orders of ignorance can be applied to them. From the informa-
tion coming from sensors, they create knowledge of their environment and they decide what
the execution environment is. In case that the decision regarding the execution environment
comes up with a different environment than the currently used, the next step involves either
a selection of the adaptation actions -in case that the second layer is ready to cope with the
new environment characteristics- or a deliberation about a long-term adaptation plan -in case
that the uppermost layer is invoked.

During software execution, the system is in the 0th order of ignorance when its last de-
cision about the execution environment guessed correctly the real environment and the real
environment has not changed since then.

During the first moments after an environmental change -e.g., context changes from a to
b-, system stands on the second order of ignorance; i.e., it does not know that it does not know
the actual environment because it has not received information from sensors yet. As soon as
new information from sensors arrives and the second layer realizes that such information
does not fit with the expected values for environment a, system changes from 2nd to 1st
order of ignorance; i.e., now it does know that it does not know what the current environment

2.2. Self-adaptive systems manage ignorance 13

is (b). It will remain in that state until it makes a decision about what the new execution
environment is. If the decision is successful (it decides that the new environment is b), the
order of ignorance comes back to 0th again. On the contrary, if it decides erroneously the
order of ignorance goes to 2nd.

At least two factors can make the system move to the third order of ignorance: when the
change refers to an environmental characteristic that is not measured by any system sensor in
the bottom layer, or when the deliberation algorithms in the uppermost layer are not correct.

In the former case, sensors are not monitoring the appropriate environmental properties
and then they will continue reporting the same data. Since sensors are the primary exposed
mechanism to unveil that something has changed, the system will not know that it does not
know the actual environment and it will not have any other mechanism to become aware of
such ignorance.

In the latter case, which happens when the uppermost layer has been invoked, the system
does its best to unveil the current environment and what properties it can expect from it. To
perform this task, it executes the deliberative algorithms that generate the expected execution
environments and an adaptation plan between them. However, these algorithms are not adap-
tive (at least, in this thesis is not considered that such part of code can evolve). Therefore, a
wrong algorithm will come up with unsuitable adaptations plans and the adaptation manager
in the second layer will be clueless when it has to decide adaptations. Going into the latter
case in depth, now the ignorance is not referring to “system does not know that the actual en-
vironment is not the same as its expected environment” as it happened in the previous cases,
but to “system does not know that its set of expected environments and adaptations between
them are not correct”. However, there can be devised a manner in which the system can be-
long to the 2nd order of ignorance for this case. This manner is: providing the software with
self-evaluating techniques of its expected behavior and comparing the self-evaluation results
with the actual ones. If the expected results do not match up with the real ones, the software
can activate a warning stating that the last adaptation plan did not work as expected. In this
case, another adaptation plan is proactively created by the third layer. Nevertheless, if sub-
sequent self-evaluations show that results do not match for a sequence of plans, the system
can infer that it does not know how to generate suitable adaptation plans, and it can raise an
alarm notifying humans of that fact. So, having self-evaluating and reporting mechanisms,
the system can keep 2nd order of ignorance instead of being on the 3rd one for this case, but
it will require human intervention (i.e., to be installed a correct algorithm for the deliberation
activity) to eventually move to 0th again.

Probabilistic environment decision The decision about the current environment may not
be straightforward. Indeed, the reported values from sensors may fit in more than one execu-
tion environment. In this case, starting from sensed information, the generation of knowledge
can consist of mathematical treatments of that information. This mathematical treatment can,
for example, obtain results as: statistical indicators about the expected values of the environ-
ment, their temporal variance, confidence level in the knowledge estimation and confidence
level on the adaptation decisions.

Software with probabilistic environment decisions manages its execution from the 1st
order of ignorance; i.e., it always knows that it might be executing under an unknown en-

14 2. Reference Architecture for Self-managed Systems

vironment. This software does not stand on ideal 0th order of ignorance but it is also less
likely to move to the 2nd order. The reason for not being on the 0th order is that, even if a
decision about configuration change is right, the system will always consider the probabil-
ity of being wrong; i.e., the 1st order of ignorance in the sense it knows that it cannot be
completely sure of its environment. Regarding the second statement, since it always man-
ages a probability of having decide wrongly, it is obviously aware of its possible ignorance
when facing adaptation decisions, which avoids it entering into the 2nd order of ignorance
when environment changes. Yet the system can move to the 2nd order of ignorance if it runs
incorrect deliberation algorithms and it is provided with self-evaluating mechanisms.

Chapter 3

Self-adaptation for Performance
Engineering: Goal Management

This chapter describes our research in the field of Software Performance Engineering (SPE)
applied to a recently proposed software paradigm, the open-world software [BNG06]. For
this type of applications, we investigate the uppermost layer of the reference architecture and
the generation of adaptation plans when the extra-functional goal is to improve the applica-
tion’s mean response time.

3.1 Problem description

The open-world software paradigm [BNG06] encompasses and abstracts concepts underly-
ing a wide-range of approaches and technologies; among them, grid computing, publish-
subscribe middleware or service oriented architectures. In open-world, an accepted approach
considers software as made of services provided by components elsewhere deployed that in-
terplay without authorities. The software achieves its goals by selecting and adapting services
which evolve independently. Then, this software evolves itself in unforeseen manners that de-
pend on third-parties, which means that the performance for this software strongly relies on
the performance of the services it trusts. Therefore, current methods to predict “non open-
software” performance can now hardly be completely reused in this new context. Consider
they make assumptions which now could not take place, for example, to assume service times
for software activities as well-known performance input parameters. Now, these activities are
executed by third-parties and their execution times can vary in unforeseeable manners. Thus,
the evolving behaviors of the third-parties make up the changing execution environment of
the client application.

Being self-management an inherent characteristic in open-world software, it is argued
that challenges in the former are also present in the latter. Hence, we are convinced that
open-world can take advantage of the three-layer reference architecture [KM07, KM09]. At
this respect, we want to study if the architecture fits the open-world and if it can bring those

15

16 3. Self-adaptation for Performance Engineering: Goal Management

previously enumerated benefits to this context. In particular, this chapter is focussed on how
to exploit the architecture for the open-world software to incorporate a performance-aware
property. In this regard, the contributions of this chapter are:

• First, we discuss how open-world software could be adapted to the architectural de-
scription. In particular, we stress the implications for the architecture to carry out
performance-aware reconfigurations in this context. We will accomplish it in Sec-
tion 3.2.

• Once the architectural implications for performance have been presented, we will ad-
dress an explanation about the most challenging component in this architecture. The
component is an instance of the adaptation plan generator, and it is in charge of gen-
erating the performance-aware adaptation plans or strategies. Section 3.3 describes
algorithms for this component.

• The last contribution is an example, developed in Section 3.4, that demonstrates the
feasibility of the proposed module and shows how the strategies it develops may im-
prove the system performance.

3.2 3-Layer architecture for open-world software

In this section, we describe how to place the reference architecture to the open-world soft-
ware context and how to manage the performance-aware property. Then, for each layer we
have to identify what responsibilities it has to take so the system eventually can accomplish
this property. Hence, we are pursuing an architecture for performance-aware open-world
software. Figure 3.1 describes an architecture instance for this kind of software.

3.2.1 Component control

As previously discussed, this layer is in contact with the execution environment and has to
quickly react to changes produced in it. In the open-world software this means that this layer
manages the components making up the current configuration. Therefore, it is responsible
for establishing the current bindings and unbindings when a component has to be called.

Concerning performance, we identify for this layer different responsibilities. They are
the minimum set an open-world software may need to actually develop activities leading to
manage performance aware reconfigurations. Firstly, it will be in charge of tracking the per-
formance of the services involved in the current configuration. Secondly, it has to discover
new components offering services equivalent in functionality to those required by the work-
flow. Finally, it has to be aware about which ones of the current providers are no longer
available.

For an open-world software to carry out these responsibilities, monitor modules can take
charge of all them. These monitors should be incorporated to the target open-world software
as a module. For the first task, it will control the time elapsed in the calls to the services,
called providers performance monitors in Figure 3.1; and for the second and third it will use
the normal means in open-world (i.e., through service discovering), called service discovery

3.2. 3-Layer architecture for open-world software 17

Providers

Performance

Goals
Generator

Strategy

Reconfiguration System Workflow

with

SPE Specification

Diagram

Component

Configuration

Change

Service Discovery
Monitor

Goal

Change

Component
control

management

management

Reconfiguration

Strategy Controller

Reconfiguration

Strategy RequestNew Strategy

Performance
Status

Existence of
Provider

Configuration System

Workflow

Performance

Monitor

Figure 3.1: 3-layer architecture adapted to performance-aware open-world

monitors. These monitors are the instance of the general sensors and monitors in Chapter 2
for performance-aware open-world software.

From a practical point of view, this layer also needs a representation of the workflow to
be executed and of the set of third-parties that conform the current configuration. This part is
the instance of the general software application and infrastructure in the general architecture
in Chapter 2. In this research, we will consider that such workflow has the form of a UML
activity diagram while the current configuration will be represented by a UML component
diagram (indeed an instance of the one in the Change Management level). Whatever other
standard representation could be valid such as BPEL for the first or Darwin component model
for the latter.

Status messages from this layer to the upper one are sent in the following moments:
performance status messages are sent each time the execution of a service ends (informing
about the monitored provider’s response time); and existence of provider messages are sent
when it cannot execute the current service in the workflow (e.g., the target component may
be unreachable), or when a new provider is discovered. The upper layer can respond with a
new configuration.

3.2.2 Change management

The mission of an open-world software is obviously carried out through its own execu-
tion, here abstracted by the workflow. The workflow execution may need successive self-
reconfigurations, that may attend different criteria, for example the cost of the services or the
performance. For each criteria of interest, this level can associate at least one reconfiguration
strategy, which are instances of the generic adaptation plan in Figure 2.1. It would also be
desirable that a given strategy could gather more than one criteria, for example the previous

18 3. Self-adaptation for Performance Engineering: Goal Management

two. In any case, for this chapter purposes the interest is that this layer has defined and can
manage a performance aware reconfiguration strategy.

For an open-world software to execute strategies, we identify the need of a reconfiguration
controller module. The inputs for this module would be of course the set of strategies, but
also, the status messages provided by the monitors and a representation of the environment
situation in a UML component diagram (CD). Then, in this approach, the general adaptation
manager in Chapter 2 comprises the reconfiguration controller and also encapsulates its local
data in the CD. The output will account for the computed new system configuration. The CD
describes for each component its mode, later explained. The current configuration is the
subset of currently active components in the CD.

Let us briefly discuss how this layer could manage the components mode.
The mode can be a tuple <state,MST>. The first field to be chosen from
{unavailable,standby,active} and the second to represent the mean service time
for the module. Following the proposal in [KM07], the mode could be managed through
ports using a setmode operation.

Moreover, this layer should create the new components and delete those no longer
useful, remember that the actual bind and unbind is responsibility of the lower level.
Therefore, when monitors in the lower layer report the status, this layer has to manage differ-
ent situations:

• A component is no longer available. Existence of provider messages notify of this
situation. The reconfiguration controller sets the mode to unavailable, and if the com-
ponent is in use then the controller executes the strategy to find a proper substitute and
eventually will report a configuration change.

• A provider is available for a given service. Again, existence of provider status messages
inform of this situation. The information here reported has to include provider’s and
service’s name and the Mean Service Time t (MST). As long as this provider has a CD
entry, the reconfiguration controller updates it with the new service as <standby,t>.
Otherwise, it performs a create for the provider (as a component) and sets service
mode as <standby,t>.

• A service is currently not providing the required QoS. The report on this situation is
given by performance status messages. The reconfiguration controller executes the
strategy and decides about a service change. If the change is necessary, then it sets
the mode of the degraded component from <active,t1> to <standby,t�1> and
the mode of the one selected from <standby,t2> to <active,t2>. When the
new configuration is reported, the lower lever takes the responsibility to perform the
corresponding unbind and bind.

Sometimes the current strategy cannot produce a new configuration for the information
that monitors have reported (e.g., the selected providers are not available or the performance
goal cannot be satisfied). Then this layer will request the Goal Management for a new per-
formance aware strategy.

Finally, we remark that the operations in this layer (create, delete, setmode
and the strategy execution) are supposed to be immediate regarding the system execution
time. This is important since this level will not overload the system.

3.3. Generation of strategies 19

3.2.3 Goal management

From our point of view, the mission of the system will be not only to carry out the workflow
functionality, but also to do it meeting a performance goal. For us this layer has to pro-
duce performance aware reconfiguration strategies, then we devise a reconfiguration strategy
generator module that instantiates the adaptation plan generator.

The strategies are sent to the Change Management layer and they could be afforded under
two assumptions:

• There could exist a library of strategies and the generator will decide the appropriate
one, for the current request, out of this set.

• The generator could actually create the strategy on demand.

In this thesis we just explore the second choice, then the generator inputs should be: the
performance goal, which is the instance of the extra-functional goals in the general archi-
tecture for QoS; the workflow with a specification of certain performance properties, which
plays the role of input system models in the general architecture; and the current knowledge
about existing providers and their performance, which are the environment models. The out-
put is the target strategy that meets the defined performance goal. For the sake of simplicity
we will consider only system response time. The performance specification will use the
MARTE [Obj05] profile.

3.3 Generation of strategies

In this section, we explain the functionality of a reconfiguration strategy generator module,
which is placed in the Goal Management layer. The previous section described the module
goal and its interfaces. Algorithms 3.1, 3.2 and 3.3 synthesize the module functionality, i.e.,
they create a strategy and they report it to the Change Management layer. Besides, a warning
complements the strategy when it does not meet the performance goal.

Information managed in the algorithms We assume that the system workflow needs to
call K external services, sk, k ∈ [1..K]. In the CD in Figure 3.3, K = 3, thought that the
same service could be requested in different calls.

A given service sk may be provided by several components; let Lk be the number of
components that provide sk. We denote as ckl, where k ∈ [1..K] and l ∈ [1..Lk], the lth

component serving sk. For example, in Figure 3.3, service s3 is served by two components
c31, c32. Then, Ck =

�Lk

l=1 ckl is the set of all components that offer sk, and C =
�K
k=1 Ck

is the set of all components that provide the services specified in the system workflow.
Moreover, we assume that the environmental models representation manner is in a Time

Table (TT), like Table 3.1, describing for each component its working phases. Let Jkl be
the number of working phases of component ckl; then each phase phj , where j ∈ [1..Jkl],
is characterized by a pair of real values (Sklj , SJ

kl
j), where Sklj is the mean service time and

SJklj is the mean sojourn time of ckl in phj . This timing information would come from the
providers or from the system experience monitoring the environment.

20 3. Self-adaptation for Performance Engineering: Goal Management

A reconfiguration strategy is represented as a directed graphG = (N,E), see example in
Figure 3.5. A node n ∈ N is interpreted as a system configuration, but it is also important to
know for each component the phase we guess it is working out. An edge e ∈ E is interpreted
either as a change of system configuration, i.e., the component ckl1 that offers service sk
will replace the component ckl2 (l1 �= l2) that provides the same service, or as a change in a
component phase. For example, in Figure 3.5, the edge from Node0 to Node2 represents a
change of system configuration (c22 will replace c21), while the edge from Node0 to Node1
models a change of phase in component c11 (from ph1 to ph2).

An edge is labeled as �sk, cond�, where sk is the service and cond is a ratio representing
our minimum confidence level for the change to be produced, consider that being stochastic
our analyses, then there exist a probability that the strategy fails its prediction (remember the
discussion in Chapter 2 arguing that self-adaptive software manages ignorance).

Description of the algorithms Algorithm 3.1 summarizes the strategy generation, it starts
creating the strategy initial node (line 2) and from this node produces its adjacent ones (line
11) and the edges that join them (line 16). While there are nodes whose outgoing edges have
not been created yet, it keeps creating nodes and edges. Finally, it creates a set of “way back”
edges (line 21). Such edges represent either changes of configuration or component-phases
due to timeouts instead of a condition as it happened to forward edges. The rational behind
a “way back” is to bring back the system to a configuration that after some time would be
working better than the current one.

Algorithm 3.2 solves the calls in Algorithm 3.1 (lines 2,11), i.e. how to create a node in
the strategy. PhaseList is a list of pairs �ckl, phj� that for each ckl ∈ C assumes its phase
phj ≡ (Sklj , SJ

kl
j). When Algorithm 3.2 creates the initial node, PhaseList (line 3) is created

assuming that each ckl is in its phase with minimum mean service time. However, for the rest
of the nodes (line 5), PhaseList is constructed with ExtractListOfPhases that will implement
an algorithm choosing appropriate phases. In Section 3.4 we will exemplify our proposal
for such algorithm. Function AllPossibleConfigs (line 9) creates all possible system config-
urations according to PhaseList. Each configuration will parameterize the workflow GSPN
that will be evaluated to get the configuration response time (lines 11..13). In particular, the
mean service times Sklj of the components ckl belonging to the configuration, in their cur-
rent phase phj , are used to parameterize the GSPN. As an example, during the creation of
the initial node Node0 in Figure 3.5, four candidate configurations are generated (see Table
3.2) and evaluated using the workflow GSPN in Figure 3.4. Finally, the node created by the
Algorithm 3.2 (line 15) corresponds to the system configuration with the minimum response
time.

Algorithm 3.3 solves the call in Algorithm 3.1 (line 16), i.e. how to create a forwarded
edge, not a “way back”. Observe that, if service sk of a given Nodes cannot be replaced
by any Nodet with a new phase or component, no edge is created (line 1). Function Ex-
tractListOfPhases, in Algorithm 3.2, detected this situation and CreateNode returned null.
When Nodes has an adjacent node Nodet, then a direct edge from the source node Nodes
to the target node Nodet is created together with its labeling information, i.e., the service sk
and the condition cond (line 5). In particular, cond is a real value computed by the func-
tion SetConfLevel (line 10), which needs the response time evaluated using the workflow

3.4. Example 21

GSPN for Nodes and Nodet (lines 6-9). A simple example of SetConfLevel will be given in
Section 3.4.

These algorithms have been implemented in the work in [Fra10].

Algorithm 3.1 Strategy generation

Require: From Goal Management Layer: System Workflow (AD), Performance Goal (Per-
fGoal)
From Change Management Layer: Components with their timing specification (CD,TT)

Ensure: A New Strategy (and a possible warning meaning that the PerfGoal is not achieved)
{Initialization}

1: set G = �N,E�: N = ∅ {nodes}, E = ∅ {edges}
{Create Initial Node}

2: N0 ← CreateNode(AD,CD,TT,null,null)
3: set Nodes = ∅
4: Nodes = Nodes ∪N0

5: while Nodes �= ∅ do
6: Nodes ← ExtractOneNode(Nodes)
7: AlreadyCreated← CheckNode(N,Nodes)
8: if not AlreadyCreated then
9: N ← N ∪ Nodes

{Create Nodes adjacent nodes}
10: for all k ∈ [1..K] do
11: Nodet ← CreateNode(AD,CD,TT,k,Nodes)
12: AlreadyCreated← CheckNode(N,Nodet)
13: if not AlreadyCreated then
14: Nodes← Nodes ∪Nodet
15: end if

{Create edge from Nodes to Nodet}
16: Edge← CreateEdge(Nodes,Nodet,k,TT)
17: E ← E ∪ Edge
18: end for
19: end if
20: end while
21: E = E ∪ CreateWayBackEdges(G,TT)
22: return ¡G, AnalyseStrategy(G,PerfGoal,CD,TT)¿

3.4 Example

We exemplify the algorithm of the strategy generation, described in Section 3.3, with an ex-
ample of a system under development (SUD) that executes three operations, in a sequential
manner. All such operations consist in service calls to providers in the open-world environ-
ment. The UML system specification is shown in Figures 5.12 and 3.3. The activity diagram

22 3. Self-adaptation for Performance Engineering: Goal Management

Algorithm 3.2 CreateNode

Require: AD,CD,TT,service (k), current node (node)
Ensure: A node (confbest)

1: set PhaseList = ∅ {vector of vectors}
2: if (k==null ∧ node==null) then
3: PhaseList← ExtractInitialListOfPhases(CD,TT)
4: else
5: PhaseList← ExtractListOfPhases(CD,TT,node,k)
6: end if
7: set CandidateConfigs = ∅ {set of configurations}
8: set RTs = ∅ {set of configuration response times}
9: CandidateConfigs← AllPossibleConfigs(PhaseList)

10: for all conf ∈ CandidateConfigs do
11: GSPNconf ← CreateGSPN(conf)
12: rtconf ← Evaluate(GSPNconf)
13: RTs← RTs ∪ �conf, rtconf�
14: end for
15: confbest ← FindBestConfig(RTs)
{The node is a configuration with the min response time:
�confbest, rt� ∈ RTs | ∀�conf, rtconf� ∈ RTs : rt ≤ rtconf }

16: return confbest

(Figure 5.12), annotated with the MARTE profile [Obj05], represents the system workflow
(i.e., the system model). The type of workload (GaWorkloadEvent) is open and requests ar-
rive to the SUD with an exponential inter-arrival time, with a mean of 500 time units (i.e.,
“tu”). The requests are processed, one at a time, by acquiring (GaAcqStep) and releasing
(GaRelStep) the resource c0. Each activity step (PaStep) models an external service call sk
to a provider in the open-world. In particular, the extOpDemands tagged-value is a parameter
that is set to the current provider of service sk and the extOpCount tagged-value indicates the
number of requests made for each service call.

The component diagram (Figure 3.3) represents the currently available providers of the
services required by the system. In particular, component’s names are given according to the
name of the service they provide. There exists only one provider c11 of service s1, while two
providers are available for each service s2 and s3. Table 3.1 (TT) shows the working phases,
in time units, of the providers. In particular, for each provider ckl, the estimated mean service
times Sklj and mean sojourn times SJklj of the offered service, are given. Both the component
diagram and TT make up the environment models.

3.4.1 Strategy generation

The Time Table and the UML specification, properly annotated with MARTE, provide the
input for the Algorithm 3.1 described in Section 3.3. A parametric GSPN model is then cre-
ated from the activity diagram (Figure 5.12) that will be used to estimate the mean response

3.4. Example 23

Algorithm 3.3 CreateEdge

Require: source (Nodes), target (Nodet), service (k), TT
Ensure: The edge between Nodes a Nodet (edge)

1: if Nodet == null then
2: return null
3: end if
4: set cond = 0.0 {confidence level (float)}
5: set edge = �Nodes, Nodet, k, cond�
{Computation of Nodes response time}

6: GSPNNodes ← CreateGSPN(Nodes)
7: rtNodes ← Evaluate(GSPNNodes)
{Computation Nodet response time}

8: GSPNNodet ← CreateGSPN(Nodet)
9: rtNodet ← Evaluate(GSPNNodet)
{Computation of the confidence level}

10: cond← SetConfLevel(Nodes, rtNodes , Nodet, rtNodet ,TT)
11: return edge

time of the system under different configurations, using the multisolve facility of Great-
SPN [Gre]. The GSPN model is shown in Figure 3.4 and it is characterized by three rate
parameters representing the execution mean rates of the service calls s1, s2 and s3.

Observe that the call to service s2, in the activity diagram, includes 3 requests (extOp-
Count tagged-value) this is modeled by the free-choice subnet, where the weights assigned
to the conflicting transitions Start CallS2 and End CallS2 are equal, respectively, to 3/4 and
1/4.

The first main step of the algorithm (Algorithm 3.1 - line 2), consists of creating the
initial node of the reconfiguration strategy graph (Algorithm 3.2). This is accomplished
by assuming that each provider works under the best mode. We consider, then, the min-
imum estimated (mean) service times from each provider, i.e., S11

1 = 5tu, S21
1 = 10tu,

S22
1 = 35tu, S31

1 = 20tu and S32
1 = 30tu. There are four possible system configurations:

for each one, we instantiate the parametric GSPN, in Figure 3.4, by setting the rate param-
eters λS1provider, λS2provider and λS3provider to the inverse of the considered service times
Skl1 (k = 1, 2, 3) of each current provider of services s1, s2 and s3, respectively. Once in-
stantiated, the GSPNs are solved and the system (mean) response times are computed (see
Table 3.2).

In the strategy graph (Figure 3.5), the initial nodeNode0 corresponds to the configuration
that revealed the minimum system (mean) response time. Observe that, in this simple exam-
ple, active providers in the initial configuration correspond to those ones having the minimum
service times. However, this property does not always hold in a general case where several
providers contend for shared resources.

In the next main step of the Algorithm 3.1 (line 11), the nodes adjacent to the initial one
are created, considering that the active providers in Node0 can degrade their performance.
Eventually, there will be three configuration nodes adjacent to the initial node, one for each

24 3. Self-adaptation for Performance Engineering: Goal Management

Call S1

Call S2

Call S3

<<GaWorkloadEvent>>
{pattern =(open =(interArrivalTime=(exp(500,tu))))}

<<GaAcqStep>>
{acqRes = C0,
 resUnits=1}

<<PaStep>>
{extOpDemands=$S1provider;
 extOpCount=1}

<<PaStep>>
{extOpDemands=$S2provider;
 extOpCount=3}

<<GaRelStep>>
{relRes = C0,
 resUnits=1}

<<PaStep>>
{extOpDemands=$S3provider;
 extOpCount=1}

Figure 3.2: UML activity diagram

external service requested by the SUD (Figure 3.5). Let us consider the creation of the first
two nodes Node1 and Node2 adjacent to Node0: the algorithm will iterate over the created
nodes to produce their adjacents, until all the possible system configurations are examined.

Node1 is added considering that the active provider of service s1 in Node0 (i.e., c11)
changes its phase from ph1 to ph2, i.e., c11 is answering to service requests with a mean
service time of 20tu, instead of 5tu. Since c11 is the unique provider of s1, the Node1
is characterized by the same active providers as Node0 as well as the same provider mean
service times but the one of c11, which is equal to 20tu. The GSPN model in Figure 3.4 is
used to compute the system mean response time of the configuration Node1.

Node2 is created assuming that the active provider of s2 in Node0 (i.e., c21) changes
its phase by increasing the mean service time from 10tu to 70tu. Then, four candidate
configurations were possible: two of them still include c21 as active provider of s2 with
degraded performance. They correspond to the first and the third configuration in Table 3.2
with the provider c21 in phase ph2. In the other two configurations, the active provider of
s2 is c22 (i.e, the second and the fourth configuration in Table 3.2). The GSPN model in
Figure 3.4 is then used to select the best configuration among the candidates, that is the one
with the minimum system (mean) response time. Then, the Node2 actually corresponds to
the configuration with the minimum system (mean) response time, i.e., 177.6tu.

Once a new adjacent node is created, the algorithm generates the corresponding forward
edge (Algorithm 3.1- line 16). An edge from Nodes to Nodet includes information about
the service sk and the goodness of the prediction (confidence-level) for the reconfiguration
controller to decide whether it is worth to change the configuration from Nodes to Nodet.
Observe that, since we are dealing with the open-world environment, every decision about the
providers is based on predictions. We propose an ad-hoc heuristic that works under the open
workload assumption and considers the performance goal (i.e., obtain the best system mean
response time) as well as the available timing specifications (i.e., provider working phases).

Let us consider an edge fromNodes toNodet where the source and the target nodes have
different active components, such as Node0 and Node2 in Figure 3.5. The computation of

3.4. Example 25

System
under

development
C11

C31

S1 C21

C22

C32

S2

S3

Figure 3.3: UML component diagram

the corresponding minimum confidence level is related to two quantities:

• The performance improvement when the system reconfigures properly, that is the
provider has changed its phase and the strategy realizes it (e.g., the provider c21 has
changed from ph1 to ph2 and the system moves from Node0 to Node2). This is esti-
mated as:

Perfimprove = rts|ckl←phj+1
− rtt,

where rts|ckl←phj+1
is the system mean response time with the same active providers

as in Nodes, but changing the working phase of provider ckl from phj to phj+1, and
rtt is the system mean response time in Nodet.

• The performance loss when the system reconfigures due to a wrong prediction, that is
the provider has occasionally had a slow execution, but it has not really changed its
current phase, however the system moves to the target node. This is estimated as:

Perfloss = rtt − rts,

where rts is the system mean response time in Nodes.

Then, the minimum confidence level is given by the formula:

conf level =
Perfimprove

Perfimprove + Perfloss
. (3.1)

When the source and target nodes of an edge have the same active components, such as
Node0 and Node1, the minimum confidence level is computed as conf level = rts

rtt
.

Finally, the way-back edges are created (Algorithm 3.1 - line 21) to allow the system to
move back to a previously considered configuration after a (mean) sojourn time period in the
source node. So there will be an edge from Nodes to Nodet, labeled with a mean sojourn
time period as a timeout, if there exists a provider ckl in Nodes with its final phase phJkl

and in Nodet with its initial phase ph1. In Figure 3.5, way-back edges are dashed and, for
readability, only five of them are shown. The choice of the ideal mean sojourn time period
that allows the system to achieve the performance goal (i.e., minimum response time) is a

26 3. Self-adaptation for Performance Engineering: Goal Management

Provider working phases (in time units, i.e., tu)

ph1 ph2 ph3

C11 (5,3000) (20,6000)

C21 (10,6000) (70, 2000) (250,2000)

C22 (35,6000) (140,4000)

C31 (20,2000) (70,2000)

C32 (30,∞)

In format phj = (Sklj , SJ
kl
j)

Table 3.1: Time Table of open-world providers (TT)

future work issue. In the example, we set such period equal to the mean inter-arrival time of
a service request to the SUD (i.e., 500tu).

In order to validate our proposal, we carried out the analysis of the system, considering
several assumptions: the system does not follow the strategy modeled by the reconfiguration
graph in Figure 3.5 (case 1), and the system undergoes reconfigurations according to the
strategy graph (case 2). We obtained the following results for the system mean response
time: 494tu (case 1) and 436tu (case 2). This means that partially applying our performance
aware reconfiguration (eight nodes in Figure 3.5) we have improved the system response time
in 11%.

3.5 Conclusion

Along this chapter, we have learnt that there exist a lot of challenges for the performance pre-
diction of the open-world software to become a reality. However, we believe that this chapter
has proposed a clear architecture for performance-aware open-world software, which means
an attempt to comprehensively accomplish most of such challenges. From this architecture,
we have explored the uppermost layer and how to generate reconfiguration strategies, that can
reconfigure a system while its performance goal has to be achieved. Our generation technique
tried to show up where the problems are and it demonstrates a possible solution using Petri
nets. However, other generation approaches could be feasible and would be desirable. We
validated our solution through an example. A direction to do research in the future work is to
include more extra-functional requirements into the strategy generator functionality, such as
dependability. As a technical detail, in this work we have not considered network transmis-
sion delays, which could be significant in some service-oriented applications that operate on
the Internet; however, these delays can be easily incorporated through the UML deployment
diagram.

28 3. Self-adaptation for Performance Engineering: Goal Management

Mean response time estimation

(in time units, i.e., tu)

C11:ph1 C21:ph1 C31:ph1 60.5

C11:ph1 C22:ph1 C31:ph1 177.6

C11:ph1 C21:ph1 C32:ph1 72.5

C11:ph1 C22:ph1 C32:ph1 193.8

Table 3.2: System components candidates

[PSL03] is addressed the problem of guaranteeing the QoS of untrusted third-party services.
They propose a framework to choose services offering best QoS, in this work the workload
is balanced among several providers to support some kind of fault tolerance.

The work of Garlan in [GS02] also proposes an architecture for performance evaluation
but restricted to self-healing systems, besides they do not use formal methods. Our work
has also been inspired by the work in [OMT98], which proposes an architecture to manage
the adaptation for evolvable systems, although that work does not deal with performance
evaluation.

Work in [CMI07] deals with adaptation management and proposes a Performance Man-
agement Framework. In this framework, alternative configurations are dynamically created
by evaluating reconfiguration policies and monitored data, rather than store from the begin-
ning a predefined set of possible configurations as we do.

3.6. Related work 29

<s3,0.81>

Node 0

C11:phase1
C21:phase1
C31:phase1

Node 1

C21:phase1
C31:phase1

Node 2

C11:phase1
C22:phase1
C31:phase1

Node 3

C11:phase1
C21:phase1
C32:phase1

<s2,0.71>

<s1,0.77>

Node 5

C22:phase1
C31:phase1

Node 6

C21:phase1
C32:phase1

Node 7

C11:phase1

C31:phase1

Node 8

C11:phase1
C22:phase1
C32:phase1

<s1,0.88>

<s1,0.80>

<s2,0.72>

<s2,0.93>

<s2,0.72>

<s3,0.82>

<s3,0.81>

<s1,after(500)>

<s1,after(500)>

<s3,after(500)>

<s1,after(500)>

<s2,after(500)>

C11:phase2

C11:phase2

C11:phase2

C21:phase2

Figure 3.5: Partial reconfiguration strategy graph

30 3. Self-adaptation for Performance Engineering: Goal Management

Chapter 4

Self-adaptation for Performance
Engineering: Change
Management

In this chapter we investigate adaptation decisions for SOA applications that are built on
services offered by third party providers. A proper decision about when a provider should be
substituted can dramatically improve the performance of the application. We propose hidden
Markov models (HMM) to help service integrators to foretell the current performance state
of third-parties. The HMM manipulation is done by the Change Management layer of our
reference architecture.

Next sections emphasize the decision task of a performance-aware self-adaptive software
and we propose probabilistic methods that allow the software to decide when and how its
adaptation actions should be executed.

4.1 Problem description

Service Oriented Architectures (SOA) provide abstraction mechanisms to ease building com-
plex, heterogeneous and distributed software systems. A pillar of these architectures is the
concept of service, which is a software entity that allows to execute functionalities in a loosely
coupled manner and whose interface is well-described. As in [CCG+09] and [CDPEV08],
we call abstract service to the offered functionality, and concrete service to the particular
service the provider exposes. A service can be offered by several providers and they are dif-
ferentiated by their QoS. Moreover, although the QoS of providers were similar in the long
term for the same service, in a given moment providers are exhibiting different QoS; e.g.,
their performance can differ due to the current workload.

Concrete services can be invoked as part of a complex service oriented system which acts
as a service integrator. A service integrator can follow a workflow of requests to services
provided by third-parties. Working with third-parties adds new concerns since services are

31

4.2. A formal model for SOA providers 33

5. The observation symbol probability distribution in state i, B = {bi(k)}, where bi(k) =
P [vk at t| qt = si].

Continuous observation density HMMs Since our observations will be measured times,
which are continuous values, the number of observed symbols M → ∞. Moreover, such
measures are expected to follow an exponential distribution with parameter λi. Therefore,
we consider the HMM to be a single continuous observation, then items 4 and 5 change to:
probability distribution function of observation O in state i is bi(O) = λie

−λiO. 1

Continuous time HMMs Advancing descriptions in next subsection, our approach models
the non-observable behavior of third-party providers. Such behavior is defined by several
states, mean sojourn time in each state, and transition probabilities among states. So, it will
be needed to model duration of states in the HMM. Unfortunately, citing [Rab89], perhaps the
major weakness of conventional HMMs is the modeling of state duration. To overcome this
weakness, we use the modeling approach in [WWT02], and we will work with continuous
time Markov chains (CTMC). As a result, items 1,2 and 3 will describe a CTMC. Items 1
and 3 do not change their meaning, but transition probabilities are converted into transition
rates taking into account both the mean sojourn time in each state (Soji) and the probability
to change from state si to state sj (psisj) where (

�
sj
psisj = 1 ∧ psisi = 0). Consequently,

item 2 is redefined: There is a state transition rate matrix R = {rij}, 1 ≤ i, j ≤ N , where

rii =
−1
Soji
∧ ∀i �= j, rij =

psisj
Sojsi

From now on, we call CT-HMM to an HMM with continuous observation density, and its
state change behavior is given by a CTMC. Figure 4.1 depicts an example of CT-HMM.

S1 S2 S3 S4
12

23 34

41

bs1
λ

r
r r

r

24r

= s1 e
-λs1(O) O

bs2
λ= s2 e

-λs2(O)
O

bs3
λ= s3 e

-λs3(O)
O

bs4
λ= s4 e

-λs4(O)
O

π 1 2 3 4=(, , ,)π π π π

Figure 4.1: CT-HMM example

Note that the word “hidden” in hidden Markov models is not referred to the ignorance
of model parameters. On the contrary, it is referred to the actual sequence of states through
which the model has passed to generate the sequence of observations; i.e., to the unobservable

1bi(O) can be any finite mixture of log-concave or elliptically symmetric densities N [Rab89], bi(O) =
PM

m=1 cimN(O,µim, Uim) where cim are mixture coefficients, µim are means and Uim are covariance ma-
trices. In our case, the mixture has only one component, which is the exponential probability distribution function.

4.3. State prediction and configuration adaptation 35

providers are not monitored strictly periodically but when their services are requested. This
fact can make prediction methods that are exclusively based on monitored response times
lose accuracy. Since we pursue accurate prediction methods, we consider two concepts to
carry out providers performance prediction: monitored response times and the time instant
they are measured. CT-HMMs provide mechanisms to represent both concepts. Then, we
propose them for the client to represent the behavior of a provider:

• A continuous time Markov chain (CTMC) where each state represents a state of
the provider (night, daylight,...) and the client knows their mean sojourn times ss
(Sojss) and the probability to change from a source state to a target state (pssst and�

st
pssst = 1).

• Probability of the value of observations in each state. In this case, observations are
the response times monitored from service calls. For us, the expected response time
follows an exponential distribution in each state. Therefore, the probabilities of obser-
vations in state si ∈ {night, daylight, ...} are bsi(O) = λsie

−λsi
O, where λsi is the

inverse of the mean expected response time in state si and O is the observed time by
means of monitoring the provider.

• An initial state distribution π0. Since no knowledge about the state of the provider
is known when the service integrator starts its execution, we assume the initial state
distribution to be the steady-state solution of the CTMC π0 = πsteady.

Note that in this model, states are hidden but transition rates among states are known,
as well as the expected mean response time in each state. CT-HMM manages two time
parameters when receives each observation k: the monitored response time (Ok) and the
time instant when such observation has been received (tk). That is, the service integrator
stores the absolute time in which each response has been received, being t0 = 0 the instant
where the integrator was switched on.

4.3 State prediction and configuration adaptation

As discussed in previous section, the behavior of providers can be formally represented and
the client, or service integrator, can use measured response times to foresee in which state a
provider should be currently executing. Besides, service integrators need abilities to change
the system configuration, i.e. to select for the current request the provider that has been
predicted to be in the state with best response time.

4.3.1 Prediction of the provider state

The CT-HMM proposed in Section 4.2.2 will be useful to predict for a provider the probability
distribution of its states. Concretely, using the CT-HMM of provider p, we can predict the
state probability (πpk) when observation Opk is received at time tpk considering: the calculated
state probability of the previous observation (πpk−1), the observed response time Opk and the
amount of time elapsed, tpk − t

p
k−1, since the previous service call to p:

36 4. Self-adaptation for Performance Engineering: Change Management

Adaptation
Decider

πk

output=
(provider ,

output=
ChangeConfiguration(Conf)j

p)

input=(provider ,O ,t)k k

Provider1

 b (O)=(e)λi
−λ

i
O

i

s
s

s

s

s

1
2

3

4

5

λ
12

λ
51

λ
23

λ34

λ
43

λ
35

λ
25

Provider2

s s s1 2 3

λ
12

λ
23

λ
31

p

πk-1
tk-1

tk-1

πk-1

CT-HMM Analyzer

 b (O)=(e)λi
−λi O

i

Figure 4.3: Modules for configuration changes

πpk(i) = CalcTransientProb(πpk−1, si, t
p
k − t

p
k−1) · b

p
i (Ok) · c (4.1)

being bpi (Ok) = λie
−λiOk , i.e., the probability of provider p to receive an observation with

value Ok being in state i, and being c a constant to normalize the vector to
�

i π
p
k(i) = 1. As

previously mentioned, before the first observation (Op1), the state probabilities correspond to
the steady-state distribution (πp0 = πpsteady).

To operate with the CT-HMM, which considers CTMCs, Calc-TransientProb uses CTMC
transient analysis equations to calculate the probability of being in state si after tpk − t

p
k−1

time units, being the πpk−1 state probability distribution at time tpk−1.
Figure 4.3 (right hand side) depicts a supposed software module, we call CT-HMM Ana-

lyzer, aimed at predicting for a provider the probability distribution of its states. The module
stores for each provider the corresponding CT-HMM. When the system advertises that a ser-
vice call has finished, this module receives as input information, the name of the provider
(providerp), the monitored response time (Ok), and the current time (tk); then it computes
and stores πpk. When the system requests for the current πpk, the expected probability dis-
tribution of the states of a provider, this module computes it using: πpk−1 (that calculated
when the last observation of p was received) and tpk−1 (the moment when the observation
was received).

4.3.2 Adaptations based on state predictions

The probability distribution of the states of the providers, πk, enables service integrators to se-
lect providers offering best response time. Figure 4.3 (left-hand side) depicts a supposed soft-
ware module, we call Adaptation Decider, aiming at deciding system configuration changes.

4.3. State prediction and configuration adaptation 37

Adaptation
Strategy Adaptation

Decider
<<uses>> CT-HMM

Analyzer

[xml data file]

LoadCT-HMM(model,IDmodel)

deleteCT-HMM(IDmodel)

MonitoredDataChangeConfiguration

NotifyModelState

<xml ...

NewStrategy

Figure 4.4: Abstract view of Figure 4.3.

We mean by “configuration change” the replacement of a service provider by another one,
indeed offering best response time.

Being the decisions of the Adaptation Decider based on predictions, there can happen
fails or hits. Fails occur when: 1) the provider has actually changed its state but the prediction
does not advise it, we call it “false negative”; 2) the provider has not changed its state but the
prediction erroneously advises a change, we call it “false positive”. Likewise, a decision hit
happens when: 1) no change is advised when it was not needed (called “no-adaptation hit”);
2) or a configuration change is advised when needed (called “adaptation hit”). From the point
of view of a self-adaptive software system “false negatives” are lost opportunities to improve
system performance, see that a non-adaptive system will always miss such opportunities.
However, “false positives” can make the self-adaptive system work worse than a non-adaptive
one.

The Adaptation Decider calculates the system configuration that is expected to show the
lowest mean response time for the system workflow execution. Algorithm 4.1 describes such
calculation: for each possible configuration (line 4) calculates the weighted mean of the mean
response time for each state combination of a provider (lines 6-10); the weight of each term
is the probability for providers to be in the state expected in that state combination (line 8).
Finally, it is selected the configuration that offers the lowest weighted mean response time.

Algorithm 4.1 has some combinatorial executions (calculation of mrti and Confi) that
make it not practicable. The remainder of the subsection discusses three techniques that
improve it, we discuss the improvement they achieve and the kind of prediction error they
incur.

Most probable state: This technique will change system configuration taking into ac-
count for each provider its current most probable state. It will pick the state with lowest
response time and consequently selects the provider this state belongs to.

This technique will incur in a large amount of false positives. See for example Figure 4.5:
say the workflow consists of only one service call to S1. There are two providers (P11 and
P12), so the system can execute in two configurations (Conf1 and Conf2). Each provider
can execute in 3 states, s1, s2 and s3, with different mean response times as shown in Fig-
ure 4.5. Initially, the state probability distributions could be: πP11(1) = 0.3, πP11(2) =
0.37, πP11(3) = 0.33 and πP12(1) = 0.15, πP12(2) = 0.25,
πP12(3) = 0.6.

38 4. Self-adaptation for Performance Engineering: Change Management

Algorithm 4.1 Algorithm of the Adaptation Decider

Require: AbstractServices(AS), ConcreteProviders(CP),
P rovidersStateDistributions (πk)

Ensure: Conf, the configuration with the lowest expected MRT.
1: set Confi {Configuration, selection of a CP for each AS}
2: set StateCombij {Possible combination of providers

states in a Configuration Confi}
3: set mrti = 0.0 {weighted mean system response time in configuration Confi being its

providers state distribution π}
4: for all Confi ∈ (AS,CP) do
5: mrti = 0.0
6: for all StateCombij ∈ Confi do
7: mrtij ← CalculateMRT (StateCombij)
8: probStatej ← CalculateProbability(StateCombij , πk)
9: mrti ← mrti +mrtij · probStatej

10: end for
11: end for
12: return Confi | ∀mrti� ,mrti ≤ mrti�

Let us assume the system in Conf1, since the most probable state for P11 is s2, the
expected mean response time is 50 tu. Now, let us assume that the CT-HMM analyzer cal-
culates a new state distribution for P11: πP11(1) = 0.2, πP11(2) = 0.39, πP11(3) = 0.41.
So, now the most probable state for P11 is s3 and the system mean response time is 140 tu
(see Figure 4.5). In addition, the most probable state for P12 is s3, whose expected mean
response time is 110tu. Since 110 < 140, the decision will be to change from Conf1 to
Conf2. This decision has a very high probability to be a false positive, because if all state
probability distributions had been taken into account, the expected mean response time in
Conf1 would have been less than in Conf2, and no reconfiguration would have been pro-
posed (then being a no-adaptation hit). Indeed, applying Algorithm 4.1, the result would have
been: (0.2 · 10+ 0.39 · 50+ 0.41 · 140) < (0.15 · 20+ 0.25 · 80+ 0.6 · 110) which indicates
that it is better to remain in Conf1.

This technique is faster than Algorithm 4.1 since it only looks for one state for each
provider (the most probable) and executes a comparison between pre-calculated mean re-
sponse times. On the other hand, it needs to have pre-calculated and stored the expected
mean response times for each provider configuration, which can be costly for large service
based systems.

Most probable state with “sureness”: This technique still considers the most proba-
ble state for each provider i (mpsi), but it also takes into account its probability and the
expected improvement in the system response time. The technique calculates a “sureness”
value (Sr), based on the response time of the system considering source and target config-

urations (Confs and Conft), as Sr = MRT (Conft(mpsi))
MRT (Confs(mpsj))

. Moreover, it calculates a prob-

ability PgoodPred = πi(mpsi) · πj(mpsj). The system will change configuration only
if PgoodPred ≥ Sr. Note that when PgoodPred is high -almost one-, the system will

4.3. State prediction and configuration adaptation 39

Conf1

S1:p11
.s :10 u.t.
.s :50 u.t.
.s :140 u.t.

1

2
3

11p

11p

11p

System MRT

Conf2

.s :20 u.t.

.s :80 u.t.

.s :110 u.t.

1

2
3

12p

12p

12p

System MRTUsed Provider Used Provider

S1:p12{ {
Figure 4.5: Example of two system configurations

reconfigure even when the performance in Conft is not very much higher than in Confs.
This technique executes as fast as the previous one since it also only needs to look for

the most probable state probabilities. However, this technique avoids some adaptations that
would most likely incur in a false positive. For example, in Figure 4.5, Sr = 110

140 = 0.7857
and PgoodPred = 0.41 · 0.6 = 0.246, then PgoodPred � Sr and the system would not
incur in a false positive adaptation, as it happened in the previous one. The technique also
avoids false positives that are due to “not as much sure of the most probable state probability
as to reconfigure”. However, since it only takes into account the probability of the most
probable state, it still incurs in false positives related to “in which states are the probabilities
that are not in the most probable state of Confs providers”.

Fail compensation: This technique not only takes into account the most probable state,
but the whole state distribution. It reduces the complexity of inner loop in Algorithm 4.1
because (see lines 6-9) it does not calculate mrts for each possible combination of states
StateCombsj in a source configuration Confs, however it considers a pre-calculated mean.
Concretely, this mean value is pre-calculated for each state of a provider pisj in a config-
uration, and it represents the mean response time of the system when pi is in state sj and
considers the steady state distribution for the rest of the providers in Confs. Therefore, this
value represents the mean of the mean response times mmrt. Following this technique, the
number of loops isNpi ·Npk instead of

�
pi∈providers

Npi whereNpi is the number of states
of provider pi.

The technique will cause false positives due to the use of steady state distributions to pre-
calculate mmrt, whereas in the complete loop in Algorithm 4.1 the actual state probabilities
distributions are considered. To mitigate them, it does not reconfigure just when the expected
response time in Conft is lower than in Confs, it also considers the “expected profit” when
the decision is a hit or the “performance loss” when the decision is a fail (false positive or
negative). Then the adaptation is carried out when ProfitWhenHit > LossWhenWrong.
ProfitWhenHit is calculated as:

�

sj∈pi

(πpi(sj) ·
�

sl∈pk

πpk(sl) · coeffprof (pisj , pksl))

where coeffprof (pisj , pksl) is the function

coeffprof (pisj , pksl) =

�
mmrt(pisj)
mmrt(pksl)

if
mmrt(pisj)
mmrt(pksl)

> 1

0 otherwise

To calculate LossWhenWrong it is also used the previous formula but changing the
coefficient for coeffloss(pisj , pksl) where

40 4. Self-adaptation for Performance Engineering: Change Management

coeffloss(pisj , pksl) =

�
mmrt(pksl)
mmrt(pisj)

if mmrt(pksl)
mmrt(pisj)

> 1

0 otherwise

4.4 Integrating the adaptive configurations into an archi-

tectural solution

In this section we integrate the theory previously described for software that operates in the
open-world into the architecture for performance-aware self-adaptive software.

Benefits of integrating our proposal into this architecture are clear: we are approaching
to a complete reference architecture for open-world software, that can meet performance
requirements while manages uncertainties in the environment through a formal model.

Figure 4.4 appears now embedded within the shadow part of Figure 4.6, which clearly
describes how the new proposal fits in the 3-layer architecture. The proposal in this chap-
ter executes the task of the general Adaptation Manager of the architecture in Figure 2.1.
Both the Adaptation Decider and CT-HMM Analyzer, are in the Adaptation Manager scope.
Moreover, to ease the applicability of the architectural approach in a non-HMM based so-
lution, just for generality, we refer to the CT-HMM Analyzer using its functionality name:
Providers Performance Predictor.

Regarding the Adaptation Manager, firstly, generates input values of the Providers Per-
formance Predictor. In Figure 4.3, they are providerp, Ok, and tk, which now respectively
match with information about Who, responseTime and When in Figure 4.6. The generation of
this input might need a syntax translation depending on the language of the received status
messages from the lower layer. Although this technicality about fitting interfaces has not been
completely addressed in this work, we do not disregard it and we consider that a translation
may exist through a conversion of input status messages to ResponseTimes, Who, and When.
Configuration changes are decided using this information, then updating the internal model
that stores which one is the main provider for each service and producing a ChangeConfigu-
ration output. This output is forwarded in Change Actions message to the component control
layer.

Regarding the integration of the CT-HMMs management in the architecture some issues
need to be clarified. The management of these models is divided into two entities: the entity
that creates and parameterizes the models, called Provider Performance Behavior Analyzer;
and the entity that uses them to predict their current state, the Providers Performance Predic-
tor.

The functionality of the former is not achieved by a simple operation but requires complex
computations. Besides, its operation is not called frequently. Therefore, it is reasonable to
place this entity in the uppermost layer. This functionality has not been addressed in this
work. However, this is not a neglected part. Indeed, in the hidden Markov models theory, this
is one of the typical studied problems, which means to find out the most probable parameters
of an HMM from an observation sequence.

The latter entity was presented in Section 4.3 without taking into consideration some
challenges in open world. Then, it now should offer additional interfaces: loadCT-
HMM(model,IDmodel) and deleteCT-HMM(IDmodel). Adaptation Manager will use these

4.5. Conclusion 41

Workflow

System

Performance

Goals

Adaptation Strategy

Generator AnalyzerBehavior

Performance

Provider

Configuration

Configuration

Change

Actions

Change

Goal

management

management

Change

control

Component

...>

Adaptation

<xml..

 Strategy

Diagram

Component

System Workflow

with

SPE Specification

Providers
performance
behavior

performance
report

Providers

ResponseTimes

Status

 Strategy Strategy Request

New Strategy
loadCT−HMM
eleteCT−HMM

ManagerAdaptation

Monitors

Who
When

AdaptationDecider Performance Predictor

(CT−HMM Analyzer)

Providers

Figure 4.6: Emphasized Change Management layer on the 3-layer architecture adapted to open-world

interfaces when:

• the upper layer provider performance behavior analyzer produces a provider perfor-
mance behavior that was not included in the Providers Performance Predictor (loadCT-
HMM).

• a service provider vanishes off the world (deleteCT-HMM).

• knowledge about a service provider behavior is out of date and the provider per-
formance behavior analyzer offers an updated model (deleteCT-HMM followed by
loadCT-HMM).

4.5 Conclusion

In this chapter, we have presented an approach, based on HMMs, to predict the performance
of SOA providers in the open-world. We have used such prediction to decide the appropriate
moments to change the system configuration. We have also fitted the approach in the 3-layer
architecture, concretely in its second layer.

42 4. Self-adaptation for Performance Engineering: Change Management

The parameterization of the CT-HMMs has not been addressed in this work. However, it
is possible to integrate an already existing solution to find the most probable parameters.

4.6 Related work

The motivation of our work in this chapter is shared with the work in [GMMT10], where au-
thors evaluate providers selection strategies. In [GMMT10], comparison between strategies
is based on the mean response time the clients achieve. Although our work shares motivation
regarding to reach best workflow performance, we take different assumptions. Firstly, we do
not rely on user agreements or collaborations to reach a global knowledge about providers
performance behavior and their changes, but we assume independent adaptive clients that
only concern about their best performance in a selfish way. Secondly, we assume that our
requests do not affect the workload of the providers and hence neither their performance.

Regarding the usage of HMM in self-adaptive software systems, work in [WY07] uses
them in the provider side to predict requests based on the monitored history of the clients
behavior.

The layered architecture for model-driven adaptation explained in [TGEM10] has some
aspects in common to ours -beyond the 3-layer architectural view-, such as the dynamic gen-
eration of adaptation plans. A key difference is that in our proposal, actions to follow the
plans are based on probabilities, since they necessarily come from predictions about proper-
ties of third-party service providers that operate in the open-world, and these predicitions are
necessarily subject to uncertainties.

Chapter 5

Self-adaptation for Energy
Conservation

Energy use is becoming a key design consideration in computing infrastructures and services.
In this chapter, we focus on service-based applications and we instantiate the 3-layer adapta-
tion framework to architect a system that is able reduce its power consumption according to
the observed workload. We concentrate on the work of the uppermost layer and we propose
the generation of adaptation plans that guarantee a trade-off between energy consumption
and system performance. The approach to reduce power usage is based on the principle of
proportional energy consumption obtained by scaling down energy for unused resources, con-
sidering both the number of servers switched on and their operating frequencies. The formal
method that helps us for the modeling of the framework concerns is the GSPNs. After pre-
senting the approach, it is applied to a simple case study to show its usefulness and practical
applicability.

5.1 Motivation

The constant growth of energy usage in industrialized countries is creating problems to the
sustainability of the Earth development. The problem of energy use concerns many fields in
human activities: for this reason some new disciplines such as green computing are growing
up to study how to consume less energy by providing the same quality of service [Ran10].

As shown in [DKL+08, Ran10], the interest towards efficient use of technology is mo-
tivated by some alarming trends showing, for example, that computing equipment in the
U.S. alone is estimated to consume more than 20 million giga-joules of energy per year, the
equivalent of four- million tons of carbon-dioxide emissions into the atmosphere [Ran10]. IT
analysis firm IDC (http://www.idc.com/) estimates the total worldwide spending on power
management for enterprises was likely a staggering 40 billion dollars in 2009.

Large computing infrastructures, like data centers, web services hosting or email, in the
U.S. consumed the 1.5% of all electrical power in 2006 and it grows at an annual rate of

43

44 5. Self-adaptation for Energy Conservation

12% [CJH+11]. Nevertheless, it is possible to observe that they are so complex that some
parts become inactive even during active periods. In this chapter, we focus our research on
the consumption of the computing infrastructure of the providers of service-based applica-
tions. Often when deciding the amount of resources -hardware and software- to include in
the platform, worst-case scenarios are considered, which leads to over-provisioning for other
scenarios of the system. The result is a static system deployment that wastes part of the
available processing infrastructure and consequently causes energy waste.

Therefore, a first direction that can be followed for energy savings is the definition of
adaptation plans that can be used to reduce power in time (turn off during idle times) and
space (turn off inactive elements). Hence, infrastructures can be dynamically scaled to con-
serve power with no impact on performance while they match workload demands.

The definition of this adaptation plan is not easy, because the workload is typically vari-
able and unpredictable and because there are also other, possibly contrasting, goals that
should be satisfied. Indeed, the ultimate goal of a service provider is to maximize profits
from its offered services, while for a client the main objective is to obtain a service with
required QoS at the minimum cost. Therefore a suitable adaptation plan should be able to
define the best trade-off between energy consumption and QoS offered. The problem is quite
complex and -as mentioned in the related work in Section 5.9- there exist in the literature sev-
eral attempts to propose methods for managing power and guaranteeing the agreed quality of
service.

Among the multiple QoS attributes of software to face with energy, in this chapter we
choose the system performance in terms of mean response time. The problem of maximizing
providers revenues, although important, is not directly tackled. The reason is that we follow
the same vision as the one in [CDQ+05], which defends that quality requirements always
must be met once contracted. However, other approaches consider that it is fair to violate
QoS contracts deliberately in some cases; for example, in case that the penalty paid by the
provider to the customer due to contract violation is lower than the investment necessary
for meeting the agreed QoS. These methods allow providers to increase their profit at the
expense of their reputations.- Nevertheless, the problem is indirectly addressed in this work,
since having a strategy that scales the amount of servers, while satisfying the performance
requirements, reduces the expenses in the equation profit = revenues− expenses.

Proposed Solution In order to reduce energy waste, the processing infrastructure of a ser-
vice provider can be dynamically accommodated to the actual processing requirements for
each scenario. Since the received workload varies frequently and in some cases unpredictably,
human intervention to modify the amount of dedicated processing resources is not feasible.
So the goal is to have the system aware of its processing resource needs, and able to self-
adapt its processing infrastructure to fulfill such needs. Therefore, the objective is to build
systems that can autonomously manage their processing resources in order to consume only
the power necessary to satisfy their -possibly evolving- performance requirements. These
new techniques actually complement the traditional and well-known off-line capacity plan-
ning [MA01]. To achieve the objective, in this chapter we instantiate the reference architec-
ture in Chapter 2 to architect a system that is aware of its processing demands, performance
requirements and available computing resources. After, we work on the uppermost layer,

5.1. Motivation 45

i.e., Goal Management, and it is proposed a method to generate adaptation plans. These
plans tackle the adaptation decisions that decrease as much as possible the system’s energy
consumption while maintaining the expected performance. The approach also allows the plan
regeneration when its execution context changes, which would make the current plan not suit-
able. The adaptation plan indeed depends on the dynamic variable workload, on the available
processing resources, on the application processing demands and on the agreed QoS in terms
of performance requirements. To exemplify the deployment of the approach, it is discussed
one deployment of interest for the case of software services.

To study the relations among these properties, we follow model-driven techniques to
transform design models into analyzable models. In this case, the analyzable models are
the Stochastic Petri Nets (SPNs) subnets. Subnets allow modeling the variable workload,
the workflow, the processing resources and the logic to adapt the system energy consump-
tion. The considered variables are not new, several works (e.g., [EKR03, CDQ+05]) and a
survey [BR04] exist on this topic.

As recognized in [CJH+11], queuing models, category of which SPNs are an example, are
ideal to predict runtime trade-offs between performance and energy use. Moreover, queuing
models have been largely validated during the last decades and we can be absolutely confident
in the results they produce, which may free the modeler from the need of validating the model
as long as it accurately represents the target system. This is an advantage regarding ad-hoc
models, heuristics or equations when used to model complex behaviors, since they really
need extensive validation to prove that the predictions they obtain actually match the real
measurement. In contrast, queuing models have been accused of being difficult to construct.
In this regard, we try to keep our models as simple, repeatable and scalable as possible and
we propose tools to automatically construct them.

To generate a Petri net that represents the whole system behavior, we put together the
previously mentioned subnets. Hence, this analyzable SPN includes fine-grained information
regarding: mean execution times of internal activities; resource usage of activities; resource
competition for passive resources (e.g., buffers) which generates “waits” and makes the sys-
tem performance not scaling linearly with frequency; and resource competition for active
(processors) which are the basis for power consumption.

The SPN evaluation, carried out with the GreatSPN tool [Gre], gives results about the
suitability of the adaptation plan (in terms of whether it deteriorates performance results) and
how much energy it saves. Moreover, we define a parametric Petri net that can be evaluated
to discover which are the best parameters to tune the adaptation plan, in order to save as much
energy as possible.

Motivating Example We describe a kind of system for which can be applied our approach.
Consider a company that develops software services which are offered in the Internet, some
of them for free while others can get subscription rates. Irrespective of the implementation,
the services follow a Service Oriented Architecture (SOA). The company maintains a homo-
geneous computing infrastructure, around hundreds of servers, which deploys the services.
These services are used all around the world and they can receive thousands of requests per
minute at certain times of day, however it is also possible that the workload decreases at cer-
tain hours considerably. When the workload is in a peak the infrastructure has to be fully

46 5. Self-adaptation for Energy Conservation

operative and each service will be replicated in as many servers as necessary to support the
quality of service the company promises. On the contrary, when the workload is low, most
of the servers can not be necessary at all. Therefore, the company needs an integral software
solution, beyond the traditional load balancer, that switches on and off the servers to adapt
the infrastructure to the workload dynamically. We argue that if the software solution fol-
lows the architecture described in this chapter, the infrastructure can achieve the advantages
previously discussed, i.e., a good trade-off between QoS and energy conservation.

The remainder of the chapter is organized as follows. In Section 5.2 we present the in-
stance of the 3-layer architecture for self-managed systems for the management of energy
and performance. The proposed SPN models for dynamic variable workload and energy con-
sumption are presented in Sections 5.3 and 5.4, respectively. The trade-off between energy
consumption and the fulfillment of the performance goal is presented in Section 5.5. Sec-
tion 5.6 discusses a suitable deployment of the architecture and presents evaluation through
an example, which is developed step by step to help practitioners to learn the proposal. The
evaluation continues in Section 5.7 to experiment with variable workload. Section 5.8 draws
some conclusions and provides pointers to on-going work. Related works presented in Sec-
tion 5.9 complete the chapter.

5.2 Architecture

In this section we instantiate the reference architecture for self-managed systems presented in
Chapter 2 for software systems whose adaptation goal is to save energy. Figure 5.1 describes
our proposal identifying responsibilities for each layer and the necessary software modules
that can carry out them.

The Component Control layer accomplishes the application function of the system, in our
case the workflows of the software services the infrastructure deploys. The software services
modules represent the executable files of these software services. They are the instance of
software application and infrastructure in Figure 2.1. Note that they are replicated, really to
represent several services but also several running instances of each service. Each running
instance, which manages requests until its maximum capacity, will execute in a server of
the infrastructure. Each server can host several running instances. The Component Control
layer also features a HardwareController and a LoadMonitor software modules. They are
the instances of sensors and actuators in the general architecture and they include facilities
to report the current status of the processing infrastructure and to support modifications on
it. The HardwareController implements: a sensor functionality for communicating with its
upper layer to inform the current state of the servers (e.g., booting completion), and an actu-
ator functionality to receive orders to reconfigure the server infrastructure (increase/decrease
frequency or switch on/off of servers). We think of it as a software module that manages the
servers through the Wake on LAN (WoL) facility. The LoadMonitor monitors current system
workload and informs to its upper layer when the workload exceeds some thresholds, i.e., a
problem to solve. Thresholds of interest were previously identified by the upper layer to this
module.

The Change Management layer executes actions to handle the new situations reported
by the lowest layer. It is made by a software module, the EnergyManager, and its input

5.2. Architecture 47

file, called the Energy-aware Adaptation Plan. The EnergyManager, which is the instance
of the general adaptation manager, is informed of the system workload and the status of
the processing infrastructure and it uses the energy-aware adaptation plan to decide when
to reconfigure the infrastructure and how to carry it out. It orders reconfigurations when it
recognizes a non optimal one: either the system load is low and the performance goal could be
fulfilled using less resources, or the load is high, requiring more capacity to satisfy the goal.
The energy-aware adaptation plan is received from the uppermost layer, either on demand or
when the uppermost layer decides to change it (e.g., because system goal changed).

<<XML file>>

Energy Manager

Controller

Hardware

Monitor

Load
<<software service>>

<<XML file>>

UML−MARTE

software models

(includes Perfor−
mance Goals)

control
Component

management
Change

hwStatus

Plan Request

Actions
Change

WkloadStatus

Load
Threshold

<<input>>

<<output>>

Adaptation

Energy−aware

Generator

Plan

<<input>><<input>>Goal
management

<<XML file>>

Energy−aware

Adaptation

Plan

infrastructure models

UML−MARTE

Figure 5.1: KM-3L adapted to energy management

The uppermost layer, Goal management, consists of time consuming computations to
produce a plan to achieve the goal of the framework, in this case the goal is to allow the
infrastructure to satisfy its performance goals while it spends as less energy as possible. This
layer is made of a software component, called Energy-aware Adaptation Plan Generator,
and a set of software and systems models, think of them as UML models, so we can assume
we have their XML representation. These files are inputs for the Energy-aware Adaptation
Plan Generator. The Energy-aware Adaptation Plan Generator creates plans following a
model-driven approach where the software and system models are transformed, following
the proposal in [LGMC04], into an analyzable Stochastic Petri Net (SPN) model.

The software models will represent the workflow logic of the services deployed (e.g.,
UML activity diagrams). These models also contain the performance characteristics of the
software service (e.g., using the MARTE [Obj05] profile to annotate the previous diagrams).
The performance characteristics include: expected workload, which is the changing environ-
ment in this work; performance goals of the service, which are the instance of the general
extra functional goal; processing demand and execution probabilities of the activities, and
resource sharing, which are a part of the general system models. The second part of sys-
tem models is stored in the infrastructure models, which represent the processing platform

48 5. Self-adaptation for Energy Conservation

(e.g., UML deployment diagrams). These infrastructure models include: number of avail-
able servers, its processing capabilities w.r.t. power consumption and mechanisms to change
power consumption.

The Energy-aware Adaptation Plan Generator carries out the SPN analysis to produce
the plan, then obtaining the maximum load the configuration can manage while the required
performance goal is accomplished. Section 5.5 describes how to generate a plan. Once the
plan is generated the task of the Energy-aware Adaptation Plan Generator is not finished yet.
It performs a plan evaluation to predict system behavioral characteristics using the generated
plan. To execute such prediction a new SPN will be created starting from the previous one
and adding information regarding: variable workload, platform energy consumption and the
adaptation plan itself. New SPN sub-models will represent each one of the previous concerns,
which are explained in detail in subsequent sections (Sections 5.3, 5.4 and 5.5 respectively).

Once the system behavioral prediction has been derived, the goal of this layer is to peri-
odically check whether the plan is suitable, which means verifying:

• whether the system is behaving as expected.

• whether the models of the workflow, workload and the platform are close to the real
behavior. For example, the assumed values for the workflow activities could change
due to software upgrades.

If some of these issues are not adequate, this layer will update model parameters and will
regenerate the plan.

5.3 Workload modeling

In order to carry out a proper model-based analysis of system’s behavioral properties, we first
need a model-based representation of the workload the system is managing. This is a not
trivial concern since dynamic systems should be able to cope with highly variable workloads
with temporal dependencies.

Classical techniques to model workload, such as those based on phase-type ([Buc03],
[PT07]) or exponentially distributed inter-arrival time of requests, do not consider dependen-
cies and correlations between inter-arrival times. However, these concepts are crucial if the
system to be evaluated takes into account its incoming workload to decide its operational
mode. Therefore, to evaluate this type of self-adaptive systems, our workload models have to
be able to represent both the variability and the temporal dependency. To this end we adopt a
SPN model since SPN have been largely used in the literature for this purpose. Indeed, since
our analyzable model of the system is based on SPNs, it is an advantage to have the workload
model represented in the same formalism in order to be integrated with the rest of the system
model.

To study the workload characteristics, we first consider different granularities regarding
workloads’ time scale: In the long-term (e.g., time span of a week), it is possible to devise a
pattern (or a distribution) that fits the variable workload. But in the short-term (e.g. time span
of several seconds), the high variability of the workload makes prediction very challenging.
In our architecture, a solution could pass through waiting until the Load monitor module has

5.3. Workload modeling 49

Figure 5.2: Webmail server, weekly supported workload

Figure 5.3: Webmail server, daily supported workload

monitored enough data to acquire a long-term view and then proceed to adapt. However,
such behavior will delay adaptation decision far away from the point in time it has been
needed. Therefore, it is necessary a prediction method that only uses short-term monitored
data can quickly infer the current workload in the long-term (and then also infer the near
future expected workload). Obtaining such prediction method is a real challenge since it
should manage multiple long-term variables and obtain their current values managing only
partial, short-term, information.

When studying the workload, we observe that long-term arrival rates of requests for ser-
vice can be clearly separated in several states. Following this assumption, our workload
model will contain several states representing each one a concrete arrival rate. Figure 5.21

represents a real variable workload supported by a mail server (which receives around one
million requests per day and 30,000 login operations). In the Figure, we can appreciate sev-
eral states: (i) night with an arrival rate close to zero and duration around 8; (ii) working-hours
with an arrival rate around 1,500 requests/minute and duration of 16 hours; (iii) peak which is
sporadic, short (it lasts for around one hour), it takes place only during working hours and can
reach an arrival rate around 1,800 requests/minute; and (iv) weekend showing an arrival rate
around 500 requests/minute and lasting roughly 16 hours. However, the short-term arrival
rate of requests is not so regular, making the prediction of the workload state a challenging

1Figure taken from https://piedra.unizar.es:8080/public/monitor during the week of 4-12 November 2010.

50 5. Self-adaptation for Energy Conservation

task. To illustrate such challenge, Figure 5.3 shows the variability of the workload from Sat
20:00 to Sun 20:00.

To model such workload, we define the SPNworkload with a shape like the one in Figure
5.4. The theory to automatically estimate the parameters of the underlying Markovian model
can be found in [CMCS12]. For the presented example of the webmail server, we set param-
eters manually to pay attention on the resulting model rather than in the modeling process.
The SPN models both the long-term and the short-term workload behavior and it includes:

• as many places as workload states. A token in a place means that the system is receiving
requests with the arrival rate associated with that state. Therefore only one of these state
places can be marked.

• a timed transition for each state. Such transitions are bidirectionally connected to state
places. These transitions inject the workload to the beginning of the workflow. Their
firing rate corresponds to the expected workload in each state. In Figure 5.4, firing
rates are denoted as λstate. Since these transitions are linked to state-places, only one
of them can be enabled.

• a set of timed transitions to model the state mean sojourn time2 and probabilities of
change between states. For example, transitions TN−Wo and TN−We model the mean
sojourn time in night state, the sum of their rates must be 8hours−1. Moreover, to
model the change state probabilities, i.e., five changes per week from night to working
and two changes per week from night to weekend, it is required that λTN−Wo

·8hours =
5
7 and λTN−We

·8hours = 2
7 , which lead to λTN−Wo

= 5.715hours−1 and λTN−We
=

2.285hours−1. 3

workingpeak night weekend

Start-workflow

λworkingλ peak λ weekendλnight

TP-Wo

TWo-P

TWo-N

TN-Wo

TN-We

TWe-N

Figure 5.4: SPNworkload model

The derivation of the unknown parameters λ of the SPNworkload is based on the Markov
Arrival Processes (MAP) theory, and in particular on a type of MAP, those called Markov
Modulated Poisson Process (MMPP). There exist theories to automatically create and param-
eterize these models. Since these theories are out of the scope of this work, we have presented

2By mean sojourn time we mean the average time the system spends in a given state.
3It has been only considered the mean amount of changes between states, so, it has not been considered that the

two changes from night to weekend per week should be consecutive.

5.4. Energy modeling and analysis 51

the SPNworkload parameterization as a manual process. A detailed description of MAPs and
MMPPs can be found in Chapter 6, together with a parameterization technique for a special
kind of workload.

We have simulated the behavior of the Petri net and compared the obtained results with
the real workload in Figures 5.2 and 5.3. Figure 5.5 illustrates the simulation results (token
arrivals to place Start-workflow w.r.t time): the shape and pattern match with the long-
term view of the real server in Figure 5.2. The long-term view in Figure 5.5 has been achieved
by counting the events generated in slots of 20 seconds. Moreover, zooming in the simulation
results (right part of the figure) we can also observe the high variability in the workload that
the system is receiving, which makes the workload state prediction be a challenge. See for
example that the value marked with circle is higher than the value marked with the triangle,
while the long-term view workload supported by the state of the circle (working) is lower
than the long-term view workload supported in the state of triangle (peak). The short-term
view in the figure has been achieved by counting the events generated in slots of 1 second.

Figure 5.5: Simulation of the SPNworkload model

It is worth noting that the SPNworkload part will be “isolated” from the rest of the SPN
model that represents the system. The unique element in common between them is start-
workflow place. In this place SPNworkload holds tokens that represent execution requests
from users. In turn, the SPN that models the system will delete such tokens and will start
a system execution for each of them. Therefore, the rest of the SPN cannot get information
regarding which is the active state in each moment (i.e., in which place statei the token is) or
regarding the firing of any transition Ti ∈ SPNworkload. At most, the rest of the system can
monitor the token generations in start-workflow place during a certain period to try to predict
the expected workload.

5.4 Energy modeling and analysis

In this section it is proposed a SPN model that allows the evaluation of the variables related
to energy consumption and frequency of the servers, both taken into account in the adaptation
plan. This SPN, in Figure 5.6, also models the transient state of servers, from switch off to

52 5. Self-adaptation for Energy Conservation

on and vice-versa, which means to embed actions defined in the adaptation plan to manage
power consumption. Some places in the SPN will be shared with other subnets (e.g., the
workload subnets in previous Section) to make the final SPN model. Indeed, the evaluation
of the variables herein presented will be carried out in this final SPN.

From Figure 5.6 we see that when a switched off server receives the SwitchOn-
Event it begins its Booting. That booting process lasts for Tstartup time units. When
the booting is finished, the server is operative to receive requests and the completion is
notified to the energy manager through a token in BootedEvent place. When an op-
erative server receives a SwitchOffEvent it starts its shutting down process. First of
all, its representative token in OperativeServers is deleted, meaning that it is no
longer available to receive new service requests. A server changes its state from operative
to a state WaitForRequestsCompletion, where it is finishing its ongoing requests.
When all ongoing requests are finally served, it starts the Halting process which lasts for
Tshutdown time units. After that, it joins the pool of SwitchedOffServers. Tokens
in SwitchOnEvent and SwitchOffEvent come from the energy manager. Tokens in
OngoingRequests are generated by the workload balancer and deleted when a request
finishes its execution, these tokens store information about the server that is executing the
request. Tokens in OperativeServers are looked up by the workload balancer when it
has to decide the target server for a request.

SwitchOnEvent

Booting

OperativeServers

SwitchOffEvent

SwitchedOffServers

λ
Tstartup

1
=

Halting

λ
Tshutdown

1
=

WaitForRequests
Completion

OngoingRequests

T1
T2

1
2

BootedEvent

Figure 5.6: SPN modeling the states of servers

Regarding the energy consumption variables, we will evaluate in the final SPN the
following:

1. Mean power consumed by switch on and off processes,

Won−off = Cstartup · χ(T1) + Cshutdown · χ(T2)

where χ(Ty) is the mean throughput of transition Ty . Cstartup and Cshutdown respectively
represent the energy consumed by the server at start-up and shutdown.

2. Minimum power consumption of a server, Wstandby , includes all constant consump-
tions that do not depend on the working frequency. Mean aggregated power consumption of

5.4. Energy modeling and analysis 53

servers is
WAggreagedStandby = Wstandby · (E[#OperativeServers]+

E[#WaitForRequestsCompletion])

where E[#Px] is the mean number of tokens in place Px.

3. Maximum power consumption of a server,Wmax, considers when a server is busy and
working at its maximum frequency.

4. Since voltage supply limits the maximum operative frequency of the circuit approxi-
mately to a linear factor, then following [EKR03, CDQ+05], we merge dynamic frequency
scaling and dynamic voltage scaling, and we obtain that power consumption is proportional
to the cube of the working frequency. Therefore, power consumption of a server in an opera-
tional frequency will be

Wfreqi = (Wmax −Wstandby) · (opFreqi)
3.

Finally, the total amount of power consumed by a server working at frequency OpFreqi is

Wserveri =Wstandby +Wfreqi .

In the SPN, the mean power consumption of a single server is calculated as

Wmean =
�

i

Wserveri · P (#Frequency = i+ 1),

where P (#p = n) means that the probability of the number of tokens in place p is equal to
n. Meaning of place Frequency is unveiled in the following.

Regarding servers processing frequency, dynamic frequency and voltage scaling allow
varying working processors performance and to reduce their power consumption. Although
the working frequency could ideally range between 0 and 100% of processor capabilities,
real working frequencies are usually discretized. Therefore, as in [CDQ+05], we assume
that the actual server frequency is restricted to a value within a set of operational frequen-
cies FreqSet. We consider FreqSet made of a base frequency BaseFreq and increments
BaseInc. Therefore

FreqSet = {OpFreqi} | OpFreqi = BaseFreq + i · FreqIncr

∧ (i ≥ 0) ∧ (OpFreqi ≤ 100%).

For example: BaseFreq = 50%, BaseInc = 10% and FreqSet = {50%, 60%,
70%, 80%, 90%, 100%}. Advancing a description of the Petri net model in Section 5.5
(Fig. 5.9), tokens in place Frequency will represent servers processing frequency. It will
contain from 1 to |FreqSet| tokens (from minimum to maximum frequency). A reconfigu-
ration in the server frequency will obviously change the number of tokens in this place.

To keep the model simple, we do not model other variables related to power-aware adap-
tation such as savings in the cooling system.

54 5. Self-adaptation for Energy Conservation

5.5 Performance and energy trade-off

This section explains the process of creating an energy-aware plan that cares of performance
requirements. To ease the explanation, we divide the process into two steps: the former to
generate a basic plan, Subsection 5.5.1, while the latter to optimize it, Subsection 5.5.2. Sub-
section 5.5.3 proposes a Petri net model for the plan described in Subsection 5.5.2. Finally,
Subsection 5.5.4 presents a Petri net that results from merging all the PNs obtained so far.
That model will be useful to carry out a trade-off evaluation (performance and energy) of the
system.

5.5.1 Generation of basic-plan

An energy-aware adaptation plan will be a set of system configurations, that meet the per-
formance goals using minimum energy, and actions to change among configurations. A con-
figuration defines the number of active servers as well as the frequency they are working
at. Hence, actions to change a configuration will just mean to switch on/off servers and/or
change their working frequency. Using the number of servers and their working frequency,
the power in each configuration can be calculated.

A configuration also identifies a threshold that corresponds to the maximum system load
the configuration can manage. Energy manager uses information in the plan to accommo-
date the system configuration to the most suitable regarding the current number of requests
(system load). System load is an information the plan receives from the lower layer, which
indeed monitors the system.

In the following the process to generate the energy-saver adaptation plan is explained
(Table 5.1 will help the process understanding).

1. Generate a SPN model of the system workflow which includes the required processing
demands. Set the capacity of servers to a minimum (e.g., in Table 5.1, one server, k=1,
at its minimum frequency, OpFreq0 = 50%).

2. Evaluate the SPN to discover the mentioned threshold, i.e., the maximum load
(Nrequest) it can manage while the performance goals are satisfied. Compute power
consumption (Wserveri) for this configuration. (In Table 5.1, 27 and 16.3 respectively
for the first case.)

3. Increase the server frequency (which means to modify the SPN) and go to step 2.
Repeat this step for all the frequencies the system has to manage, i.e., |FreqSet|.

At this point we have completed one row of the table. It is natural to assume that, if a
server working at frequency OpFreqi can manage Nrequestsi and spends Wserveri power,
k independent and concurrent servers working at the same OpFreqi are able to manage
k · Nrequestsi and they spend k ·Wserveri power. Applying this, we compute the rest of
rows in the table multiplying the first row values by the number of servers that represent each
row. We will consider as many servers as available in the infrastructure. As a result, we have
generated a table that contains all possible system configurations and, for each configuration,
its power consumption and the load it is able to manage (the complete table is not displayed).

5.5. Performance and energy trade-off 55

Percentage of frequency, OpFreqi

50% 60% 70% 80% 90% 100%

k=1 Nrequests 27 32 37 43 48 54

Wserver 16.3 18.4 21.3 25.1 30 36.2

k=2 Nrequests 54 64 74 86 96 108

Wserver 32.6 36.8 42.6 50.2 60 72.4

k means number of active servers

Table 5.1: Information required to create an adaptation plan

Using data in the generated table, Algorithm 5.1 can be applied to generate the basic
adaptation plan. This plan contains an ordered list of a subset of possible configurations
(called suitable configurations) as well as threshold values indicating the moment to change
from one configuration to another.

As a result we can distinguish two kinds of adaptations: those that only require to change
the frequency and those that require to change the number of working servers -most probably,
together with their frequency.

An example of configuration in Table 5.1 is the system working with only one server
(k = 1), with frequency 60% and then with thresholds 27 and 32 requests, in this case the
power consumption is 18.4. System load ranging between 0 and 48 can be managed by only
one server and changing only the frequency. However, when the number of requests exceeds
48 it will be better to change to a configuration with 2 servers and frequency at 50% since
power consumption is 32.6 instead of 36.2 offered by the configuration that only changes
frequency. So, the configuration that uses one server at 100% will never be used. Figure 5.7
shows a basic adaptation plan in a chart. It depicts reconfiguration points in function of the
workload, considering a six-server infrastructure.

5.5.2 Reconfiguration rate mitigation

The basic-plan suffers periods with high rates of switching on and off of the servers, which is
a real drawback for two reasons. First, the time spent in booting and halting can be too high
w.r.t. the real working time, then the energy spent in switching tasks is not spent in serving
requests. Second, the more the switching rate, the more the wear and tear of servers.

To reduce the number of switch on and off of the servers we propose to use reconfiguration
limits with hysteresis. In other words, the Nrequests threshold value indicating when the
system changes between two neighboring configurations will not be unique but composed
of a couple of numbers, Nrequestsdec and Nrequestsinc, according to whether the system
tendency is reducing its power (moving from the high energy consuming configuration to
the lower) or increasing it (moving from the lower consuming configuration to the higher).
Therefore, the association between the supported load and the system configuration will not
be unique.

56 5. Self-adaptation for Energy Conservation

Algorithm 5.1 Basic-plan generation

Require: Table with Nrequests and Wserver (dimension KxF)
Ensure: Basic adaptation plan.

1: set k = 1 {considered number of servers, row index}
2: set f = 1 {considered frequency, col index}
3: set Plan← EmptyP lan() {create empty plan}
4: set currentConf ← Table[k][f]
5: Plan← AddToP lan(Plan,CurrentConf)
6: set cadidateFreq
{Search rest of suitable configurations until finish the table}

7: while k < K do
8: cadidateFreq ← GetBestInRow(k + 1, currentConf)
9: if IsBetterToContinueWithSame

Servers(k, f, candidateFreq) then
10: f ← f + 1 {Next configuration increases frequency}
11: currentConf ← Table[k][f]
12: else
13: k ← k + 1 {Next configuration increases servers}
14: f ← candidateFreq
15: currentConf ← Table[k][f]
16: end if
17: plan← AddToP lan(Plan, currentConf)
18: end while
{Add last row of table to plan}

19: while f < F do
20: f ← f + 1
21: plan← AddToP lan(Plan, Table[K][f])
22: end while
23: return Plan

The meaning of these new limits are: Nrequestsincs corresponds to the threshold amount
of requests to change from configuration s to s+ 1. Nrequestsdecs corresponds to the thresh-
old amount of requests to change from configuration s+ 1 to s. In Figure 5.8, bold continu-
ous line shows the Nrequestsinc values, which are very similar to the previous Nrequests
while bold dashed line depicts Nrequestsdec. In that graph, the hysteresis length is equal to
2 steps, i.e, the dashed line is moved two configurations above the continuous line. Therefore,
∀s ∈ {2..S} Nrequestsdecs = Nrequestss−2. For example, supposing that configuration s
is the one that uses three servers working at 60% of its frequency, and looking at the change
from configuration s to s+ 1 (i.e., use three servers working at 70%), Nrequestsincs = 94.
However, looking at the change from configuration s+ 1 to s, Nrequestsdecs = 74; value
which corresponds with the previous Nrequestss−2.

Therefore, the higher the hysteresis length, the lower the reconfiguration rate and the less
the wear and tear, but higher the mean power consumption, since the system spends more

5.5. Performance and energy trade-off 57

1
1
1
1

50

70
80
90
502

2
2
3
3
3
4
5

nservers %freq

60

1

70
60

50

70
60

60
50

70
605

5
6 60

25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185

2nd server

3rd server

4th server

5th server

6th server

nclients1 server 2 servers3 servers 5 servers

4 servers

Figure 5.7: Graph for system reconfigurations

time in a configuration that consumes more energy than necessary to deal with the received
workload. There is an example of the trade-off between these characteristics in Section 5.6.

It is possible to observe small differences between bold continuous line in Figure 5.8
and black line in Figure 5.7: these are due to corrections made when the reconfiguration
involves to turn on a new server. These corrections are intended to mitigate the non qual-
ity satisfaction during the booting time of the newly switched on server. We start to switch
on a server few moments before it will compulsorily need to maintain the required qual-
ity. This helps to have it already booted and completely operative when it has to be used.
Among the multiple manners to decide how much the booting moment should be brought
forward, we choose to calculate it as a proportion of the step length called Bring Forward
Proportion (BFP). Thus, when the system is in a configuration Confj such that the im-
mediately consecutive Confj+1 uses one server more, the adaptation order will take place
when system load reaches NrequestsincConfj

= NrequestsincConfj−1
+ �(NrequestsConfj −

NrequestsincConfj−1
) ·BFP �.

As an example, let us consider the difference between the bold continuous line in Figure
5.8 (in Nrequests = 111) and black line in Figure 5.7 (Nrequestsinc = 96 + �(111 −
96) · 0.75� = 107) with a BFP value equal to 0.75 and focusing on the moment to order the
switching on of the 4th server.

Thus, without hysteresis and BFP, three servers were used when the load of the system
ranged from 74 to 111. With the new improvement, three servers can be used to manage
from 52 to 107 requests, but what happens concretely, is that two or three servers are used to
manage from 52 to 74 requests, exactly 3 servers for the range 74-76, three or four servers to
deal with requests from 78 to 96 and three, four or five servers manage requests from 96 to
107.

58 5. Self-adaptation for Energy Conservation

1
1
1
1

50

70
80
90
502

2
2
3
3
3
4
5

Nservers %freq

60

1

70
60

50

70
60

60
50

70
605

5
6 60

25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185

2nd server

3rd server

4th server

5th server

6th server

Nrequests1 server

2 servers

3 servers

5 servers

4 servers

on

on

on

on

on

 2nd server
off

3rd server off

4th server off

5th server off

6th server off

6 servers

Figure 5.8: Graph for reconfiguration (with hysteresis)

The decision to set a suitable value for the hysteresis proportion is studied in Section 9.4
by means of the evaluation of an example with different proportion values.

5.5.3 Petri net model of a plan

The Petri net in Figure 5.9 models the system reconfigurations that an energy aware adapta-
tion plan could carry out, in this example there are depicted configurations Conf0, Conf1,
Conf2, Confs and Confs+1 of the plan. Places representing configurations, Confi, are in
mutual exclusion and can contain at most one token.

Transitions in the right hand side (t4 and t5) allow to upgrade the power of the system
changing to a configuration that increments its Frequency when the system is supporting
a load that exceeds the configuration threshold NrequestincConfi

(weight of the test arc linked
to systemLoad). Transitions in the left hand side (t1 and t2) allow to downgrade the power
of the system changing to a configuration that decrements its Frequency when it receives
less than NrequestdecConfi

requests, in this case an inhibitor arc (those having a circle at the
end) prevents the firing of the transition when the number of tokens in systemLoad is more
than NrequestdecConfi

. SystemLoad place will be filled by the workload subnet (the subnet
shown in Section 5.3, Figure 5.4), and its tokens removed by a timed transition with infinite
server semantic and firing rate 1

MonitoredT imeSpan , so it accounts for the number of requests
the system has received during the lasts monitoredTimeSpan seconds.

Some downgrades in the system configuration imply to increment the frequency and to
decrement the number of servers, transition t3 represents them. In this case, the Frequency
is increased with the difference of frequency between configurations (Freq(Confi) −
Freq(Confi+1)). While the number of servers is decremented sending an event (token in
SwitchoffEvent) to start the switch off process.

5.5. Performance and energy trade-off 59

systemLoad

Conf0

Conf1

Conf2

Confs

Confs+1

Conf
Nrequests

0

Inc

Conf
Nrequests

1

Inc

Conf
Nrequests

s

Inc

Conf
Nrequests

1

Dec

Conf
Nrequests

2

Dec

Conf
Nrequests

s+1

Dec

Frequency

SwitchOnEvent
SwitchOffEvent

ConfFreq(s) Conf- Freq(s+1)
ConfFreq(s) Conf- Freq(s+1)

Waiting
For

Booting

BootedEvent

t1

t2

t3

t4

t5

t6

t7

λ
1

monitoredTimeSpan
=

Figure 5.9: Petri net modeling the adaptation plan behavior

On the other hand, some upgrades of system configurations imply to decrease frequency
and increase the number of servers, they are trickier and need of two transitions, in the exam-
ple t6 and t7. In this case, the change of frequency and the switch on of the servers cannot be
concurrently executed since switch on entails booting time. So if the frequency is changed
when the new servers have not been yet added (servers are booting), the servers currently
working will be the ones suffering the frequency change and they will provoke a transitory
quality degradation of the system instead of its power enhancement. Then we split up the
upgrade process in two steps. In the first, t6 orders the system to switch on the server (tokens
in SwitchOnEvent and WaitingForBooting places). During this booting time the
system works at the frequency in the source configuration (no degradation). When the server
is already booted (token in BootedEvent), the frequency is decreased using transition t7,
and the system reaches the new configuration.

5.5.4 The Petri net for trade-off evaluation

The Petri nets for the adaptation plan, the workload, the state of the servers and the software
service are merged to create a new one where to carry out the proposed trade-off analysis.
Figure 5.10 depicts an abstract view of this Petri net, where the places that are interfaces
clearly emphasize how interact the nets. Although we do not present in this chapter a Petri
net of a software service, Figure 5.12 illustrates the workflow of a software service, and we
obtain the corresponding Petri net automatically, using ArgoSPE [GMM06].

60 5. Self-adaptation for Energy Conservation

Workload PN
StartWorkflowProcessing

infrastructure PN

OperativeServers

Workflow PN

Adaptation Plan PN

FrequencySwitchOffEventSwitchOnEvent

BootedEvent

Ongoing
Requests

SystemLoad

(in Fig.6.4)(in Fig.6.6)

(in Fig.6.9)

Figure 5.10: Abstract view of the Petri net for evaluation.

5.6 Deployment and evaluation

In this section we present a possible deployment of the modules in the architecture in Fig-
ure 5.1. The UML deployment diagram in Figure 5.11 depicts a deployment in which the
computing platform is made of servers, where the software services in the Component
control layer are deployed. The bottom layer of the architecture is completed with the
LoadMonitor and the HwController which are software modules that accommodate in
the hardware that receives the requests from clients, also separated hardware could be used.
The software module that comprises the Change management layer, Energy Manager,
is deployed in a separate hardware that only communicates with the other two layers for
sending and receiving the orders and information specified in the architecture. Finally the
Adaptation Plan Generator, which is a software that evaluates SPNs as explained
in Section 5.5, is deployed in a high performance computing platform to create the plans on
demand, this service could be even provided by a third-party in the cloud.

5.6.1 Evaluation framework

The SPN in Figure 5.10 represents all the elements in the deployment, although some imple-
mentation was required to carry out evaluation. The requests of the clients are modeled as
proposed in Section 5.3, which confer us the advantages previously presented as well as the
choice of performing a plethora of experiments as discussed in Section 5.7. The actions of
the HwController are embedded in the SPN in Figure 5.6. The software services are sim-
ulated by the SPNs that represent them, note that the main interest is to simulate the time they
spend, which is accurately represented by the timed transitions of the SPN. These SPNs are
obtained from the UML models of the software services using the ArgoSPE tool [GMM06].
Regarding the middle layer, Change management, it is embeded in the SPN in Figure 5.9
which represents the adaptation plan. We have implemented a java program that creates the
basic plan, evaluating PNs and applying Algorithm 5.1. The evaluation was carried out using

5.6. Deployment and evaluation 61

computing platform

Monitor
Load

Controller
Hardware

Energy
Manager

Plan Generator

Adaptation

<<HPC>>

<<exe>>

<<service>>

<<exe>>

<<service>>

<<exe>>

<<service>>

<<server1>>

LAN

L

A

N

<<host>>

<<client>>

<<client>>

Internet

<<server2>> <<server N>>

Figure 5.11: Deployment of the reference architecture

the GreatSPN tool [Gre]. The program also creates the plan with hysteresis. The resulting
plan gives the parameters for the SPN in Figure 5.9. Hence, we have created a model-based
framework, that being able to evaluate our proposal, frees us of developing this expensive
deployment, specially in regard to acquire or rent a real computing infrastructure.

Being our purpose a model-based evaluation, we consider interesting to summarize the
differences between it and an hypothetical evaluation carried out using the deployment in
Figure 5.11:

• We do not have “real” clients but a model of workload. However consider that this part
of the deployment does not belong to the architecture, i.e., to our contribution. More-
over, we have shown a method in this chapter to appropriately leverage the workload.

• We have not traded an expensive computing platform made of hundreds of servers.
However our SPNs models carefully represent the workload they support and our plan
considers their consumption, frequency and booting and shutdown times.

• The HwController has not been implemented since we have not the computing
platform it manages. However, this task just means to program the WoL facility of the
servers and the remote control of the frequency.

• The Load Monitor is not necessary in our evaluation since the workload is gener-
ated by our model.

• The Adaptation Plan Generator has been implemented for our model-based
evaluation and it could be reused in the deployment in Figure 5.11.

62 5. Self-adaptation for Energy Conservation

5.6.2 Example of evaluation: relay mail server

The model-based framework above described has been carried out to evaluate a simplified
version of a relay mail server, a kind of system very common for enterprises and institutions.
Relay servers use to be replicated to cope with highly dynamic workloads usually being a
few the number of replicas, except for extremely large mail providers.

The server receives requests, to route mails to destinations, from both external and local
users. First activity is to accept the service. For example, mails from local users are allowed
to be delivered to anywhere, while external users could only be allowed to send mails to local
users, then avoiding open-relay risky configurations. For accepted mails, the relay analyzes
the content regarding security, trying to mark viruses, spam or phishing. Safe mails are deliv-
ered with a header indicating the analysis result. Mails containing viruses are rejected. The
destiny of safe mails can be either an external relay server, the one of the addressee, or the
own company mail inbox server. Finally, the relay server writes a log about the operations
performed, time stamps and related information (indeed, this kind of logs have been very
useful for our research in Section 5.3). Figure 5.12 depicts the workflow, using UML, as well
as the performance information, in this case annotated with the standard MARTE [Obj05]
profile: a) mean host demand for each operation and b) system routing rates as probabilities.
Host demands annotations assume the server working at its maximum frequency. The per-
formance requirement states that mean response time for a legitimate request should be less
than two seconds.

Workload model For the sake of simplicity we adopt the monitored workload of the Uni-
versity web server presented in Section 5.3. So, the workload is the one depicted in Figure 5.2
and the corresponding Petri net model in Figure 5.4. Let us assume the following mean arrival
request rates per minute in each state: 1800 for peak, 1300 for working, 100 for night and
500 for weekend. They are modeled by transitions of name λstate in the Petri net. Rates of
transitions that model state changes were explained in Section 5.3. Evaluating this Petri net
in isolation (without considering the workflow Petri net), we obtain that its long term mean
inter-arrival time is 943.4 requests per minute.

Characteristics of the processing resources We have supposed a set of identical servers
and Round-robin technique to balance requests. We have followed classical techniques to
create the SPN that models the load balancing technique, which inserted in between the work-
load and workflow SPN submodels. The characteristics of a server are:
1. Maximum power consumption, Wmax = 100W .
2. Idle power consumption, Wstandby = 15W .
3. Others power consumptions, Cstartup = Cshudown = 6000 Joules.
4. Frequencies range from 1600MHz to 3200MHz in steps of 266.6MHz. Thus, the set of
frequencies is {50%, 58.33%, 66.66%, 75%, 83.33%,
91.66%, 100%}.
5. Booting and shutdown times, Tstartup = Tshutdown = 1min.

5.6. Deployment and evaluation 63

AnalyzeContent

Write log

<<PaStep>>

{hostDemand=(12,ms);}

{prob=0.95;}

<<PaStep>>

<<PaStep>>

{hostDemand=(65,ms);}

{prob=0.1;}
<<PaStep>>

Deliver

{prob=0.9;}
<<PaStep>>

<<PaStep>>

{hostDemand=(10,ms);}

<<PaStep>>

{hostDemand=(12,ms);}

MTA Content analyzer Logger

acceptDeliver

{prob=0.05;}

<<PaStep>>

Figure 5.12: UML activity diagram of a relay server

Not energy-aware deployment We first conduct a study intended to devise the necessary
amount of servers to cope with the performance requirement. This study does not heed about
energy, so the servers are working at maximum performance and power consumption. The
workflow in Figure 5.12 is translated into a SPN following the method in [LGMC04], let us
call it SPNwkf . The workload model is simplified and split to only consider working and
peak periods, the worst cases. These nets together with the Round robin PN are attached to
the SPNwkf . As a result, we get two SPN we call SPNworking

wkf and SPNpeak
wkf . We evaluate

these nets for a different number of servers using the GreatSPN tool [Gre], and applying
Little’s law4 we obtain the execution mean response times. We obtain that, if the platform
consists of one or two servers, the system cannot satisfy required response time in working
or peak states. Actually, system is neither able to manage the workload, and mean response
times tend to infinite. However, for a three server platform, system satisfies the required
performance in both working and peak states, since the obtained mean response times in
this case are 0.16 and 0.73 seconds respectively. So, the system would be deployed in a three
server platform. Servers power consumption using this solution would be 100W ·3 = 300W .

4The Little’s law establishes that the average number of customers in the system is equal to the request arrival
rate multiplied by the average time a customer spends in the system.

64 5. Self-adaptation for Energy Conservation

Energy-aware adaptation Previous not energy-aware study tells us that probably the three
server solution is wasting energy since not all processing capacity is needed. Hence, we have
to apply the energy-aware plan developed in Section 5.5 to find suitable configurations of
servers for all the states in the system.

Firstly, we develop a table, as the one explained in Section 5.5, by evaluating the SPN
that represents the workflow. This Table 5.2 embeds the different system configurations and
shows for only one server its power consumption and the number of concurrent requests it
can manage. Remember that under the assumption of “servers independence” we can obtain
new rows for more servers just multiplying results in the first row.

Operative frequencies (percentage)

50 58.33 66.66 75 83.33 91.66 100

Wserver 25.6 31.8 40.1 50.8 64.1 80.4 100

Nrequests 10 12 14 15 17 19 21

Table 5.2: Power consumption and concurrent requests capacity

From this table the energy-aware plan is generated following indications in Section 5.5
and improved following the hysteresis in Subsection 5.5.2. We have generated three plans,
considering different values for hysteresis step length, 1, 2 and 3. In the following, we refer
to each plan as PH1, PH2, and PH3 respectively. The plans account for requests received
in the last 2 seconds (monitoredTimeSpan). Figure 5.13 depicts PH2 as a graph. It shows
that there are 11 different configurations and that the three server deployment is used when
system load exceeds 22 requests.

We evaluated the generated plans and we obtained results for the steady state system
execution:

• Mean time between consecutive booting processes are 33, 38.5 and 51 minutes for
PH1, PH2, and PH3 respectively. It can be seen that the more step length of hysteresis,
the less frequent booting processes are. Therefore, for each plan, expected mean power
consumption of a server due to booting process is 2.86W, 2.6W and 1.96W for PH1,
PH2, and PH3, respectively, calculated as 6000J

booting(PHx)min·60seg/min
.

• Percentage of time a server is turned on for each plan should be 78.3%, 79.4%
and 81.2% . This has been directly acquired from mean number of tokens in
operativeServers and WaitForRequestsCompletion places

• Percentage of time that the energy manager orders the infrastructure to work in each
frequency is shown in Table 5.3.

Using all this information, we calculate the average power consumption of the system.
Results are: 129.8W for PH1, 140.6W for PH2 and 150.0W for PH3. Therefore, our adap-
tation plans should make the system save 56%, 53.1% and 49.9% respectively w.r.t the non
adaptive solution (calculated as 100 · (300− Power(PHx))/300).

5.7. Experimenting with variable workload 65

1
1
1

50

66.66
2

3
3
3

Nservers %freq

58.33

10 13 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

2nd server

3rd server

nrequests1 server

2 servers

3 servers

on

on

2nd server
off

3rd server off

50
2 58.33

50
58.33
66.66
753
83.333
91.663

3 100

Nrequests

Figure 5.13: Graph for system reconfigurations

5.7 Experimenting with variable workload

The example illustrated in the previous section showed that the application of the proposed
adaptation plan could lead to more than 50% of energy saving. The results obtained so far
are tied to a given workload pattern. In this section, we analyze different types of workload,
trying to understand if the results present a general validity or if they are related to specific
situations. Hence, we expect to answer questions such as: “does it exist a workload state
making the system unstable?” or “what could happen if the mean arrival rate of a workload
falls just over the value where the adaptation plan suggests to increase the executing platform
by one server?”. Answering these questions would increase or decrease the trust in the pro-
posed approach and it could lead, for example, to the identification of critical workloads that
require continuous system reconfigurations, thus deteriorating the energy consumption and
servers wear and tear.

To this end we have performed several experiments, described below, whose goal was
covering a wide range of workload rates to discover the existence of a possible critical work-
load state.

For the sake of system stability, while the state of the workload is not changing, the adap-
tations to activate servers should be close to zero since they take time (e.g., booting time).
Indeed, in this case, high spike or deep valleys are not related to an increment or a decrement
in the future workload, rather they are random events showing momentary workload varia-
tions. Therefore, a reconfiguration would entail to come back to the previous configuration
in a very short time. In the worst case, it is possible to have a set of servers wasting time and
energy turning on and off continuously, instead of processing requests.

To assess our approach, we have studied the behavior of the plan generated in Section 9.4
under several workload states, where each state has a different request arrival rate. Specif-
ically, we have considered arrival rates from 50 to 2500 requests per minute in steps of 50
arrivals per minute. So, we have evaluated 50 kinds of workload rates. Furthermore, since

66 5. Self-adaptation for Energy Conservation

Operative Frequencies (percentage)

50 58.33 66.66 75 83.33 91.6 100

% time PH1 19.8 13.6 19 18.3 17.4 8 3.7

% time PH2 20 9.2 11.4 18.3 22.7 12 6.4

%time PH3 20.9 13.6 0.8 9.5 27.3 18.2 9.7

Table 5.3: Percentage of time spent in each operative frequency

the hysteresis step length of the adaptation plan was conceived to reduce these reconfigura-
tion rates, we have included in our experimentation also different lengths of the hysteresis
step. In this way, it is possible to evaluate whether the hysteresis-based adaptation plan is
effective to actually mitigate the amount of unnecessary reconfigurations.

For the completeness of the study, we have performed three different studies, using hys-
teresis step lengths ranging from 1 to 3. The obtained results are depicted in Figure 5.14.
The graph shows the mean rate of unnecessary adaptations that modify the amount of active
servers by varying the requests arrival rates. It can be seen that for an arrival rate of less than
100 requests per minute, the system is stable because none of the plans propose unnecessary
reconfigurations. The same happens for arrival rates above 1350 requests per minute. In the
former case, the system is stable using a 1-server configuration. In the latter, the system is
stable using always the 3-servers configuration.

Between 950 and 1350 requests per minute, the adaptation with hysteresis step length
equal to one proposes some unnecessary reconfigurations. Indeed, there are random valleys
in the short term arrival rate that deceive the energy manager into changing to a 2-servers
configuration, and then come back to the 3-servers one. The adaptation plans with hysteresis
step length two and three, instead, are stable.

Between 250 and 500 requests per minute, it is possible to observe an increase of the rates
of unnecessary reconfigurations of plans with hysteresis step of length equal to one and two.

Referring to the example of the previous section, this is the main reason of the observed
difference between the value of PH1 and PH2 mean time between consecutive booting pro-
cesses w.r.t. PH3. Indeed, the mean arrival rate in weekend workload state falls in this range,
which causes a certain instability in the system configuration. However, increasing the hys-
teresis step length to three, the reconfiguration rate decreased by a factor of 35.2% and of
24.5% respectively, mainly due to the avoidance of a number of unnecessary reconfigura-
tions.

The adaptation plan with hysteresis step length equal to three also shows a peak in the
unnecessary reconfiguration rates, that is shifted to the right w.r.t. peaks of plans with hys-
teresis step lengths one and two. However, as expected, this peak is much lower than the
peak of previous plans, indicating that the increase in the hysteresis step length reduces the
reconfiguration rate so increasing the system stability.

Experimenting with variable workload, we can conclude that it is possible finding work-
load states leading to unnecessary system reconfigurations, but the introduction of hysteresis
helps in reducing the rate of reconfigurations. Specifically, adding hysteresis to the approach,

5.8. Conclusion 67

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500

R
e
c
o
n
fig

u
ra

ti
o
n
 r

a
te

Requests arrival rate

Hysteresis 1
Hysteresis 2
Hysteresis 3

Figure 5.14: Reconfiguration rates for workload states with arrival rate 50r, r ∈ {1..50}

we have experimented that it is possible to define suitable hysteresis step length values al-
lowing the system to execute in a stable manner. We observed that increasing the length of
the hysteresis step it is possible to reduce the mean power consumption and the reconfigu-
ration rate. Finally, note that depending on the cost of servers and its wear and tear in each
switching, the optimum value of hysteresis step length varies.

5.8 Conclusion

In the near future, the management of power consumption in open systems and computing in-
frastructures will necessarily become an unavoidable topic, self-adaptive frameworks have a
lot to say at this regard. Starting from a framework (reference architecture) able to self-adapt
a system to improve its performance, the proposal herein reported enhances the architecture
to also deal with energy variables. The model-driven approach, transformation of UML mod-
els into a formal one in terms of Petri nets, bestows interesting analyses capabilities on the
framework to carry out an off-line management.

Future work is a path plenty of challenges. For example, understanding how to apply
virtual layers in the underlying computing infrastructure and how the architecture can manage
them, servers will be able to feed different system components. Other not addressed topic
refers the management of servers with heterogeneous capabilities (e.g., different frequencies).
Also it is worth to investigate automatic generation of workload models from traces. In

68 5. Self-adaptation for Energy Conservation

particular, works on Markovian model estimation can be found in [CMCS12, CZS10].

5.9 Related work

In the last years, as outlined in [CdLG+09], the topic of reconfigurable and self-adaptive
computing systems has been studied in several communities and from different perspectives.
The autonomic computing framework is a notable example of a general approach to the design
of such systems [KC03, HM08]. The work in this chapter lies in the area of models for self-
adaptation of systems able to guarantee the fulfillment of performance requirements under
variable workload and reducing energy consumption. Therefore, hereafter, we review works
appearing in the literature dealing with (i) dynamic variable workload, (ii) energy waste
reduction and (iii) trade-off between energy consumption and performance.

Workload Patterns for workload recognition and characterization have been studied in
[SWHB06]. Differences between systems analysis depending on whether the considered
workload is open, closed or partly open are explained, and difficulties to characterize the
workload and difficulties to create and set up a suitable generator are discussed. For the
problem we are dealing with, the more suitable workload types are open or partly-open.
Moreover, we study systems under highly variable open workloads [WC03] with temporal
dependencies. Besides, in this work we concentrate on the modeling of workload patterns
that can be separated into phases, section 5.3 leveraged this aspect.

Energy wastes In [CD01], the authors outline a research agenda to reduce energy con-
sumption in server clusters. The main proposal here is to improve server efficiency in terms
of energy spent for each service request. The method focuses on reducing energy consump-
tion by turning off the surplus of processing capacity when the current workload, which
fluctuates, does not need it. With respect to this work, we manage the server frequency and
the cubic relation with power consumption, which increases the energy saving with respect
to only switching on and off servers.

Authors in [USC+08] have considered dynamic allocation of resources and deal with
multi-tier applications. Although, they do not directly address the concept of energy savings,
methods given in this paper can be applied for energy consumption reduction. In [BLM10]
the management of energy consumption in data centers is studied through optimization prob-
lems taking into account: frequency scaling, severs booting times and hysteresis. We also as-
sume these issues but we make slightly different assumptions to discover appropriate settings
for each workload. For example, to accommodate an increased workload in the platform, in
[BLM10] the plan could dictate switch on or off the machines. In our case, with increasing
workload if you have to select a new configuration of hardware, we decided to not reduce the
number of servers. Therefore, in this case we can reduce the number of reconfigurations.

Trade-off between energy consumption and performance This aspect has been largely
investigated in hardware design, in network communities and in battery-powered devices.
However, this investigation applied to hosting centers is much more recent. In [BR04, Ran10]

5.9. Related work 69

the importance of the problem of energy wastes is recognized. They treat the problem from
different points of view, such as the consumption from hardware devices, operating system or
software applications. They sum up previous efforts in the field, raise current problems and
devise ways to reduce the energy consumption.

[EKR03] evaluates five strategies to save energy: two strategies manage processor fre-
quency, another one switches on and off servers and the last two result from the combination
of frequency and number of servers management. The authors study the performance degra-
dation of applications with respect to the strategy used. In our work, we propose to generate
an adaptation plan that uses the same techniques as in their latter strategy. Besides, we share
the modeling of servers startup, shutdown and waiting for ongoing requests times. To pre-
dict execution demands of requests from each user our analyzable SPN models include more
fine-grained information.

The goals of the work in [CDQ+05] are close to ours: to reduce costs while satisfy-
ing quality contracts. We share the techniques to save energy when the system is over-
dimensioned for the supported workload: switch off of the servers and modification of their
frequency. Their optimization technique also considers the problem of wear and tear on
servers when repeated on-off cycles are performed.They proposed methods based on queuing
theory, feedback control and hybrid mechanisms, instead, we use SPN models in an archi-
tectural framework. We also differ because their proposal reconfigures the system just in
predetermined time instants, however we do it as soon as a better configuration is recognized.

The authors in [AAA+06] propose a framework for hosting multi-service platforms that
allows the management of reallocation of the correct amount of resources for each service
while satisfying the performance requirements. The work in [CVP+08] extends the previous
one by considering energy consumption constraints and situations where the system is un-
der illegitimate users requests. Our work differs from the previous ones in the goals. While
their main objective is to maximize company profits (they consider cases when providers pay
penalties), our goal covers both the savings in energy consumption and continuous perfor-
mance requirements satisfaction.

Mistral [JHJ+10] handles multiple distributed applications and large-scale infrastructures
to optimize power consumption, performance and the transient costs of adaptations. As in
our approach, Mistral reconfigures the system when variations in the monitored workload
are appreciated, however they implement a workload predictor that estimates these workload
variations, in our case the SPN model of the workload owns this knowledge. They present
an algorithm, that can increase exponentially, to create a graph that represents the system
configurations and adaptation actions, in our approach the reconfiguration plan is represented
also by a SPN model. For the computation of applications response time, Mistral, as well as
our approach, relies on formal models, in this case queuing networks instead of Petri nets.
[HBK11] presents an approach to self-adaptive resource allocation in virtualized environ-
ments that cares for SLAs. Their adaptation algorithm differs from ours since it proceeds in
two phases: a first one to allocate resources to meet SLAs and a later one to deallocate those
not utilized. The approach is validated using standard benchmarks.

The approach in [KKH+09] implements and validates, using a benchmark, a dynamic
resource provisioning framework for virtualized server environments. It also accounts for
the switching costs of the machines. As in our approach, the excessive switching and the

70 5. Self-adaptation for Energy Conservation

variations in the workload intensity are taken into account. However, the approaches differ
considerably. For example, they use a Kalman filter to estimate the number of future arrivals,
while our approach allows accurate modeling using SPNs of multiple kinds and combinations
of variable workload. The dynamics of the system are expressed using equations, however
we use SPNs as a modeling paradigm.

Finally, [CJH+11] is an interesting work that develops a measurement-based approach
as alternative to queuing models, which clearly differentiates it from our work. They also
create a new set of metrics to predict runtime trade-offs between performance and energy
use. Moreover, the alternative is extensively validated.

Chapter 6

Workload Modeling for
Self-adaptive Software

As we have seen, software can be often embedded in dynamic contexts where it is subject to
high variable, non-stable, and usually bursty workloads. A key requirement for a software
system is to be able to self-react to workload changes by adapting its behavior dynamically, to
ensure both the correct functionalities and extra functional requirements. Research on fitting
variable workload traces into formal models had been carried out using Markovian modulated
Poisson processes (MMPP). These works concentrated on modeling stable workload states,
but accurate modeling of transient times still deserves attention since they are critical mo-
ments for the self-adaptation. In this chapter, after a detailed problem description, we build
on research in the area of MMPP trace fitting and we propose a Petri net fine-grained model
for modeling highly variable workloads that also accounts for transient times.

6.1 Motivation

Among the multiple sources of change that a self-adaptive software can face and multiple
adaptation mechanisms, in this chapter we deal with changes in the workload and the adap-
tation of the processing resources allocated to the application task.

The workload, for some kind of systems, is far from being stable but it presents high
variability and shows burstiness, i.e., irregular spikes of congestion. This is a fact for example
in networked and service-based systems, but not only [MZR+07]. If the workload model
does not account for the existing burstiness, then the model analysis can lead to optimistic
results; e.g., it declares a fair resource utilization and probability of congestion, while in the
real setting they would not be guaranteed. In this chapter, we present our research on the
modeling of workloads that show bursty periods.

Some formal methods that can model workloads considering the burstiness in the arrival
rate are the Markov arrival processes (MAP) and a concrete subtype of them, the Markov
modulated Poisson process (MMPP) [FMH93]. Research on workload and network traffic

71

72 6. Workload Modeling for Self-adaptive Software

fitting using MAPs and MMPPs have been already done and their results show an accurate
modeling of the workload variability.

In particular, work on fitting MMPP and MAP parameters from workload traces with
burstiness is very useful for the analysis of properties, such as performance or availability, of
a wide range of systems. However, when we observe workload-aware self-adaptive systems
carefully, we realize that their optimal configurations are different depending on the workload
they are receiving. Moreover, differences between optimal configurations during the bursty
periods and any other period can be huge. These systems should adapt (e.g., provisioning or
release of resources) during transient periods, i.e., when the workload is becoming bursty and
when the burst of arrivals is finishing. Usually, there is no need for this type of self-adaptive
software to change its configuration during stable periods of workload, it should have been
adequately provisioned before, in fact during these transient periods.

Therefore, to properly analyze the performance or availability of self-adaptive systems
under bursty workloads, we need an accurate model of that workload. This model should
include transient times, even when they correspond to a small percentage of the total time
(the rates normal and burst can last for hours while the change between them lasts just some
minutes). Otherwise, results from model-based system analysis can be far away from results
of the real working system. The reason is that the system starts the adaptation when it an-
ticipates the workload is close to be bursty. In this way, when the burst of requests arrive,
the system is already in its optimal configuration. However, a system model whose workload
does not care about transient times is not able to anticipate workload changes, and it will
start its adaptations when the bursts of requests are already arriving. This can lead to too
pessimistic performance and availability results from the model analysis.

In this chapter, we propose a model to take into account these transient periods. We
build on the work done in [Gus91, CMCS12] for MMPP and MAP parameter fitting and
we extend the generated models to be able to deal with self-adaptation. We start with the
description of MAPs and MMPPs in Section 6.2, and we present the research on which we
rely for MMPP parameter fitting from a workload trace. Section 6.3 explains the meaning of
the transient time and proposes a model for its representation. In Section 6.4 we put together
the MMPPs model and the new model for the transient time and we present the aggregated
workload model. Using that aggregation of models, we are able to analyze more accurately
the extra functional properties of the software. This is illustrated in Section 6.5 through an
experimental analysis that shows the difference between considering or not the transient time
in the workload model by evaluating the performance and availability requirements of a self-
adaptive system. Sections 6.6 and 6.7 present the chapter conclusions and related works,
respectively.

6.2 MAP’s and MMPP’s

Accurate characterization of real workload traces is a need to devise a proper workload model.
For some kind of systems, e.g. networked ones, such characterization should capture the
high variability of the requests as well as the fact that they can burst in on the system some-
times [MZR+07].

MMPPs are suitable to model variability and autocorrelation for event generation. An

6.2. MAP’s and MMPP’s 73

MMPP is a stochastic process that has been extensively used to model event arrivals pro-
cesses and network traffic [FMH93, Gus91, HL86], which is able to represent high variabil-
ity and temporal dependencies in the arrivals. In an MMPP, the arrival rate at each moment
is determined by the state of a continuous-time Markov chain (CTMC). So, when the chain
is in state i, the arrival process is a Poisson process with rate λi. An MMPP with N states
is defined by an NxN matrix Σ representing the CTMC and a vector Λ of N components
representing the arrival rates in each state.

Σ =









−σ11 σ12 ... σ1N

σ21 −σ22 ... σ2N

...

σN1 σN2 ... −σNN








,Λ = (λ1, ..., λN),

where ∀ i, j, σij ≥ 0, λi ≥ 0 and ∀ i,
�

j:j �= i σij = σii.

The research in this chapter considers MMPPs with two states. One of the states will
represent the normal arrival rate (and we call it normal) and the other will represent the
bursty arrival rate (and we call it bursty). A graphical representation of this two-state MMPP
is given in Figure 6.1. λ1, the normal arrival rate, and λ2, the bursty arrival rate, are supposed
to be much higher than transitions rates σ12 and σ21.

Bursty

12

σ21

λ 2λ 1

Normal

σ

Figure 6.1: A two states MMPP

A two-state MAP, Figure 6.2, can be seen as a continuous time Markov chain of two
states, and the active state defines the arrival rate. In the chain, there can be transitions
associated with the arrival of an event (called completion transitions, λij , darker in the figure)
and transitions that are not associated with event arrival (called background transitions, σij).
Moreover, when the chain is in state i, it can also generate arrivals with rate λii without
changing its state, modeled as a self-transition, λii.

Formally, a MAP can be defined by two squared matrices D0 and D1, where D0ij , i �= j
represents the background transition rates from state i to j, D1ij describes completion transi-
tion rates, andD0ii = −(

�
j:j �=iD0ij+

�
j D1ij). Thus,Q = D0+D1 is the infinitesimal

generator matrix of the chain.

An MMPP is a MAP that do not admit completion transitions that change the CTMC
state, i.e., the elements not in the diagonal of D1 must be zero. Then, a two-state MMPP can
be seen as a MAP whose matrices D0 and D1 are:

74 6. Workload Modeling for Self-adaptive Software

Bursty

12

σ21

λ 11 λ 22

λ 21

λ 12

Normal

σ

Figure 6.2: A two states MAP

D0 =

�
−(σ12 + λ1) σ12

σ21 −(σ21 + λ2)

�

, D1 = diag(Λ)

6.2.1 MMPP fitting from a workload trace

Finding the characterizing values of a trace To fit a real workload trace to a two-state
MMPP we just need to set its four parameters: λ1, λ2, σ12, σ21. To this end, we will use four
characterizing values from the workload trace.

The first value is the index of dispersion for counts (IDC) of the trace. The IDC is fre-
quently used as an estimator of the burstiness in a trace. The higher IDC value is, the more
burstiness the trace has. In [Gus91, HL86] it is calculated as

IDCt =
var(Nt)

E(Nt)

whereNt is the number of arrival in an interval of t time units. So, the IDC is the variance in
the number of arrivals in t time units divided by the mean number of arrivals in t time units.
Since we are interested in the index of dispersion of arrivals in the steady state, we calculate

lim
t→+∞

IDCt

To calculate the IDC we use the algorithm presented in [MCCS08, CMCS12]. This algo-
rithm is able to estimate the index of disperson IDCt→+∞ of a single workload trace.

For the rest of the characterizing values we take advantage of the work in [CMCS12], that
indeed fits workload traces to MAP caring about the burstiness. Besides the IDC, these values
are: the mean inter-arrival time of requests (m), the 50th percentile (i.e, the median) and the
95th percentile. Since in that work the authors are characterizing the burstiness of service
times, the burstiness happens for high values of these service times, then making important to
know the value for which the 95% of service times are lower. However, we are dealing with
inter-arrival times, and the burstiness happens when the values of inter-arrival times are low.

6.2. MAP’s and MMPP’s 75

So, we prefer to know the value for which the 95% of times the inter-arrival time is higher
than. For this reason, we use the 5th percentile instead of their 95th.

Experiment proposed As example of workload trace, we have used the monitored arrival
times of requests to the FIFA 1998 World Cup site [Wor98]. This is the most complete
example of workload trace we have been able to find. The timestamps are provided with
granularity of one second and we have just used the requests that arrived to the Paris server
region. Figure 6.3 shows the count of requests received by this region per minute. Since the
workload was very low when the system was started and also the last days after the world cup,
we have just concentrated in the middle days. We have used the arrivals of 34.7 consecutive
days, then from minute 60,000 until minute 110,000. The arrivals in these 50,000 minutes
have been considered in groups of 10 seconds and they are depicted in Figure 6.4. It is easy
to see that the shape of the graph depicts a quite bursty workload. The selection of this time
interval is not a restriction just to make the fitting algorithm work better but it exemplifies
the kind of workloads we are really interested in. Since we are dealing with systems that are
intended to continue working in the long term, we assume that the workload should not start
and finish being low (as it happened to the World Cup website), but be always in the normal
regime. So, we consider the first and last minutes as the system warm up and cool down, and
we consider only the world cup days where the system was most used.

Figure 6.3: Requests per minute received in Paris region

76 6. Workload Modeling for Self-adaptive Software

Figure 6.4: Requests every 10 seconds

Fitting MMPP parameters The characterizing values of the trace are the following. The
number of requests that we have dealt with is 140,998,569. The mean inter-arrival time of
requests is 0.021276 seconds (i.e, close to 47 requests per second), calculated as the number
of received requests divided by 3 · 106 (the amount of seconds in 50,000 minutes). The
median (percentile 50th) of the inter-arrival times is 0.0159744408 and the 5th percentile is
0.00367 (this is, the inter-arrival time of the 95% of requests was higher than this value). The
IDC is 686,200, we admitted a tolerance of 1 · 10−7 for its calculation using the algorithm
in [CMCS12]. The amount of time that the algorithm considered approximate to infinite and
for which the algorithm stopped was 45,140 seconds.

From these characterizing values, we fitted the MMPP. To fit the mean, 50th and 5th
percentiles we have used the same equations as [CMCS12]. To fit the ICD, we have used the
equation in [Gus91, HL86] that concretely deal with two-state MMPP parameters1.

The results are:

σ11 = σ12 = 0.0000001314169

σ22 = σ21 = 0.0000273058047

λ1 = 45.5395329586

λ2 = 350.195877

1This equation is IDCt→+∞ = 1 +
2σ12σ21(λ1−λ2)

2

(σ12+σ21)2(λ1σ21+λ2σ12)

6.2. MAP’s and MMPP’s 77

As expected, we can see that the mean sojourn time in each state, σ−1
12 , σ

−1
21 , is orders of

magnitude higher than the mean requests inter-arrival times, λ−1
1 , λ−1

2 .

6.2.2 GSPN workload model

An accurate workload model with burstiness, as the one proposed by the MMPP, is necessary
for the eventual analysis of systems that execute under such conditions.

GSPNs [AMBC+95] are broadly used to model the behavior and workload of systems
and also as analyzable models to predict properties of software systems. GSPNs have been
used to analyze some properties of self-adaptive software systems, such as performance and
energy, as it has been shown in Chapters 3 and 5. Since our workload model should represent
the injection of requests in the system in the same language as the behavioral system model,
we pursue the proposed MMPP workload model in terms of GSPN.

Since both GSPNs and MMPPs represent markovian processes, we can get a GSPN with
the same behavior as the MMPP in a quite straightforward manner. This GSPN, the one in
Fig. 6.5 representing the two state MMPP in Fig. 6.1, has as many places as states the MMPP,
in this case P1 and P2 (for normal and bursty, respectively). Another place, Parrivals, will
mean the injection of requests in the system, i.e. injection of tokens in the GSPN that rep-
resents the behavior of the self-adaptive system. The time transitions T12 and T21 represent
the MMPP change of state, then their firing rates are σ12 and σ21 obviously. The last two
transitions, Tarrival1 and Tarrival2, represent the arrival rates in the MMPP, therefore their
firing rates are λ1 and λ2 and they feed the Parrivals place.

Parrivals

P1 P2

T12

T21

Tarrival1 Tarrival2

λ1 λ2

σ12

σ21

Figure 6.5: GSPN for the two states MMPP

78 6. Workload Modeling for Self-adaptive Software

6.3 Modeling transient time between states

6.3.1 Problem statement

As declared in the beginning of the chapter, a self-adaptive system needs some time to per-
form corrective actions (e.g., provisioning or release of resources) to fit into the new execu-
tion context. In systems whose adaptations depend on workload variations, such adaptations
should happen when the system changes from normal to bursty or vice versa, i.e., the system
adapts to the environment during the transient times between states.

When looking at the real workload trace in Figure 6.6 we observe that such transient
time, although fast, is not immediate, it lasts for around 41.6 minutes, starting around 850
and ending around 1100 (1100−850

6 = 41.6). The figure shows a period of 250 minutes which
corresponds to the zoom in the range from 209,500 to 211,000 in Figure 6.4. The transient
time is assumed to be fast w.r.t. the mean sojourn time in each stable state that last for many
hours. Our workload model should reflect the transient time accurately since in this period
the self-adaptive system:

• perceives that the workload is leaving the normal state and the burst of arrivals are near
to arrive, and

• performs its adaptations to change its configuration to a new one able to withstand the
burst of requests.

In a two-state MMPP the transient time is not modeled as we can see in Figure 6.7. This
figure represents a workload trace generated by the fitted MMPP in Section 6.2 and we ob-
serve that the change from normal state (arrival rate around 455 requests each 10 seconds) to
bursty state (around 3500 requests during 10 seconds) is abrupt, no transient time is perceived.

6.3.2 Setting parameters of workload model

We pursue a GSPN to model transient times in the real workload trace, i.e., the increments
and decrements in the arrival rates of the requests. The zones of increment or decrement can
be characterized by three parameters:

• the well-known λ1 and λ2,

• the amplitude of the zone, we call itmtinc ormtdec, they are measured in seconds, and
they represent the mean amount of time that the workload is increasing from normal
state to bursty state or decreasing from bursty to normal respectively,

• and additionally, from these parameters we can also calculate the acceleration of the
curve in the zone, mrinc or mrdec, in requests · seconds−2.

In the following we describe how these parameters can be obtained from a real workload
trace. Algorithm 6.1 shows the case of the calculation of the mean amount of time that the
workload is increasing.

First (line 1 in Algorithm 6.1), we apply the technique presented in Section 6.2.1 to get
λ1 and λ2.

6.3. Modeling transient time between states 79

Figure 6.6: Real workload trace: focus on the increment

Second (line 2), we go all over the counts2 in the workload trace. Let us call countj the
number of requests received by the count in position j. We find each j such that countj−1 <
λ1 ≤ countj , we call it candidatej . That is, the candidates are the counts where the arrival
rate has changed from being under the mean for the normal state to be over the mean.

Third (lines 3..9), for the first candidatej we find the first k, k > j, such that (λ1 >
countk) ∨ (countk > λ2).

• If the first condition holds, we can discard candidatej since it means that the workload
is not incrementing, but it had just exceeded the mean for a while and it has returned
under the mean again (this is the usual behavior when the workload is in a stable state).

• If the second condition holds, we keep candidatej since we could have found a period
of increment in the workload from normal to bursty arrival rates, this period is [j, k].

Fourth (lines 10..17), for each [j, k] period we have to discover whether it can be consid-
ered as a real workload increment or not. We assume that a real increment happens when the
counts between [j, k] increase constantly in a coarse-grained view of the workload.

As coarse-grained we mean that we zoom-out the counts in order to mask the short-term
variability. To create the coarse-grained view, we reduce the k − j monitored counts to N
values, where each Nn, 0 ≤ n < N < (k − j), counts the number of arrivals in a period
of length L. L is a choice and represents how much coarse will be the study. A too low
L will not avoid the short-term variability (and then we will not realize that the workload

2Remember that a count means the number of requests received in 10 seconds.

80 6. Workload Modeling for Self-adaptive Software

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"../MMPPsimulation"

Figure 6.7: Workload trace modeled by the MMPP

is truly increasing), and a too big L will recognize as periods of constant increment some
that should not be. Once L value is chosen, N is calculated as the largest value for which
N · L ≤ (k − j), i.e, (k − j) < (N + 1) · L. If N · L �= (k − j), we obviate in the study
the last values k − j −N · L of the interval, that is, the interval to work changes from [j, k]
to [j, j + N · L]. Now, we sum up in Nn the values of each group of L counts. Therefore,

Nn =
�L−1

i=0 (countn·L+j+i).

To finish the fourth step, we decide that [j, k] is a real constant increment. Ideally, a
constant increment happens if the number of counts Nn are increasing values, i.e, if ∀ n ∈
{1..N − 1}, Nn−1 < Nn. However, we found that in every increment interval in the trace,
there is at least one unexpected count of arrivals that is very different from its neighbor counts
(too less or too much) that are also visible in the coarse-grained view. This unexpected count
prevents satisfying the for all in the previous condition. To solve it, we add a percentage of
tolerance tol ∈ IR, 0 ≤ tol ≤ 1. Then, the amount of counts Nn, n ∈ {1..N − 1} that must
satisfy the conditionNn−1 < Nn is reduced fromN −1 (i.e, all counts) to (1− tol)(N −1).

Fifth, if it has been decided that the interval represents a constant increment in the coarse-
grained view, we get a parameter to characterize the interval [j, k]: the amplitude tinc = k−j.
Besides, we can derive more parameters from the interval such as the acceleration rinc in the
request arrival, calculated from λ1, λ2 and tinc as rinc = λ2−λ1

tinc
.

Sixth, we repeat the third, fourth and fifth steps for all candidatej .

Finally, using the discovered tinc and derived rinc in each iteration, we get the values of
mtinc and mrinc as the mean of them (lines 18..23).

We perform the same steps to discover the periods of time where the workload is decreas-
ing. Using these periods, we will obtain mtdec and mrdec.

6.3. Modeling transient time between states 81

Algorithm 6.1 Parameter estimation

Require: Workload trace with the count of arrivals
Ensure: mtinc

1: (λ1,λ2)←MMPPfitting(count);
2: candidates← findCandidates(count, λ1);
3: intervals← ∅;
4: for all candidate ∈ candidates do
5: k← getFirstCrossingValue(count,candidate,λ1,λ2);
6: if countk¿λ2 then
7: intervals← addInterval(intervals, [candidate, k]);
8: end if
9: end for

10: L← chooseL(); tol← chooseTol();
11: for all interval ∈ intervals do
12: N ← calculateN(L, interval);
13: subtrace← makeCoarse(trace, interval, N);
14: if not isContinuousIncrement(subtrace, tol) then
15: intervals← discardInterval(intervals, interval);
16: end if
17: end for
18: numberOfIntervals← 0; incrT ime← 0;
19: for all interval ∈ intervals do
20: incrT ime← incrT ime+ interval.amplitude;
21: numberOfIntervals← numberOfIntervals+1;
22: end for
23: mtinc ←

incrT ime
numberOfIntervals ;

24: return mtinc

Note thatmrinc andmrdec are real positive values (IR+). So, we are assuming a constant
acceleration and deceleration in the workload during transient time. On the one hand, this
linear increment in the arrival rate is more accurate than the previously assumed immediate
increment. Besides, the linearity in the increment/decrement corresponds to the long-term
view of the increment, since we are still modeling the variability in the short-term. On the
other hand, we are approximating to be linear any workload increment/decrement between
states. Other possible representations of the workload increment/decrement are possible, but
the identification of the kind of increment in the coarse-grained view is more complicated
since we would also come into the field of curve fitting.

6.3.3 GSPN model for the transient time

The GSPNs in Figure 6.8 (a) and (b) model the transient time from normal to burst (increment
in the arrival rate of requests) and from burst to normal (decrement in the arrival rate of
requests), respectively.

82 6. Workload Modeling for Self-adaptive Software

GSPN model: from normal to burst A key point is that, during the transient period, the
arrival of requests are modeled as tokens created in place Parrivals at a variable rate. This rate
will be λ1+λinc ·#Pinc2 since transitions Tarrival1� and TarrivalInc provide the tokens3. The
former transition generates the workload of the normal state, λ1, while the latter transition
generates the increment of requests4.

A token in Pinc1 means that the system enters in the transient state so leaving the normal
one. Then, every σinc units of time a new token is set in Pinc2 to precisely generate the
increment of requests. When the number of tokens in Pinc2 is w1, it means that the transient
time has completed and the system enters in the bursty state P2 by firing transition tinc2.

Although not yet observed in the figure, transition t12 will fire when the normal arrival
rate of request in the system has finished, hence to start this transient period.

(a)

(b)

ω
1

Parrivals

λinc

t 12

P2Pinc1

TarrivalInc

t inc2
λ1

Tarrival1’

Tinc1

σinc

Pinc2

Parrivals

λdec

t 21

P1Pdec1

TarrivalDec

t dec2

Tdec

σdec

Pdec2

ω2

λ1
Tarrival1’

Figure 6.8: GSPNs: (a)increasing and (b)decreasing arrival rates of requests

3#Pi is the number of tokens in place Pi.
4It is worth noting that we are considering infinite server semantic for all transitions

6.4. Comprehensive workload model 83

Fitting GSPN parameters We use the four parameters computed in the previous subsec-
tion, λ1, λ2, mrinc and mtinc, to set the parameters of the GSPN, w1, λinc, σinc.

First, note that the modeling of transient times increases the state space for the analysis.
Fortunately, we can decide the amount of increment we allow. For the transient time that
models the change from normal to bursty, the state space grows linearly with parameter
w1 ≥ 1, and we can freely decide its value. The rationale is that w1 corresponds with the
amount of token variability in Pinc2. Then, observe that Pinc2 can have tangible markings
in the interval [0, w1 − 1], while markings where #Pinc2 = w1 are vanishing and do not
affect for the state space analysis. This allowed variability entails that we model w1 − 1
increments in the workload between λ1 and λ2. So, each token will increase the arrival rate
in inc = λ2−λ1

w1
units. This inc is the value of λinc. Finally, we calculate how fast are created

the tokens in Pinc2, this is, we calculate σinc of Tinc1. This transition fires w1 − 1 times for
each transient period, and it should fire in mtinc time units. So its firing rate σinc = w1−1

mtinc
.

Now it can be easily seen that we preserve the short term variability in the workload
increment since the arrival rate is still based on stochastic processes exponentially distributed.

GSPN model: from burst to normal The differences between this model, in Figure 6.8
(b), and the previous one are:

• t21 starts this transient state by setting w2 tokens in Pdec2. Again, w2 represents the
amount of complexity we can afford to model the decrementing period in the workload.
The size of the state space will be w2 + 1 times the state space of the workload model
without decrementing period.

• Tokens in Pdec2 decrease at rate σdec, when Pdec2 is empty the system enters in the
normal state P2. The σdec firing rate is w2

mtdec
.

• The transient state generates requests at rate

λ1 + λdec ·#Pdec2.

Where λdec is λ2−λ1

w1
.

6.4 Comprehensive workload model

So far we have proposed GSPN models separately, one model for the two characteristic states,
in Figure 6.5, and two for the transient times, the increment of the workload in Figure 6.8(a)
and the decrement in Figure 6.8(b). Our challenge now is to merge these three GSPN models
to get a single one that cares for burstiness and transient times as required by self-adaptive
systems.

Before merging the GSPNs we need to slightly modify the net of Figure 6.5: we remove
the arc from T12 to P2 and the arc from T21 to P1. The rationale behind this modification
is that we want to avoid the immediate change between normal, P1, and burst, P2, and vice
versa.

84 6. Workload Modeling for Self-adaptive Software

Parrivals

P1
P2

T
12

Tarrival1
Tarrival2

λ1
λ
2

σ12

ω
1λinc

Pinc1

TarrivalInc

t inc2

λ1

Tarrival1’

Tinc1
σinc

Pinc2

ω2

σ
21

T21

λ1
Tarrival1’TarrivalDec

t dec2

Pdec1
Tdec

σdec

λdec

Pdec2

GSPN for increasing wk

GSPN for decreasing wk

GSPN for normal and burst states

Figure 6.9: Complete workload model

The resulting GSPN is the one in Figure 6.9. We have used the composition operator
for GSPNs formally defined in [DF96]. The essence of the operator is easy to understand,
it overlaps the transitions (places) with the same name. For example, the place Parrivals
appears in the three nets, however in the resulting net it appears only once, having as input
arcs all the input arcs of the three original places.

The expert reader can argue that the GSPN in Figure 6.9 can be equivalent to a M-state
MMPP where M = 1 + w1 + w2. In that case, the parameters of that M-state MMPP with
the same characteristics as our workload model would be:

6.5. Experimental analysis 85

Σ =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

−σ11 σ12 0 ... 0

0 −σinc σinc 0 ... 0

...

0... 0 −σ22 σ22 0 ... 0

0... 0 −σdec σdec 0 ... 0

...

0... 0 −σdec σdec

σdec 0... 0 −σdec

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

Λ = (λ1, λ1 + λinc, ..., λ1 + (w1 − 1)λinc, λ2, λ1 + w2λdec, ..., λ1 + λdec)

Then, a question arise: could that M-state MMPP be directly obtained from the workload
trace using the technique presented in Section 6.2 for two-state MMPP?

The answer is yes. Nevertheless, there are some restrictive challenges to obtain the char-
acterizing values of an M-state MMPP. These are: the algorithm to fit parameters of an M-
state MMPP is much more time consuming and the estimation of its parameters are much
more prone to inaccuracies. Moreover the current techniques to fit MMPP parameters do not
directly deal with our problem (gaining accuracy in the transient times models).

6.5 Experimental analysis

In this section, we illustrate the results obtained in our experimentation. To this end we
have considered a very simple system with different workload models: first MMPPs and
second our GSPN model, that includes the transient time between workload states. A third
experiment is used as a benchmark for comparing the accuracy of the obtained results, it is a
system simulation having a real workload trace, the one in Figure 6.4.

The system we use in this experimentation is a very simple software made of only one
activity that requires on average 3ms of processing time 5. There is a single processor exe-
cuting a maximum of ten concurrent requests, queueing and serving them following a FIFO
policy. Requests above ten are rejected.

We assume that requirements to architect the system are:

• R1- availability: at least 99% of requests must be served, and

• R2- performance: the mean response time should be lower than 1 second.

5To be able to compare approaches without including more variables that can distort results, we assume that the
mentioned processing time is exponentially distributed with mean 3ms

86 6. Workload Modeling for Self-adaptive Software

Note that the response time is not a critical requirement, since the maximum length of
queue of requests to be served is nine, and they are served in a mean of 3ms. On the contrary,
requirement R1 is the critical one.

When we analyzed the system considering a workload model without burstiness (i.e.,
taking into account the mean inter-arrival time derived from the real trace), the requirements
were satisfied. On the contrary, when taking into account the arrival in bursts, the analysis
of the system showed that R1 cannot be guaranteed. A possible solution passes through the
addition of a second processing resource. Now, having two processing resources, the system
is able to satisfy both R1 and R2 also during bursty periods. However, the second processing
resource has been added just to allow the requirements satisfaction during the periods of
burstiness, which represents the worst-case scenario for the system. So, during the normal
arrival rate periods, there is a waste of resources.

We can use the model proposed in Section 6.3 to take into account the workload variabil-
ity. To this end, we consider a system enhanced with a monitoring component. The monitor
is a passive observer that measures the system workload. Then, the monitor notifies to a sepa-
rate component, which acts as a controller, when the workload is changing and when to add a
second processing resource. In the same way, it also decides to switch off one of the process-
ing resources when the workload decreases. So, the system deployment is no longer static
but it is dynamically adaptable. It can be seen that we are applying architectural concepts, the
monitor and controller are acting as the sensor and adaptation manager of the architecture
presented in Chapter 2.

We have set the following parameters for the self-adaptive system:

• The maximum arrival rate of requests that can be served by only one processing re-
source is the 80% of its maximum capacity. In other words, the controller decides to
add a new processing resource when the workload goes above 1

3ms ·0.8 ≈ 266 requests
per second.

• The maximum arrival rate of requests that can be served using both processing re-
sources is 40 requests per second. When the workload rate is under this value, the
second processing resource is shut down.

• Booting and shutting down times of the processing resources is one minute.

In the following, we explain the set-up of each experiment and the obtained results. After,
we compare and discuss results.

MMPP workload model As MMPP workload we used the one already calculated in Sec-
tion 6.2. We composed the MMPP model, in GSPN terms, with the GSPN that models the
behavior of the described system. We analyzed the resulting GSPN and obtained the follow-
ing results:

The percentage of requests rejected is 1.43%, so the availability is 98.56%; and the mean
response time is 5.3ms.

Then, R2 is satisfied while R1 cannot be guaranteed.

6.5. Experimental analysis 87

MMPP with transient times workload model Using the MMPP parameters already cal-
culated in Section 6.2 we applied the process described in Section 6.3 to identify in the trace
in Figure 6.4 periods of coarse-grained-constantly-increasing workload.

The parameters L and tol have been set to 5 minutes and to 0.2, respectively. Then, the
workload parameters mtinc, mrinc, mtdec and mrdec are:

mtinc = 5192s mrinc = 0.58requests · s−2

mtdec = 3770s mrdec = −0.8081requests · s−2

Following the procedure described in Section 6.3 we defined the structure of the GSPN
models for the transient times. We then used the previous results as parameters of these GSPN
models.

To complete the model definition, we decided the amount of affordable increment in the
state space as w1 = 10, w2 = 9. Using these values, the remaining GSPNs parameters
w1, λinc, σinc, w2, λdec and σdec have been derived.

The GSPN modeling the workload has been obtained as described in Section 6.4 by com-
posing the MMPP part with the GSPN derived for the transient times. Next, we composed
the GSPN workload model with the GSPN that represents the behavior of the system. We
analyzed this GSPN and we obtained the following results:

The percentage of requests rejected is 0.56%, so the availability is 99.44%; and the mean
response time is 5ms.

Hence, R1 and R2 are satisfied.

Real workload trace execution For validation purpose, we have implemented a simulator
of the system described in the example. We run the simulator and we injected the requests
following the real workload trace.

We have obtained the following results:
The percentage of requests rejected is 0.05%, so the availability is 99.95%; and the mean

response time is 3.7ms.
With the simulation and the real workload both requirements are satisfied.

MMPP with Real

MMPP transient times trace

Availability 98.56% 99.44% 99.95%

Performance 5.3ms 5ms 3.7ms

Table 6.1: Evaluation results with different input workload

6.5.1 Results discussion

Looking at Table 6.1 we can observe that the results obtained with both the MMPP model
and MMPP with explicit transient time workload model are pessimistic with respect to the

88 6. Workload Modeling for Self-adaptive Software

real ones. Indeed, the analysis of the models produced results showing lower availability and
higher average response time with respect to the results obtained by the system simulation
using the real workload trace. However, the results obtained with the MMPP including the
transient time model are better than the ones obtained with the simple MMPP and closer to
the system simulation results.

Actually, in this simple example we can see that the expected rejection probability of
requests from model analysis with MMPP is 1.43

0.05 = 28.6 times higher than the calculated by
simulating the real trace. Adding the transient times to the MMPP model, we have reduced
this error to be 0.56

0.05 = 11.2 times higher; so, we have brought the result a 60% closer to
the real one. Besides, the conclusion from the analysis of the model with MMPP workload
would be that the proposed adaptive solution for the system does not satisfy the availability
requirement. This decision would be wrong because the actual system satisfies it.

Regarding the mean response time, adding the transient times to the MMPP model, we
have just reduced the error of the results from being 1.43 times the real ones to be 1.35 times.

Note that, although all the experiments regarding requirement R1 seem to produce very
similar results, this is not the case since availability is used to be measured as the “number
of nines”. In other words, if we compare a system with 99% of availability and another
one with 99.9%, the latter is not just 0.9% more available than the first one but it is ten times
more available. In our experiments, the availability obtained with the MMPP workload model
without transient times resulted 28.6 times lower than the availability of the system with the
real workload. Adding the transient time between states to the workload model we have been
able to reduce the error of around the 60%, of course this is still not enough to guarantee
results very close to the real ones.

6.6 Conclusion

Modern techniques to model high variable workloads and burstiness are based on markovian
models such as Markov arrival processes and Markov-modulated Poisson processes. They
offer a powerful theory to model workload. In this chapter, we have identified a need for the
accurate workload modeling for self-adaptive systems. This need refers to the modeling of
the transient time between workload states in the presence of burstiness.

This transient time is not modeled in MMPPs, because they focus on modeling stable
workload states. Although these transient times may not be important for static systems or
workloads without burstiness characteristic, they are crucial when analyzing bursty worklod-
aware self-adaptive systems. To solve this challenge we have built on previous results on
MMPP fitting and we have proposed a model based on Petri net taking into account the ar-
rivals during the transient time between states. The obtained model has then been integrated
in a Petri net describing the MMPP, so allowing a more complete representation of the work-
load.

A first experimentation comparing the results obtained with the proposed model and the
classical MMPP models tested against a real trace workload, showed an increment in the
analysis accuracy when transient times are taken into account.

Besides, from our experimentation we have shown that we have reduced the errors in
the analysis results; although there is still a gap between model analysis results and real

6.7. Related work 89

simulation ones.
A direction that deserves further investigation is the representation of the workload tran-

sient times when there are more than two stable states. In these cases, the MMPP that models
the stable states has more than two states. Since the addition of the transient time models
increases the state space of the model to analyze, it may not be appropriate to represent the
incrementing and decrementing transient times between any two states. Contrarily, we should
search which state transitions deserve attention to model their transient times and which ones
do not deserve it.

6.7 Related work

The parameter fitting of Markovian models such as MMPPs and MAPs is an extensive re-
search field. For example, works [HL86, HT02, OD09, Gus91, Ryd96, CZS10, CMCS12]
propose MAP and MMPP parameter fitting techiques starting from traffic traces. Some of
these fitting works also deal with the modeling of burstiness characteristic and use the index
of dispersion as burstiness estimator.

This chapter builds on the results obtained in [Gus91, CMCS12] to choose the estimators
of the workload trace and fit a two-sate MMPP that models the same characteristics as the
workload trace for these estimators. However, to the best of our knowledge, our work is
the first one modeling the transient times between workload states and using them when
evaluating workload-aware self-adaptive systems.

90 6. Workload Modeling for Self-adaptive Software

Chapter 7

Measuring and Correlating
System Adaptability

Previous chapters dealt with system properties that can be quantified: performance and en-
ergy consumption. However, adaptability property was considered as a purely qualitative
property: a system can be non-adaptive or self-adaptive; and usually only these two states are
distinguished. Once a system is classified as self-adaptive there is not any manner to compare
its adaptability with the adaptability of other systems; it is not possible to rank them attending
to adaptability. The goal of our research in this chapter is to overcome this limitation and to
enable comparison of software systems regarding their adaptability.

7.1 Problem statement

Adaptability is a property that can be evaluated at different stages of the application
development, e.g., at architectural level. Indeed, in recent decades, software architec-
ture has emerged as an appropriate level for dealing with software behavior and qualities
[CKK01, SW02b, BCK05] and several efforts have been devoted to the definition of meth-
ods and tools able to facilitate the actual system development and to evaluate quality at the
architectural level (see, for example, [BCK05, BDIS04, DN02, SW02b]).

In this chapter, we propose the definition of metrics allowing the description and the
evaluation of the system adaptability at the architectural level. We believe that the existence
of metrics able to quantify (even if in a simple way) the system adaptability could provide a
key capability for the development of systems that can adapt when necessary. These metrics
can allow the comparison of different possible architectures with respect to their potential
for adaptation. Besides, we argue the importance of defining a relationship between the
adaptability and the quality properties of the system. Our metrics can then be used to drive
the system adaptability in order to meet the overall QoS requirements. Moreover, the metric
definition can be seen as a first step towards future research on formal approaches for the
evaluation of system adaptation.

91

92 7. Measuring and Correlating System Adaptability

The idea of defining metrics for quantifying software adaptability is not new. This idea
was first proposed in [SC01] and then refined in [RM09]. Our approach is built on these
previous works and improve them by presenting a wider set of metrics and by defining the
aforementioned relationship between them and the quality requirements.

Indeed, adaptability can influence software qualities such as performance, reliability or
maintainability and in the worst case, improving the adaptability of a system could decrease
other qualities. Finding the best balance between different, possibly conflicting quality re-
quirements that a system has to meet and its adaptability is an ambitious and challenging
goal that this research pursues. As a first step towards this goal, in this chapter we present
a method for evaluating the relationships between the system adaptability and two qualities,
concretely availability and cost.

Far from being “a solution for every situation” these metrics and relationships can enable
software architects to discover suitable architectures leading to quality requirement satisfac-
tion. The obtained adaptability values of each requirement can then be combined to evaluate
the various trade-offs and decide whether there exists an architecture that fulfills all client
requirements. The required input to perform these tasks concerns the execution context, in
terms of existing or planned software resources, and their quality attributes.

The evaluation of architecture alternatives is executed when the software architect should
take into account, for example, the introduction of new clients, or changes either in already
known clients requirements or in the context (in terms of its existing elements or the quality
attributes of an element) possibly preventing the clients satisfaction. After the generation
of the knowledge about a suitable set of architecture solutions that fulfill the requirements,
software architects will choose one solution based either on client desires or on any own-
system preference.

The rest of the chapter is organized as follows: Section 7.2 describes the proposed metrics
for quantifying the adaptability of a software. Section 7.3 investigates relationships between
the adaptability metrics and extra functional requirements. We apply this approach to a sim-
ple example in Section 7.4. Section 7.5 presents a trade-off analysis among different extra
functional requirements. Sections 7.6 and 7.7 complete the chapter by explaining our con-
clusions and describing the related works.

7.2 Architectural adaptability quantification

This section presents the definition of some metrics for quantifying the adaptability of soft-
ware systems at architectural level. The goal of these metrics is to give a means for evaluating
the potential of the system to adapt rather than a description of how the the system will adapt.

7.2.1 Architectural assumptions

For the metrics definition we refer to an architectural description formed by components
(hereafter denoted as software unit) and connectors. We will use the UML component dia-
gram to represent them, see Figure 7.1. By software unit we mean for example components,
in the context of component-based software engineering, or Internet services, probably pro-
vided by third-parties, in the context of SOA. The connectors in our description represent the

7.2. Architectural adaptability quantification 93

relationships between the different software units and indicate, for example, that a software
unit requiring a service is connected to other software units offering the service. By software
unit of interest we mean a software unit chosen by the architect, among all available in the
market, as candidate to make up the system.

In the example, the system offers functionality f1 exclusively through SU11, which in
turn needs f2 (offered by SU21 and SU22) and f3 (by SU31, SU32 and SU33). Therefore,
SU1= {SU11}, SU2= {SU21, SU22} and SU3= {SU31, SU32, SU33}. The units of interest
are in grey, E1= {SU11}, E2= {SU21} and E3= {SU31,SU32}, then the only adaptable
functionality is f3, since there is not any choice for modifying f1 and f2 provider.

SU11

<<delegates>>

C
O

T
S

f1

f3

SU21

SU22f2

f1
SU31

SU32

T
h

ir
d

 p
a
rt

y
 s

e
rv

ic
e
s

f3

in−house component

SU33

Figure 7.1: System example

In the component diagram we identify a functionality with a service. The interface for
an offered service is represented by a ball, while the required one by a semicircle, see Fig-
ure 7.2(a). When we need to combine several interfaces for the same service (as in Fig-
ure 7.2(b)), we simplify as in Figure 7.2(c), which means that both, SU11 and SU12, need f3,
which is offered either by SU31 or SU32 or SU33. We do not make assumptions about which
software unit is actually invoked and how.

SU11

SU12 SU32

SU33

SU31
f1

f1

f3

f3

f3

f3

f3

SU31

SU33

SU11

SU12

f1 f3
f1

f1

f3

f3

f3

f3

SU11 SU31

SU32

SU33

SU12 SU32

(a) (b) (c)

f3

Figure 7.2: How to interpret interfaces

We will also assume: a) a system requiring n different functionalities, fi|i = {1..n}; b)
the existence of n sets of software units, SUi, each set offering an fi. Then, for each fi, an
architect can select a subset of software units of interest, Ei ⊆ SUi

1.

1Note that to create the architecture of a non adaptable functionality fi, it is enough to select one software unit
that offers it; therefore |Ei| = 1.

94 7. Measuring and Correlating System Adaptability

For the sake of simplicity, we avoid to represent software entities devoted to manage the
infrastructure of the self-adaptive system2. In fact, we consider them as aggregated to the
functional software units, i.e., a new software unit is assumed to add to the infrastructure a
new proportional complexity for its managing.

It is well-known that there exist software units that expose mechanisms to manage their
adaptability. For example, a software unit devoted to perform heavy graphics computations
can offer on-demand settings to set the accuracy of the computation. In this case, we assume
each on-demand setting as a different software unit providing the target functionality. Nat-
urally, we suppose a discrete and finite number of settings. Figure 7.3 depicts an example
for an hypothetical software unit that exposes two settings, i.e., two choices for the system to
adapt f1.

SU1

= {SU1, SU2}f1SU

f1

SU

SU2

f1_normal

f1

f1_accurate

Figure 7.3: Adaptable software unit

7.2.2 Adaptability metrics

Absolute functionality adaptability index (AFAI) represents the number of software units
of interest for a given funtionality.

AFAI ∈ INn | AFAIi = |Ei|

Inspired by the element adaptability index in [SC01], here a natural number, instead of a
boolean one (0 no adaptable, 1 adaptable), quantifies how much adaptable the functionality
is.

Referring to the example in Figure 7.1, we observe that AFAI = [1, 1, 2].

Relative functionality adaptability index (RFAI) represents, for a given functionality,
the number of software units of interest w.r.t. the number of units actually offering such
functionality.

RFAI ∈ Qn | RFAIi =
|Ei|

|SUi|

2Those necessary to: make requests compliant with the actual interfaces; monitor the behavior of the functional
software units, and; develop the logic that manages the adaptation.

7.2. Architectural adaptability quantification 95

It describes how each functionality stresses its adaptability choices and it informs how
much more adaptable the functionality could be. RFAI vector values near to one mean that
the system is using almost all the adaptability the market can offer.

Referring to the example we can observe that RFAI = [1, 0.5, 0.6̇].

Absolute software units index (ASUI) represents the number of software units of inter-
est for the system.

ASUI ∈ IN | ASUI =
n

Σ
i=1

AFAIi

This index offers an overall view about the size of the system, and an insight into the
effort the designer needs to invest to manage the whole architecture.

Referring to the example in Figure 7.1, ASUI = 1 + 1 + 2 = 4.

Mean functionality adaptability index (MFAI) represents the mean number of software
units of interest per functionality.

MFAI ∈ Q | MFAI =
ASUI

n

This metric offers insights into the mean size and effort needed to manage each function-
ality.

Referring to the example in Figure 7.1, MFAI = 4
3 = 1.3̇.

Mean of relative functionality adaptability index (MRFAI) represents the mean of
RFAI .

MRFAI ∈ Q{0..1} | MRFAI =
Σni=1RFAIi

n

This index informs architecture managers about the mean degree of utilization of the
potential units for each functionality. A value close to one means that the current architecture
uses almost all software units in the market. A value close to zero means that: a) the system
can be much more adaptable (adding units not yet in the design), b) very different architecture
alternatives with the same adaptability metric values can be created.

Referring to the example, MRFAI = 1+0.5+0.6̇
3 = 0.72̇.

Absolute system adaptability index (ASAI) represents the number of software units of
interest w.r.t. the number of available units to architect the system.

ASAI ∈ Q | ASAI =
ASUI

Σni=1 |SUi|

Referring to the example in Figure 7.1, ASAI = 4
1+2+3 = 0.6̇.

For ASAI, a value close to one means that the market offers few choices to increase the
system adaptability. When a new software unit is bounded to the architecture, ASAI increases
in a constant value (1/Σni=1 |SUi|) regardless of the number of units already considered for
the same functionality. Compared to MRFAI, ASAI devises a global view of the system size
w.r.t. its maximum reachable size, but does not foretell the amount of different architectural

96 7. Measuring and Correlating System Adaptability

alternatives the system could reach. To clarify the difference, consider an architecture which
includes all available software units for all functionalities but one, however such functionality
is realized by a large number of software units while only a few are considered. In such
case, ASAI is not close to one (a large number of units are not used), however MRFAI is
close to one (all required functionalities, but one, are architected considering their maximum
adaptability).

Name Range Value Example Fig 7.1

AFAI INn {|Ei|} [1, 1, 2]

MFAI Q+
ASUI
n 1.3̇

RFAI Qn ∈ {0..1} { |Ei|
|SUi|
} [1, 0.5, 0.6̇]

MRFAI Q ∈ {0..1} Σ
n
i=1 RFAIi

n 0.72̇

ASUI IN Σni=1AFAIi 4

ASAI Q ∈ {0..1} ASUI
Σn

i=1
|SUi|

0.6̇

Table 7.1: Summary of the metrics

Table 7.1 brings together the six proposed metrics together with the metric values for the
example system in Figure 7.1.

7.3 Relating adaptability to a system quality

Bass et al. [BCK05] defend that within complex systems, quality attributes can never be
achieved in isolation, the achievement of anyone will have an effect, sometimes positive and
sometimes negative, on the achievement of others. Adaptability is not an exception, it can
influence other qualities such as performance, reliability or maintainability. An increment in
the adaptability can cause an improvement in some of them, but also a damage. So, having
measured the adaptability of a system, using some of the metrics in Section 7.2, we want
to investigate ways to relate these values to measured values for other qualities. This is
important since this relation can assess trade-offs among adaptability and the other qualities.
Moreover, from this relation we can study how to obtain thresholds of adaptability for the
system w.r.t. quality requirements.

For the sake of simplicity let us start focussing the discussion on a given requirement for
a given system. A table to classify requirements can make our proposal easier to be presented
(see Table 7.2). A first dimension of the table separates software qualities, so, for a given
system:

• some qualities increase their measured values when the adaptability increases their
owns.

• some qualities decrease their measured values when the adaptability increases their
owns.

7.3. Relating adaptability to a system quality 97

• some qualities do not depend on adaptability variations. We are not interested in this
group since we are focussed on the influence of adaptability on the requirement.

A second dimension in the table can consider how the requirement is formulated:

• as higher than; e.g., “system availability shall be higher than ...”

• as lower than; e.g., “system mean response time shall be lower than...”

Requirement formulated as

When adaptability increases Higher than Lower than

the quality value increases Helps Hurts

the quality value decreases Hurts Helps

the quality is not affected No effect

Table 7.2: Effect of adaptability on a quality requirement

Each region of interest in Table 7.2 has been labelled as Helps or Hurts to indicate the
effect of the adaptability on the quality requirement. So we read Table 7.2 as “When adapt-
ability increases, if the quality increases, it helps the fulfillment of the requirements of this
quality formulated as higher than”. We do not intend to support the idea that a certain quality
always behaves the same. On the contrary, this can be only assessed after analysis, when the
evolution of the measures of the quality regarding the values of the adaptability is known.
For example, given a requirement, say “response time shall be lower than 3 sec.”, we first
study in the target system whether the response time increases when the selected adaptability
metric increases. In such case, the requirement belongs to the first row, second column, since
“when adaptability increases, the response time increases and it hurts the fulfillment of the
requirement which has been formulated as lower than”.

However, for another system, it may happen that this requirement can be helped by incre-
ments in the adaptability. Even more, for the same system, a requirement could be in Helps
or Hurts depending on the system operational profile. For example, consider a system that
balances its workload. For high workload, the response time will decrease when the system
adapts and balances its load; then adaptability Helps response time. Nevertheless, for low
workloads the response time will remain about the same whether the system balances the
load or not, but balancing operations will add execution overhead; so the execution time will
be higher and response time can belong to Hurts. From these examples, we conclude that the
effect of adaptability upon a requirement cannot be allocated in a concrete region before to
carry out an analysis.

If a linear relation between adaptability and a quality existed, then we could get a graph
like the one in Figures 7.4(a) and (b) (for the first and the second rows in Table 7.2, respec-
tively). However, the software units and their connections may have a more profound effect
into the quality of the system than the adaptability values. The extreme case for this affirma-
tion is depicted in Figure 7.4(c), where software units have all effect into the quality and the

7.4. Example 101

Table 7.3.

Web application example Generic Notation

Student registration f1

Student requirement satisfaction f2

Send email f3

Bank payment f4

Presentation and notification component SU11

Presentation and notification + application logic component SU12

Application logic 1 SU21

Application logic 2 SU22

Third-party email provider 1 SU31

Third-party email provider 2 SU32

Local email provider SU33

Bank 1 payment service SU41

Bank 2 payment service SU42

Table 7.3: Notations relationship

Note that Figure 7.7 slightly increments Figure 7.1 example by adding functionality f4
and software units SU12, SU41 and SU42. We assume that the quality requirements to
fulfill are the system availability shall be higher than 0.9, and the system cost shall be lower
than 30 monetary units. Availability means “readiness for correct service” [ALRL04], while
the cost property simply describes the price of the set of software units that will make up
the system. For the rest of the example, we differentiate software units as terminals and
non-terminals. Terminals are those not needing other functionalities (e.g., SU31 or SU32),
while non-terminals do need (e.g., SU11 or SU12). Note that in the example some software
units offering the same functionality are not completely replaceable. For example, SU11
cannot completely replace SU12, since the former needs f2 but not f4, and the later needs the
opposite.

System operational profile In the components diagram we depict the quantitative infor-
mation needed to compute the system availability and cost. For simplicity, this information
appears inside the components and in the contiguous table. However a more formal approach,
like the MARTE [Obj05] standard profile, could be used.

• P
fj
i means for a software unit i, the probability of requiring functionality j.

• N
fj
i means for a software unit i, the mean number of requests to functionality j.

102 7. Measuring and Correlating System Adaptability

<<delegates>>

P

<<delegates>>

f3

f4

cost=4
availability=0.92

cost=4
availability=0.98

f3 f2

availability=0.9
cost=7
availability=0.95

cost=8
availability=0.85

cost=2
availability=0.93

cost=1
availability=0.95

cost=1
availability=0.9

cost=4
availability=0.95

SU31 SU32

SU12 SU11

SU33 SU21 SU22

SU42SU41

f1

cost=4

X=SU22X=SU21

,

, 2

1

0.9 0.1 ,,

,

0.9 ,

X=SU12X=SU11

0.8

1.0 0.5 2

3 5 1

x

f3
N

f4

,x

f3
P

,
f2

x x
f2

NP

Nx,x

f4

Figure 7.7: The architecture of a complex -w.r.t. adaptability- system

• The availability of a software unit is a measure obtained from the third-party provider
or monitoring the software unit.

• The cost of a software unit is the value we pay to a third-party provider for using it.

P
fj
i and N

fj
i could be combined to form the “mean number of requests per execution”,

however we prefer to keep them separated for the sake of system availability computation.
For example, we could need to call a software unit only for the 20% of our executions, but
we have to call it five times per execution; for another software unit, it may happen that we
have to invoke it once for each execution. In both cases the “mean number of requests” is
one. However, in the latter case all the system executions are prone to fail depending on the
availability of the software unit, while in the former, the remaining 80% of executions are
safe.

7.4.1 Computation of system qualities

Availability computation.

Definition 7.1. The availability of a terminal software unit is the one annotated in the dia-
gram. E.g., Av(SU31) = SU31 .availability = 0.9.

7.4. Example 103

Definition 7.2. The availability of a functionality fi is:

Av(fi) = 1−
�

suij∈Ei

(1−Av(suij)) (7.1)

A functionality is available if any of the components in Ei (as defined in Section 7.2) is
available.

For example, if E3 = {SU31 ,SU32}, then Av(f3) = 1− (1− 0.9) · (1− 0.95) = 0.995
(note that all components providing f3 are terminals).

When Ei includes non-terminals, we previously compute the availability of the non-
terminals.

Definition 7.3. The availability of a non-terminal is:

Av(suij) = suij .availability ·
�

fk∈RF (suij)

((1− P fkij) + P fkij ·Av(fk)
N

fk
ij)

where RF (suij) is the set of functionalities suij requires.

For example, RF (SU12) = {f3, f4}, if we consider E3 = {SU31 ,SU32} and E4 =
{SU42}. Then, Av(f4) = 0.98 and Av(SU12) = 0.85 · ((0.1 + 0.9 · 0.983) · (0.5 + 0.5 ·
0.9952)) = 0.801.

Definition 7.4. The system availability is recursively computed from the main functionality
using equation (7.1).

In our example, if we suppose the architecture made of SU12, SU31, SU32 and SU41,
then the result is: Av(f1) = 1− (1−Av(SU12)) = 1− (1− 0.801) = 0.801.

Cost computation.

Definition 7.5. The cost of the system is:

Cost =
�

i

�

cij∈Ei

cij .cost

For example, the cost of a system made of SU11, SU21, SU31, SU32 is 2+1+4+7 = 14
monetary units.

The calculation of the availability is a simple but interesting method we propose in this
example. However, for the calculation of the cost, we recognize it to be simplistic3, yet we
consider that the focus of the work is on trade-offs between qualities.

3We have not considered deployment costs, developed cost or distinguished among advanced payment manners
to service providers such as payment for execution requests, payment for temporal contract or payment for a COTS
component acquisition.

104 7. Measuring and Correlating System Adaptability

(a) (b)

Figure 7.8: (a) Relation among ASAI and availability (b) Relation among ASAI and cost

7.4.2 Relation of adaptability to availability and cost

Applying to our example the models of computation in Section 7.4.1 we discovered that the
availability requirement belongs to Helps since the availability increases when the adaptabil-
ity does and it is required a value higher than a given threshold (0.9). On the other hand, the
cost requirement belongs to Hurts, since the cost increases when the adaptability does and
the requirement is lower than.

From the metrics presented in Section 7.2 we have used ASAI (the number of software
units that compose the system w.r.t. the number of the software units that could be used).
Following the method presented in Section 7.3 we created the corresponding graphs, we
started considering the architecture made of only one unit A0 = 1. Moreover, since we are
not assuming a maximum adaptability, then AdaptMax = 1.

It is worth noticing that although any metric in Section 7.2 can be used for this study,
we have chosen one of the simplest for the sake of clarity. For example, vectorial metrics
prevented us from showing the results in graphical form, since there would be necessary
n+ 1 dimensions to depict the relation, while scalar ones are represented in 2D graphs.

Graph to relate adaptability and availability

For A0 = 1, the selected software unit should be the one providing the main functionality f1,
i.e., SU11 or SU12. SU11 shows an availability equals to 0, since it needs to request f3 with
probability 1, but f3 is not available at present. SU12, instead, shows an availability equals
to 0.0425.

Figure 7.8(a) depicts the lower and upper bounds of the system availability for each value
of ASAI. The graph shows the existence of solutions satisfying the requirement, i.e., archi-
tectures with availability higher than 0.9. The first suitable solution is for an ASAI equals to
5
9 software units, then Adapt− = 5

9 . In this case the availability is 0.954 and the architecture
is made of E1 = {SU11, SU12}, E2 = {SU22}, E3 = {SU32} and E4 = {SU42}. For
informative purposes we computed all the metrics for this solution, see second column in
Table 7.4.

7.4. Example 105

Regarding Adapt+, the graph clearly shows that all architectures with ASAI > 7
9 fulfill

the required availability4. For ASAI = 8
9 , the lower bound (worst architectural alternative)

offers an availability of 0.9271. In such case, the system is made of E1 = {SU11}, E2 =
{SU21, SU22}, E3 = {SU31, SU32, SU33}, and E4 = {SU41, SU42}. Third column in
Table 7.4 shows the other metric values for this architecture.

Graph to relate adaptability and cost

We apply again the method in Section 7.3 to compute in this case the cost of the system for
each value of ASAI, from A0 = 1

9 to AdaptMax = 1. Results in Figure 7.8(b) show that
it is possible to find solutions satisfying the requirement up to an ASAI = 8

9 . Moreover, all
architectures with ASAI lower than 7

9 will satisfy the requirement. Again, for informative
purposes, we computed all the metrics for the values of Adapt− and Adapt+, they appear in
Table 7.4.

n = 4 |SU1| = 2 |SU2| = 2 |SU3| = 3 |SU4| = 2

Availability Cost

Adapt− Adapt+ Adapt− Adapt+

AFAI [2, 1, 1, 1] [1, 2, 3, 2] [2, 1, 2, 1] [1, 2, 3, 2]

RFAI [1, 12 ,
1
3 ,

1
2] [12 , 1, 1, 1] [1, 12 ,

2
3 ,

1
2] [12 , 1, 1, 1]

ASUI 5 8 6 8

MFAI 1.25 2 1.5 2

MRSAI 0.583̇ 0.875 0.6̇ 0.875

ASAI 0.5̇ 0.8̇ 0.6̇ 0.8̇

Table 7.4: Metric values of the architectures in Figure 7.8 for bounding values QAdapt−U and

QAdapt+L

Adaptability, availability and cost

Putting together both studies, we can foretell that:

• No suitable architecture can be found for an ASAI < 5
9 or an ASAI = 1, since either

the requirement of availability or the one of cost cannot be satisfied.

• There are suitable architectures for values of ASAI = 5
9 , ASAI = 6

9 and ASAI = 8
9 .

• There can exist suitable architectures for ASAI = 7
9 .

4We remark that, following indications in Section 7.3, the non-suitable architectural alternatives have been dis-
carded.

106 7. Measuring and Correlating System Adaptability

7.5 Relating quality requirements

We have hitherto proposed an approach to relate system adaptability to availability and cost.
To make this approach easily applicable our goal is to define an automated framework that
effectively assists to architect a system that meets several quality requirements within an
adaptability threshold. To this end we formalize below these relationships.

Definition 7.6. Let us define Reqs as the set of the requirements of the system. RHelps and
RHurts as the requirements that respectively belong to Helps and Hurts as in Table 7.2.
Then, Reqs = RHelps ∪RHurts.

Definition 7.7. ∀req ∈ RHelps, we define MAdapt− = max(Adapt−) and MAdapt+ =
max(Adapt+) and ∀req ∈ RHurts, we define mAdapt− = min(Adapt−) and
mAdapt+ = min(Adapt+).

Definition 7.8. We define ADAPT (arch) as the adaptability value of architecture arch,
while SAT (arch, req) means that arch satisfies req.

Proposition 7.9. When

(MAdapt− ≤ mAdapt−) ∨ (MAdapt+ ≤ mAdapt+) (7.2)

then ∀Ai ∈ [MAdapt−,mAdapt−] ∨ [MAdapt+,mAdapt+], ∃arch | ADAPT (arch) =
Ai ∧ ∀req ∈ Reqs, SAT (arch, req).

Proposition 7.10. When

(MAdapt− ≤ mAdapt−) ∧ (MAdapt+ ≤ mAdapt+) (7.3)

then (∀Ai ∈ [MAdapt−,mAdapt−] ∩ [MAdapt+,mAdapt+]) ∧
(∀arch | ADAPT (arch) = Ai) −→ ∀req ∈ Reqs, SAT (arch, req).

Obviously, (7.2) and (7.3) are sufficient conditions, when they do not hold, we can at least
assess whether it is impossible to fulfill the requirements. This is guaranteed by proposi-
tion 7.11.

Proposition 7.11. When

mAdapt+ < MAdapt− (7.4)

then �arch | ∀req ∈ Reqs, SAT (arch, req).

Otherwise, if neither (7.2) nor (7.4) hold, then it cannot be proved the existence or absence
of architectures that satisfy the requirements. However, if such solutions exist, then their
adaptability values must belong to the interval:

[MAdapt−,mAdapt+] ∩ [mAdapt−,MAdapt+] (7.5)

Proof. Section 7.5.1 sketches the demonstrations of 7.9, 7.10 and 7.11 graphically.

7.6. Conclusion 107

7.5.1 Graphical representation

We use the location in the graph of MAdapt−, MAdapt+, mAdapt− and mAdapt+ to
show the propositions above. So, they can be arranged up to 4! different permutations. How-
ever, since by definition MAdapt− ≤ MAdapt+ and mAdapt− ≤ mAdapt+, then
the amount of permutations is reduced to 4!

2!2! = 6. Figure 7.9 depicts these six possible
scenarios. Suitable architectures appear only in scenarios (a),(b),(c) and (e). For the sake of
simplicity, we have considered |RHelps| = |RHurts| = 1. The symbols in the figure have to
be interpreted as follows:

• The symbol ‘∃’ represents a region where condition (7.2) holds, then ensuring the ex-
istence of at least one architectural solution for each adaptability value in such interval.

• The symbol ‘∀’ represents a region where condition (7.3) holds, then ensuring that all
architectures within the region satisfy all requirements.

• The symbol ‘�’ represents a region where none architecture satisfies all requirements.
For example, in Figure 7.9(f) the � symbol covers the entire region because here for-
mula (7.4) holds.

• The symbol represents a region where condition (7.5) holds, then it is not possible
to prove the existence or absence of architectures satisfying the requirements.

7.6 Conclusion

In this chapter, we have presented a set of metrics helpful to quantify and evaluate the adapt-
ability of software systems at the architectural level. Besides, we have defined a relationship
between these metrics and the quality requirements of the system. The approach can be
used during design time to help software architects in the generation of a suitable adaptable
architecture.

One of the aims related to the definition of metrics is the possibility to have some means
for the evaluation and comparison of different systems in terms of adaptability and quality
requirements. A trade-off analysis in this case should be carried out in order to take the
decision that better fulfills the various stakeholders needs.

The approach can be improved along several directions. We are extending the set of
metrics and applying them to a great many case studies to guarantee their usefulness also from
a statistical viewpoint. Specifically, we are working towards the inclusion of aspects such
as the “criticality” or “importance” of the offered functionalities, adding for example, some
reasonable weights to our metrics and defining new metrics that include this concept. We plan
also to relax the constraint requiring that each software unit offers a single functionality. This
is not a trivial step since it requires to take into account also the interdependencies between the
different offered functionalities and their quality requirements and it would probably entail a
definition of new adaptability metrics.

7.7. Related work 109

ware architects to compare adaptive system designs with the system design without adapt-
ability.

Finally, the development of an automatic tool that implements the approach would bring
several benefits. One of these benefits is that this tool would allow the integration of the
approach at runtime -when human intervention is not possible-. Autonomic systems would
benefit from the integration at runtime since they can need to re-architect themselves, and
this approach would offer a set of suitable adaptability ranges to guide the re-architecting
process.

7.7 Related work

The set of metrics we offer in this chapter is strongly inspired by the one in [SC01], work in
which authors also give a set of metrics for adaptability applicable at architectural level. Our
extension aims at supporting a higher degree of quantification starting from the most basic
metric. In our approach, the metric itself does not only track if a required functionality of the
system is adaptable or not, but we also quantify how much adaptable it is by means of a natural
number. The same authors propose in [CS01] a framework that is a specialization of a general
qualitative framework to reason about non-functional requirements [CNYM99, MCL+01].
That framework is concentrated on adaptability requirement and works with quantitative val-
ues. Our work, on the contrary, is based on the addition of adaptability property to systems
in order to make such systems able to meet also the non-functional quality requirements.

In [RM09, KRG+10], the authors wonder whether it is possible to measure and evaluate
the adaptability of systems in order to compare different adaptive solutions. To take a step
forward, they propose a set of quantitative metrics grouped by categories. These metrics are
calculated statically. However, their approach can be extended to be applicable in a dynamic
environment. In this direction, we foresee a possible integration between the metrics defined
in this chapter and the approach proposed in [RM09, KRG+10]. Indeed, our approach can be
used to discover which are the suitable architecture adaptabilities that can make the system
able to meet the desired quality non-functional requirements, and then use their higher-level
metrics to offer an evaluation and comparison of the already calculated suitable architectures.

In [RWvM10], authors define a methodology to evaluate the adaptivity of a system. This
evaluation is based on measurement traces or simulation traces that can be obtained, in test-
beds, real systems or software tools for discrete-event simulation. Besides, this methodology
is enhanced with the definition of a simple metric that evaluates adaptivity on a scale from
zero to one.

In [YHZ+09] a trade-off analysis among quality properties of adaptive systems is pre-
sented. This approach takes into account changes in runtime contexts and the decision to
adopt an adaptation strategy is performed during runtime, when the system knows the current
real context. To achieve that goal, the authors propose a three-phases methodology, where
the firsts two phases are done during design time and the third one is executed by the system
during runtime. The phases are: (i) analyze the target architecture to find trade-off points
among qualities, (ii) design different adaptive strategies and record them in the architecture
model, (iii) deploy the system collecting context information and selecting the best strategy
during runtime.

110 7. Measuring and Correlating System Adaptability

With respect to existing work, in this chapter we propose a more extensive set of archi-
tectural metrics that can be used in the quantitative evaluation of software adaptability. These
metrics have been empowered with the definition of explicit relationships between adaptabil-
ity and quality values, such as availability and performance.

Part II

Model-Driven Engineering for
QoS Evaluation

111

This part of the thesis explains our research in the Model Driven Engineering (MDE)
[Sch06a] field and in the Model Driven Development (MDD) [AK03] techniques aimed at
software QoS evaluation. These techniques usually focus on a transformation path from high
level models to platform specific models (down to the executable code) of a software system.

Model-based evaluation of extra functional properties -such as performance, reliability
or energy consumption- usually needs analyzable models, but software developers may not
hold expertise in creating and analyzing these models. To overcome such limitation, it has
emerged the idea of exploiting MDD for QoS assessment. This idea conceives a special
type of transformation path whose source and target are a software design model and an
analyzable model, respectively. For example, the design model can be a set of UML diagrams
and the analyzable model can belong to queueing networks, Markov chains, Petri nets or
process algebras families. Since these transformations are automatic, software developers
are released from the manual creation of analyzable models.

Recently, some challenges that hamper the implementation of model transformations have
been realized. Two of these challenges are:

• A software design has much more information than the analyzable model requires,
which makes transformations intricate. Besides, the relevant information may be
spread along many software design elements. For example, in a UML software de-
sign, performance relevant information can be scattered throughout activity, sequence,
component, state, deployment and use case diagrams. The transformation process has
to find the performance relevant information in different models and create the per-
formance analyzable model. So, even if the core theory of the transformation was
not hard to follow, these transformations would be hindered by the amount of useless
information in the design model for QoS evaluation.

• There are many software design languages and, according to [GMS07a], even for the
same project, a different language can be used in different stages of software develop-
ment. Besides, since a particular property may be better analyzed by using a particular
language, there should be implemented transformations from each design language to
several analyzable models. These circumstances force the need of a transformation
path from any design language to any analyzable language. Therefore, they are re-
quired M-by-N transformations, being M the amount of design languages and N the
amount of analyzable languages.

To face these challenges, there have been proposed intermediate models that are placed
between design and analyzable models, then splitting the transformation process up into two,

113

114

presumably easier, steps. The first step implements a transformation that gathers the infor-
mation relevant for QoS evaluation into a single model whilst it abstracts away from the
QoS irrelevant design concepts. The second step implements a transformation between the
intermediate model to the analyzable model.

This procedure helps to face the previous challenges because: the intermediate model
is free of irrelevant information for QoS evaluation; a single model keeps all the required
information; and sharing a pivot language, the amount of required translations is reduced to
M +N .

Since most of the research in the previous part of this thesis relies on the analysis of
software models with formal methods, a number of model transformations of this type had
to be done. We have contributed to this research field by describing two model-to-model
transformations. For example, this work is helpful for the task of the uppermost layer of
the reference architecture in Chapter 2; see that the Adaptation Plan Generator uses soft-
ware models for evaluating the performance of a software workflow or the expected energy
consumption. These software models are converted into a model in an analyzable language,
which in our case was stochastic Petri nets, and therefore results of extra functional properties
could be obtained.

The first model transformation we propose uses the intermediate model called Core Sce-
nario Model (CSM)[PW07]. CSM is a scenario oriented model that represents software
behavior together with performance and resource usage information. So, this language is
specially useful to evaluate performance of execution scenarios of software. Our research
in Chapter 8 proposes a transformation that takes a source model in CSM language and
transforms it into an analyzable GSPN. We also present and describe a software tool that
implements the transformation theory. Then, using the transformation from UML diagrams
annotated with performance information into a CSM proposed in [PW07] and our tool, we
can complete the transformation path from software design models to performance analyz-
able models. This is useful, for example, for the Petri nets to analyze in Chapter 3.

The second model transformation uses KLAPER [GMS07a] as pivot language, which
stands for Kernel LAnguage for PErformance and Reliability analysis. KLAPER creates re-
source oriented models that represent the relevant information for the analysis of software ex-
tra functional properties. This resource oriented representation of software makes KLAPER
be recommended for designs that follow component-based software engineering methodolo-
gies. Concretely, this thesis uses the dynamic version of KLAPER, called D-KLAPER, which
allows modeling dynamic bindings between resources. Then, D-KLAPER models allow us
to represent characteristics related to self-adaptations of software. In Chapter 9, we extend
the modeling power of D-KLAPER to allow it to model reactive software. After, we use
the proposed D-KLAPER extension as intermediate language for the transformation path be-
tween a design model of reactive software (represented as UML state machine diagrams) and
GSPNs. We accordingly describe our research in two model-to-model transformations: a
transformation from the most typical characteristics of UML state machine diagrams to the
extended D-KLAPER, and from the extended D-KLAPER to GSPNs. Finally, the translation
theory is applied to an example of reactive self-adaptive system whose QoS goals to satisfy
are performance and cost.

115

Related work

Modeling frameworks for dynamically changing software systems have been already pro-
posed. Some of them are mainly targeted to the analysis of functional requirements
[ADG98, BCDW04, IFMW08, KM07], and hence are not suitable for the effectiveness anal-
ysis of such systems with respect to performance or dependability.

To the best of our knowledge, model-to-model transformation theories and the analysis
methods of the generated performance models surrounding CSM and KLAPER languages are
two of the most comprehensive approaches in MDD for Software Performance Engineering
(SPE) [Smi90]. Furthermore, KLAPER and its KlaperSuite [CFD+11] are not only conceived
for performance analysis but also for reliability and other non-functional properties.

The work in [DSP11] presents PCM, another intermediate performance model, and its
translation to non-markovian SPNs. The modeling power of the PCM is similar to the CSM,
but the CSM details some concepts such as the acquisition and release of resources or the
starting and end of the scenario, which implies differences in the translation. PCM uses the
UML-SPT profile while we use the more recent MARTE. Although work in [DSP11] claims
that the translation to Petri nets has been accomplished, the topic of the paper is not to discuss
the design of a tool, however this is one of the main aspects in our work in Chapter 8.

Proposals in [CPR07, HBR+10] value the execution environment at design level for the
performance prediction. The implementation of this aspect may improve our tool, however
we consider it as future work since theoretical work needs to be invested prior its implemen-
tation in the tool.

In [CMI11], it is presented the state of the art in model based analysis techniques with a
particular focus on performance issues.

116

Chapter 8

Model To Model Transformations:
From CSM To GSPN

In this chapter we present part of our research in model-to-model transformations for soft-
ware performance evaluation. We describe the transformation theory between an intermediate
model and an analyzable model. The source model is a Core Scenario Model (CSM), which
is a scenario-oriented intermediate performance model that filters out the information unre-
lated to performance in a software design, and the target model are GSPN, which are a formal
and analyzable modeling paradigm that have been shown feasible for software performance
evaluation. In this chapter we also describe a tool that implements such transformation.

8.1 Problem description

The assessment of software non-functional properties such as performance, is a challeng-
ing issue for the software engineering community. Software Performance Engineering
(SPE) [Smi90] promotes the use of standard design languages like the Unified Modeling
Language (UML) [BJR99] and associated OMG standard profiles, with the aim of leverag-
ing software designs for a prediction of system performance [BDIS04]. The OMG-MARTE
(Modeling and Analysis of Real-Time and Embedded systems) [Obj05] profile augments a
UML design with information relevant for performance prediction.

In the work carried out in Part I, we needed to evaluate performance of software systems
under different configurations and execution environments. Owing to the research already
done in the SPE community, we decided to heed their proposals to ease our task.

SPE proposals work on both types of model-driven evaluation: direct transformations of
design models into performance models, and transformation paths that include intermediate
models between design and performance models. The work in [BDIS04] summarizes some
of the main proposals regarding the former approach, while for example, works in [DSP11,
GMS07a, WPP+05] follow the latter. As motivated in previous introduction, we decided to
follow the latter approach. In this chapter, we present our research in the model-to-model

117

118 8. Model To Model Transformations: From CSM To GSPN

transformation from the intermediate model CSM [PW07] to the analyzable model GSPN
[AMBC+95] and its automation.

CSM language is fully described in [PW07]. A CSM model represents software execution
scenarios in terms of well-known performance concepts: steps, workloads, path connectors
or resources. In [PW07] it is also explained the model-to-model transformation from UML
designs to CSM. Besides, CSM language was proposed in [WPP+05] as intermediate lan-
guage within the Performance by Unified Model Analysis (PUMA) framework, which is an
open architecture that enables the integration of performance analysis in different kinds of
software design tools. In that work, there are outlined the model-to-model transformations
from CSM to queueing network models (QN), layered queueing network models (LQN) and
GSPN.

This chapter extends the description of CSM to GSPN presented in [WPP+05], it presents
the tool and algorithms we have developed for the transformation of a CSM into a perfor-
mance model in terms of GSPN. The GSPN can be analyzed or simulated by using engines
such as GreatSPN [Gre] or TimeNET [ZFGH00]. Our tool implements a CSM-GSPN “com-
positional” translation and uses software standards, such as XML [XML] format. This fact
also enables a future integration of the tool within the PUMA architecture. The compositional
issue forced us to define a composition operator for GSPN, we present it in appendix B.

The rest of the chapter is organized as follows. Section 8.2 recalls the needed background,
the CSM meta-model. Section 8.3 details how CSM concepts are converted into the GSPN
models. Section 8.4 describes the tool issues and lessons learned in its development. Sec-
tion 8.5 applies CSM to GSPN transformation to a case study taken from literature [XWP03],
presents performance results and compares them with those obtained using layered queuing
networks (LQNs) as performance model. Section 8.6 gives a conclusion.

8.2 Core Scenario Model

The goal of the CSM metamodel is to capture the essentials for building performance models.
The class structure of the CSM is shown in Figure 8.1, it corresponds to the one presented
in [PW07], however we have added two new abstract classes: the VertexOperation and the
ResourceManager.

The CSM represents the performance Scenario flow via a PathConnection type. There is
a PathConnection object between each pair of VertexOperations. Indeed, the VertexOpera-
tion class has been introduced to distinguish Steps from ResourceManagers. So, a Step is a
sequential piece of execution which may in turn be refined as a scenario. While a Resource-
Manager only manages the resource utilization of steps. The subtypes of PathConnections
correspond to the common sequential relationships: branches, merges and forks and joins.
A scenario has a Start point and End points. Start points may associate a Workload, then
representing the scenario usage. There exist two kind of Resources: Active, which execute
steps, and Passive, which are acquired and released during scenarios by special ResAcquire
and ResRelease operations. Steps are executed by (software) Components which are passive
resources. In turn, Components are associated to the ProcessingResource in which are hosted.

CSM meta-classes own attributes defining their properties. For example a Step has the
HostDemand to describe its aggregate use of its host resource (CPU). Table 8.1 gathers the

8.3. CSM meta-classes translation 119

CSM

Scenario

Step

General
Resource

Active
Resource

Passive
Resource

External
Operation

Processing
Resource

Open
Workload

Closed
Workload

Path
Connection

Component

Sequence Branch Merge Fork Join End Start

Workload

Resource
Acquire

Resource
Release

Message

1..*

1

1..*

+host

0..1

0..1 0..1

mn
+

so
ur

ce

+
ta

rg
et

+
pr

ed
ec

es
so

r

+
su

cc
es

so
r

2..*

*

(m=1,n=1) (m=1,n=2..*) (m=2..*,n=1) (m=1,n=2..*) (m=2..*,n=1) (m=1,n=0) (m=0,n=1)

VertexOperation

Resource
Manager

1..*

0..1

*

+
su

bs
ce

na
ri

o

0..1

Figure 8.1: Core Scenario Model

attributes used in this work, the whole list can be found in [PW07].
Figure 8.13(a) depicts a simple example of CSM, where we observe the start and end

Vertices, the acquisition and release of a resource, the workload and a couple of Steps -
cycleInit and procOneImage-. Figure 8.13(b) is a more complicated CSM which indeed
refines the procOneImage Step in Figure 8.13(a).

8.3 CSM meta-classes translation

This section presents the set of patterns that we propose to represent CSM meta-classes.
These patterns are at the core of the translation and they will be used by our tool to convert a
CSM model into a GSPN [AMBC+95]. A pattern in this context is actually a GSPN subnet
parameterized with the attributes of the CSM meta-class the subnet represents.

The places and transitions of the GSPN subnets are named as
name | label 1 | ... | label n (e.g., t1|getImage|disk release). These labels refer names of
the CSM model elements and they will be useful to keep track of the CSM operations and to
eventually compose the subnets. In the following, we describe for each CSM meta-class, the

120 8. Model To Model Transformations: From CSM To GSPN

CSM meta-class Attribute name

Scenario ID1, Name

GeneralResource ID, Name, Multiplicity

ActiveResource Same as GeneralResource + OperationTime

ProcessingResource Same as ActiveResource

VertexOperation ID, Probability

Step Name, HostDemand, ExtOp, RepetitionCount

ResourceManager ResourceUnits, Priority

OpenWorkload ID, ArrivalPattern2, ArrivalParameter3

ClosedWorkload ID, Population

Message ID, Kind4

1. ID means a unique identifier.

2. [Poisson | periodic | phase-type]

3. The ArrivalPattern description.

4. [async | sync | reply]

Table 8.1: Some attributes of some CSM meta-classes

GSPNs subnets patterns implemented by the tool.

8.3.1 Step translation

We revise now all different options to translate a Step. The choice is based on the values
of the attributes of the Step: Name, HostDemand, ExternalOperation, RepetitionCount and
Probability. The latter inherited from VertexOperation. The ExternalOperation refers to a
service external to the model.

• Figure 8.2(a) depicts the subnet for a “dummy” step, i.e., a step that only has a Name
but the rest of the attributes are not used. This step, as explained in [PW07], is only
used to link PathConnectors, e.g., for linking two consecutive branches. The translation
provides a subnet with one place and one transition, both labeled with the name of the
Step.

• When the Step declares a Name and a HostDemand, then the subnet is the one in Figure
8.2(b). Transition t2 is an immediate one and it will be useful to acquire the processor
or host where the Step executes. Transition t1 is exponentially distributed with firing
rate 1/HostDemand, it will also release the execution host. The labels host acq and
host rel are generic for all the translations in this subsection. Algorithm 8.1 will
change the word host for the actual name of the host that executes this step. At this
moment this information is not known because it is not stored in the Step.

8.3. CSM meta-classes translation 121

• A Step with Probability is translated as in Figure 8.2(d), which reflects the two flows
that the system can follow, the one that really executes the step (right part) and the
one that avoids it (left part). There is a special case, the Step with Probability that
is preceded by a Branch connector, indeed all the successor Steps of a Branch have
a probability of execution. In this case, pattern in Figure 8.2(c) is applied and this
translation will be composed with the one of the Branch as given in Figure 8.4(e).

• Pattern in Figure 8.2(e) gives the translation for Steps with RepetitionCount. The
RepetitionCount is simply the mean number of times the step repeats when exe-
cuted. The probabilities for transitions t5 and t6 are p and 1-p respectively, where
p = RepCount/(1 +RepCount).

• When the Step has both, Probability and RepetitionCount, then it mixes the two pre-
vious translations. Figure 8.2(f) depicts the solution to mix (d) and (e), the mix of (c)
and (e) is a trivial one.

• Sometimes a Step is refined by a sub-scenario, as expressed by the association between
the Step and the Scenario in Figure 8.1. This means that the engineer will refine the
specification of the Step. In this case, the Step does not declare a HostDemand since it
is implicitly aggregated by the demands of the steps in the sub-scenario. Figure 8.2(g)
depicts the translation: place p1 will be composed by algorithm 8.1 (later described
in Section 8.4) with the starting point of the subnet of the sub-scenario and transition
t1 with the ending of the scenario, hence the sub-scenario will be integrated into this
subnet. Figure 8.2(h) depicts the most complex situation, i.e., the Step that represents
a sub-scenario with RepetitionCount and Probability. The cases of a sub-scenario Step
with RepetitionCount or with Probability are particular cases of (h).

8.3.2 Resource translation

Resources involve two main classes of the CSM in Figure 8.1: the GeneralResource for
their definition and the ResourceManager for their management, i.e., their acquisition and
release. As previously explained, a resource can be active or passive, the active resources can
be external operations or processing resources. For the GeneralResource class its attributes
are Name and Multiplicity (number of units, e.g., number of buffers). The ActiveResource
classes adds the OperationTime attribute. When the Multiplicity of a resource is infinite there
is no need for it to be translated, since the resource can be shared at any time by any number
of execution steps.

Figure 8.3(a) depicts a part of a CSM model with a passive resource –DB component– and
the active one where it executes, the CPU for the DB. The component is explicitly acquired
and released by the corresponding ResourceManagers (ResAcq and ResRel).

Active and passive resources are translated the same way, as given in Figure 8.3(b,c).
They are modeled by: a) a place with as many tokens as the Multiplicity indicates, one in this
case, b) an input transition modeling the release of the resource and c) an output transition
modeling its acquisition. Labels refer the name of the resource as well as its acquisition and
release.

122 8. Model To Model Transformations: From CSM To GSPN

Step::dummy

p3|getImage

t3 π = 0.6
t4|getImage

π = 0.4

(a) (c)(b) (d)

p2|getImage

t1|getImage
 |host_rel

t1|getImage
 |host_rel

p1

t5

π = 10/11t6|getImage
π = 1/11

p1

p3|getImage

t3 π = 0.6
t4|getImage

π = 0.4

t1|host_rel

p4

(e)

t2|host_acq

p1

t2|host_acq

p2

p3|getImage

p2

t5

p1

p2

t2|host_acq

t1|host_rel

t2|host_acq

t6|getImage
π = 1/11

π = 10/11

p3|getImage

p1

t1|getImage
 |host_rel

t3 π = 0.6

p2

t2|host_acq

t5
π = 10/11t6|getImage

π = 1/11

p1|start_Sce

p3|getImage

t3 π = 0.6

t4|getImage

π = 0.4

t1|end_Sce

p4

(f)

p2

t1|dummy

p1|dummy

(h)

HostDemand=2 sec. HostDemand=2 sec.

Probability = 0.6

HostDemand=2s RepCount = 10

HostDemand=2 sec.

Probability = 0.6

+subscenario="subScen"

Probability = 0.6

HostDemand=2 sec.

Probability = 0.6

RepetitionCount = 10 RepetitionCount = 10

Step::getImage

λ=1/2

Step::getImage Step::getImage

λ=1/2

λ=1/2

Step::getImage

λ=1/2

λ=1/2

Step::getImage Step::getImage

Branch

Branch

p1|start_subScen

p3|getImage

t1|end_subScen|getImage

p2

(g)
+subscenario="subScen"

Step::getImage

t2

Figure 8.2: Step patterns

On the other hand, the ResourceManager vertices follow the pattern in Figure 8.3(d).
Transition t1 takes its priority from the Priority attribute that represents the execution priority
of the component in the host. Labels (DB acq, DB rel) are useful for the composition with
the passive resource (Figure 8.3(d)).

Figure 8.3(e) composes the subnet in (c) and the subnets in (d) to obtain the final subnet
that represents the CSM in part (a).

8.3.3 PathConnections translation

As explained in section 8.2, the path connectors are the means used by the CSM to represent
the control flow of the system. Therefore they are meant to explicitly link the steps of the
system and their acquisition and release. A path connector can be the source of several
VertexOperations and also the target of several of them.

The Sequence pathConnection is graphically represented in the CSM by an arrow con-
necting two VertexOperations. Figure 8.4(a) depicts its representation in the CSM and also
its translation into a GSPN subnet. The subnet is made of a place and a transition labeled

8.3. CSM meta-classes translation 123

Component
DB

ResAcqPriority=2

DBCPU

p1|ResAcq

priority=2
t1|DB_acq

t2|ResAcq

p2

p1|ResRel

t1|DB_rel

t2|ResRel

p2

t2|DB_acq

t1|DB_rel

p1|DB

t2|DBCPU_acq

t1|DBCPU_rel

p1|DBCPU

p7|DB

Priority=2
t1|DB_acq t4|DB_rel

p2 p5

ResourceUnits=1 ResRel

Resource
Acquire

Resource
Release

p1|ResAcq p4|ResRel

Pasive
Resource
Component

Processing
Resource
DBCPU

(a)

(c)(b)

ResourceUnits=1

Multiplicity=1 Multiplicity=1

t2|ResAcq t5|ResRel

(d)

Active

Resource

CSM representation

GSPN representation

(e)

Pasive

Resource

Figure 8.3: GeneralResource and ResourceManager patterns

with the name of the source and target steps. These labels will be useful to merge this subnet
with those coming from the steps as proposed in section 8.3.1.

A Fork connector represents the beginning of the parallel execution of different branches
in the system that can be eventually connected by a Join. The CSM representation and the
translation of these two connectors are given in Figure 8.4(b,c). As in the case of the Se-
quence, the labels represent the name of the Steps to which eventually these subnets will be
merged.

The Branch and the Merge are connectors to represent the start and the end, respectively,
of the probabilistic choice of execution in the system. Figure 8.4(e) depicts the translation
of the Branch, that is made of a transition and a place labeled with the names of the prede-
cessor and successor Steps. To ease the understanding, we have depicted a translation and
composition of the Branch and its precedent and successor Steps (here, Step 2 and Step 3

124 8. Model To Model Transformations: From CSM To GSPN

are translated as proposed in Figure 8.2(c)). We have also depicted the translation of these
Steps following the patterns described in Section 8.3.1.

Finally, in Figure 8.4(d) we can see that the Merge proposes a subnet to connect the
alternative execution flows.

(a)

BRANCH

Step_2

Step_1

Step_3

π = 0.6 π = 0.4

t3|Step_1
 |host_rel

p2|Step_1
p4|Step_2

t4 π = 0.6

p5

t6|Step_2
 |host_rel

p7|Step_3

t7 π = 0.4

p8

t9|Step_3
 |host_rel

p1|Step_2
 |Step_3

t1|Step_1

BRANCH

Step_3Step_2Step_1

p2|Step_1 p147
 |Step_2
 |Step_3

t4 π = 0.6

π = 0.4
t7

t6|Step_2
 |host_rel

t9|Step_3
 |host_rel

p6

p8

Step_1 Step_2

MERGE

Step_3

t1|Step_1 t2|Step_2

p1|Step_3

MERGE

(b)

FORK

Step_2

Step_1

Step_3

p1
|Step_2

t1|Step_1

FORK

 p2
|Step_3

(c)

p1

t1|Step_1
JOIN

p2

t2|Step_2

t3

p3|Step_3

Step_1 Step_2

JOIN

Step_3

(d)

Step_1

Step_2

SEQUENCE

SEQUENCE

p1|Step_2

t1|Step_1

(e)

p3 t5|host_acq

p6 p9

t8|host_acq

t2|host_acq

t2|host_acq

p3

 t3|Step_1
 |host_rel

p5

p8

t5|host_acq

t8|host_acq

Figure 8.4: PathConnections patterns

Start and End connectors translation

The Start and End connectors are used in the CSM to mark where the model begins and the
different ways to finish it.

A Start connector is translated into two places and a transition as given in Figure 8.5(a).
The label of place p2 will be useful to merge the subnet of the Start with the subnet of its
successor step, in this case Step 1.

A scenario may own more than one End. When the End is associated with an asyn-
chronous Message, we call it “asynchronous End”, otherwise we call it “synchronous End”.

8.3. CSM meta-classes translation 125

Concerning “synchronous Ends”, they can play two roles: either they belong to a sub-
scenario or to a scenario with its own ClosedWorkload. The scenario in Figure 8.13(b)
owns both: a “synchronous” End, see left hand side, and an “asynchronous” one. Cur-
rently, the CSM allows at most one “synchronous End” per scenario, the rest have to be
“asynchronous” [PW07].

Both kinds of “synchronous End” are translated the same way, as in Figure 8.5(b), and
the resulting subnet is composed with the subnet of the predecessor step. Moreover, this
subnet is also composed in the first case with the subnet of the Step it refines, and in the latter
case, the subnet will be composed with the subnet of the ClosedWorkload. The translation of
the “asynchronous End” is proposed in Figure 8.5(c), this subnet will be composed with the
subnet of the predecessor step.

8.3.4 Workload translation

A Start connector may associate a workload, which can be closed or open. A ClosedWorkload
element of the CSM is translated into a place and a transition, as given in Figure 8.6(a). The
attribute Population indicates the maximum number of concurrent executions in the scenario.
The Population is represented, in the subnet, by the number of tokens in p1. The subnet of
the ClosedWorkload has to be merged with the subnet of the Start and with the subnet of the
“synchronous End”. The resulting PN, see Figure 8.6(a), is a cyclic net. This kind of nets is
useful to perform system analysis in steady state.

On the other hand, when a Start connector is attached to an OpenWorkload, it models
the distribution function for the scenario arrival events. Among potential arrival patterns, we
have implemented in the tool some commonly used: Poisson, periodic and a class of phase
type.

Poisson distributions are modeled using an exponential transition with parameter λ, where
λ characterizes the arrival rate. Figure 8.6(b) depicts the translation of the OpenWorkload and
the resulting Petri net when it is merged with the Start connector.

Workloads whose arrivals are periodic (i.e. the arrival of events follows a constant pat-
tern) are translated as depicted in Figure8.6(c). The difference between this periodic patterns
and previous Poisson distribution is that it is used a deterministic transition instead of an
exponential one. In Figure8.6(c), trasition t2 is deterministic and has constant firing time.
Therefore, this net is not a GSPN but a Deterministic Stochastic Petri Net (DSPN) [AMC87].
However, we can analyze DSPNs using analysis techniques based on those ones for GSPN as
long as the DSPN has at most one deterministic transition enabled [Bal98].

Phase type distributions consist of a set of phases with a given execution time and an ab-
sorbing state with a probability for each phase to enter in it. Our tool, instead of implementing
the general phase-type distribution, implements a subtype of it, the generalized Coxian. This
distribution can be approximated to any probability distribution function changing the num-
ber of phases, the mean time in each one and the probability of moving among them. On the
other hand, an increment in the number of phases of a Coxian distribution means an expo-
nential increment in the number of possible states; so, this could lead to a large Petri net with
a state space explosion problem preventing its performance analysis. Figure 8.6(d) shows the
solution we implemented, which is an extension of that in chapter 7 of [AMBC+95]. The

126 8. Model To Model Transformations: From CSM To GSPN

parameter of this function must be made of 4 vectors, each one with as many components as
phases: one with the starting probabilities for each phase; one with the moving probabilities
to the previous phase; one with the moving probabilities to the next phase and the last with
the probabilities of each phase to move to the absorbing state. The sum of ith component of
the 2nd, 3rd and 4th vector must be 1.

End1 End2

Start

Step_1

Step_N Step_M

p1|start_Sce

t1|start_Sce

Start

p2|Step_1

p1|End1

t1|end_Sce

End1

t2|Step_N

p1|End2

t1

End2

t2|Step_M

Message
Async

(a) (b) (c)

Figure 8.5: Start and End patterns

8.4 Tool development

The CSM to GSPN model transformation patterns proposed in previous section have been
implemented in a software tool. This section describes the main points of its development.
The tool can be downloaded from [CSM], where a guide about how to use it is also available.

8.4.1 Tool design

Concerning the approach adopted to develop the tool, we studied several choices and their
trade-offs. Among them, an interesting one proposed to create an XSLT stylesheet [XSL] to
perform an XSL transformation of the CSM into an XML [XML] based PN standard format
[BCvH+03]. We ruled out this choice since we were not completely convinced about the
current applicability of the PN standard, concretely regarding the stochastic extension and
the GSPNs. Finally, we decided to implement, using Java [JAVa], the patterns in section 8.3.
This implied to transform the XML representation of the CSM into an application program
interface (API) representing GSPNs. The API is the set of java classes in Figure 8.7(a).

This API proposes the abstract class PetriNet as an aggregation of the classes Transition,
Arc and Place, abstract as well. The PetriNet class is specialized into concrete classes that
will represent the actual PN, e.g., the GSPNPetriNet class or the DSPNPetriNet class.

The GSPNPetriNet class aggregates the places, arcs and transitions of the PNs actually
created by the tool. The attributes of these classes represent all the features of our translation
(e.g., probability in the transitions or tokens in the places) and graphical information as well.
Table 8.2 lists some of these attributes. GraphicElement has the attributes that define the
position in a canvas of the Petri net elements. In the Arc class, the attribute toTransition
specifies whether the arc targets a transition or a place. In the Place class, initialTokens means

8.4. Tool development 127

(c)

Start

Poisson=0.5

(d)

(a)

Start

periodic=2

p2

t1
|start_Sce

OpenWorkload

p1
|start_Sce

t2 time=2

π =π 3

Start
Phase-type
(phases=n)

t1|start_Sce

t2

t3

t4

t5

t6

t7

π =π 2

π =π 1

(b)

Open
Workload

Open
Workload

p2

t1|start_Sce

OpenWorkload

p1|start_Sce

t2 fire_rate=0.5

p1|start_Sce

Open
Workload

OpenWorkload

p1|start_Sce

t1|start_Sce

Start

p2|Step_1

p1|End1

t1|end_Sce

End1

t2|Step_N

End1

Start

Step_1

Step_N

population=3

p1|start_Sce

t1|start_Sce

p1|End1

t1|end_Sce

p2|Step_1

t2|Step_N

Closed
Workload

p1|start_Sce

t1|end_Sce

Closed
Workload

Step_1

p1|start_Sce

t1|start_Sce

Start

p2|Step_1

p1|start_Sce

t1|start_Scet2p2

p3|Step_1

fire_rate=2

Figure 8.6: Workload patterns

128 8. Model To Model Transformations: From CSM To GSPN

(b)

(a)

<<component>> <<component>>

<<component>> <<component>>

COMPOSER

PetriNet API

CSMparser

CSM2GSPN

TRANSLATOR

<<component>>

Transition

Arc

Place

PetriNet

PetriNet API

GSPNarc

0..*

0..*
GSPNPetriNet

GSPN

DSPN

GreatSPNfileWriter TimeNETfileWriter

FileWriter

1 DSPNPetriNet

FW

...

...

GSPNplace

GSPNtranImm

GSPNtranTime
GraphicElement

0..*

place

transition

0..*

0..*

Figure 8.7: Tool modules

the number of tokens that our translation sets in the place. The attributes in the GSPNarc
class define the common characteristics of an arc in a GSPN. When the attribute inhibitor is
true, then the attribute toTransition has no meaning. Regarding transitions, there are two
classes: immediate and with exponential delay. GSPNtranImm has probability and priority
of fire. GSPNtranTime owns the firing rate of the transition. The GSPN classes that represent
places or transitions have the attribute labels[] to represent the labels used by the composition
operator.

The PN internal representation above described was considered useful for:

• enabling the tool to write the GSPN in different formats, XML-based or not. Currently
our tool produces GreatSPN [Gre] and TimeNET [ZFGH00] tool formats, thanks to

8.4. Tool development 129

the classes that specialize the FileWriter, see Figure 8.7(a). As a consequence, the tool
allows to analyze and simulate the GSPN with a variety of techniques, indeed all those
implemented by the referred tools.

• future development of particular GSPN analysis or simulation techniques.

• producing other kinds of Petri nets, and accompanied them by some evaluation tech-
niques

Class Attributes

GraphicElement name, info, namePosition,

(abstract) infoPosition, position

Arc (abstract) Same as GraphicElement + toTransition

Place (abstract) Same as GraphicElement + initialTokens

GSPNplace Same as Place + labels[]

GSPNarc Same as Arc + weight, inhibitor

GSPNtranImm Same as Transition + probability, priority, labels[]

GSPNtranTime Same as Transition + rate, labels[]

Table 8.2: Relevant attributes of some classes of the PN API

Figure 8.7(b) proposes the tool high-level design, which is made of five reusable mod-
ules. The Translator module is the interface with the user, then receiving a CSM model -in
XML format- and providing a GSPN in the desired format. This module implements the
Algorithm 8.1, later described.

The CSM2GSPN module implements the functions described in Section 8.3. Then, for
each CSM element, the CSM2GSPN offers a method that translates it into the corresponding
GSPN (e.g., step2GSPN(), fork2GSPN(), branch2GSPN()). The Translator will call these
methods appropriately in Algorithm 8.1.

The design of the CSM2GSPN module features one class, called Csm2Gspn. This class is
made just of class methods, so all declared static as java requires. They are those previously
mentioned. Moreover, this class cannot be instantiated, so its constructor is declared private.
This programming technique is not new, for example, the well-known java.lang.Math class
[javb] follows the same pattern. Indeed, having a well-defined set of translation functions,
those in Section 8.3, we thought that this module should behave like a mathematical library.
Moreover, the Csm2Gspn class ensures that the names of the places and transitions of the
GSPNs are not repeated, this entails to keep a slight sense of state. This fact also happens
for example in java.lang.Math for the method random(), which stores whether random() has
been already called or not. This uniqueness in places and transitions names is also helped by
the ID attribute, see Table 8.1, of the CSM element to translate.

The Composer module implements the composition operator described in Appendix B.
This module receives as input two GSPNs and two sets of labels (one for places composi-

130 8. Model To Model Transformations: From CSM To GSPN

tion and the other for transitions composition). Then, it produces a GSPN that is the result
of the composition operator over the input nets. Different versions of the composition op-
eration have been already implemented by other authors, for example the “algebra” package
[BDH01] of the GreatSPN tool. “algebra” performs the composition also for stochastic well-
formed nets (SWN). Nevertheless, we have decided to implement our composition module.
In fact we need a “composition” not bound to a concrete tool, as it happens to “algebra”. Oth-
erwise, we should produce nets in the GreatSPN format only. Then, the analysis programs of
the TimeNET tool could not be used, for example. This decision also eases the reuse of the
tool and it integration in other architectures (e.g., PUMA [PUMb, PUMa]) since it does not
require external functionalities.

The CSM2GSPN and the Composer modules are coordinated by the Translator. The
coordination means that they are alternatively called: First the CSM2GSPN to translate the
current CSM element and then the Composer to merge the resulting net with the “target
net”, net that will eventually represent the whole CSM. Algorithm 8.1 concentrates on this
coordination.

The CSMparser helps the Translator in managing the XML file with the CSM infor-
mation, it parses this file using Document Object Model (DOM) trees. The shape of the
DOM trees of a CSM is similar to the one depicted in Figure 8.8, this DOM is compli-
ant with the class diagram in Figure 8.1. The root is a CSM element, while the chil-
dren element are Scenarios and GeneralResource subclasses. Each Scenario keeps a list of
children, which store the information about its VertexOperation and PathConnection sub-
classes. Some of these child elements can in turn have a child list. These are the ele-
ments that store the information about a CSM Step which are refined in a sub-scenario.
Due to the Composer module, the CSMparser does not need to search the tree for the
logical order of VertexOperations and PathConnections, it just needs to traverse the DOM
tree in a deep-first pre-order form. Then, for the translation of a complete scenario, where
|V ertexOperation| + |PathConnection| = N , the CSMparser does not need to perform
N searches for elements in the Scenario subtree, it traverses the subtree just once.

The last module is the API, whose internal structure in Figure 8.7(a) was discussed pre-
viously. The API owns the methods for managing places, transitions, arcs and labels of the
GSPNs created by the CSM2GSPN and the Composer modules. Thanks to the API, the rest
of the modules of the architecture can be reused for the translation of other kinds of Petri nets
than GSPN. Actually, the only challenge for reuse is to program a component that substitutes
the CSM2GSPN module. This is not really a big effort since the translation in Section 8.3 for
GSPN is largely reusable for other kinds of PN (e.g., DSPN or Stochastic Well-formed Nets).

8.4.2 The algorithm for the translation

In Section 8.3 we presented a subnet pattern for each CSM meta-class. Some of these pat-
terns were obtained by composing subnets, it was for example the case for the pattern of
the Branch. To this end, we proposed that each place and transition of the subnet were la-
beled, then the composition would be carried out by merging places and/or transitions with
equal labels. By doing so, we actually converted the GSPN into a multi-labeled GSPN (ML-
GSPN). The concept of merging subnets is conceptually easy to practice, and it was formal-

8.4. Tool development 131

ELEMENT_NODE

tagName: "CSM"

ELEMENT_NODE

tagName: "Scenario"

ELEMENT_NODE

tagName: "Scenario"

ELEMENT_NODE

tagName: "Component"

NodeList

childNodes parent parent parent

ELEMENT_NODE

tagName: "Step"

ELEMENT_NODE

tagName: "Start"

ELEMENT_NODE

tagName: "End"

NodeList

childNodes
parent parent parent

ELEMENT_NODE

tagName: "Step"

parent

ELEMENT_NODE

tagName: "Refinement"

NodeList

childNodes parent

ELEMENT_NODE

tagName: "Passive
 Resource"

ELEMENT_NODE

tagName: "Processing
 Resource"

parent parent

ELEMENT_NODE

tagName: "Branch"

Figure 8.8: Example of DOM tree from a CSM file

ized in [DF96, Ber03] for the case of LGSPN, i.e., GSPN with only one label. Though strictly
not necessary for the development of the tool, we have followed this rigorous practice and
Appendix B presents the formalization for the case of MLGSPN.

The algorithm starts initializing two variables that hold intermediate GSPNs: par-
tial mlgspn, that represents at any moment of the execution the elements of the CSM already
translated; and list of Ends mlgspns. Next, the algorithm features four parts. The first one
(lines 3..12) traverses each scenario in the CSM model to obtain and compose some of the
subnets proposed in Section 8.3. The second part (lines 13..15) composes the subnets that
represent End connectors (list of Ends mlgspns). The third part (lines 16..19) deals with the
passive resources, while the last one (lines 21..24) is dedicated to the active ones. We can
devise a simple and structured algorithm because of the effort we previously did:

• E1. As expected, the algorithm is absolutely aligned with the design proposed in Sec-
tion 8.4.1. Thus, the functions CSM2GSPN and Compose implement what modules
CSM2GSPN and Composer conceptualize, respectively.

• E2. We conceived the subnets in Section 8.3 to actually ease this algorithm, these nets
were designed so that once merged, the desired Petri net is obtained, regardless of the
order in which they are composed.

In the first part of the algorithm, the fact of traversing each scenario just once is interesting
because it allows to translate all children of a Scenario sequentially, which means not to
care about the logical execution order of Steps in the system. Therefore, the traversal was
implemented using a simple Iterator pattern[GHJV95] over the DOM tree of the CSM.

This first part deals with the VertexOperations (computational steps and acquisition and
release of resources), the Workload, and the PathConnections (the start of the scenario and the

132 8. Model To Model Transformations: From CSM To GSPN

Algorithm 8.1 Translation of a CSM.

Require: An XML CSM file that models a System
Ensure: MLGSPN that represents this System

1: partial mlgspn← empty mlgspn()
2: list of Ends mlgspns← empty list()
3: for all Scenarios do
4: for all element ∈ (VertexOperation ∨Workload ∨

PathConnection) do
5: subnet← CSM2GSPN(element)
6: if (element.getTagName()==End) then
7: list of Ends mlgspns← add(list of Ends mlgspns,subnet)
8: else
9: partial mlgspn← Compose(subnet,partial mlgspn)

10: end if
11: end for
12: end for
13: for all end mlgspn ∈ list of Ends mlgspns do
14: partial mlgspn← Compose(end mlgspn,partial mlgspn)
15: end for
16: for all element ∈ PassiveResource do
17: subnet← CSM2GSPN(element)
18: partial mlgspn← Compose(subnet,partial mlgspn)
19: end for
20: add-host-characteristics-to-steps(partial mlgspn)
21: for all element ∈ ActiveResource do
22: subnet← CSM2GSPN(element)
23: partial mlgspn← Compose(subnet,partial mlgspn)
24: end for
25: return partial mlgspn

different control flows). In line 5, it is translated each element into its corresponding GSPN
according to the proposal in Section 8.3 by calling the CSM2GSPN module. Actually, all
these elements constitute the structure of the scenario and only the resources -which are not
part of Scenarios- are not considered yet. After the translation of an element, the algorithm
checks whether it is an End (lines 6..10). Then the subnets for the Ends are simply stored
in list of Ends mlgspns, while the rest of subnets are composed with partial mlgspn. The
reason of delaying the composition of End elements is explained later.

The composition in line 9 has a particular. When the subnet and the partial mlgspn have
no label in common, then the algorithm produces a new partial mlgspn that includes the
subnet “in parallel”, as given in Appendix B. At the end of this part of the algorithm, we have
a Petri net structure that links all the computational steps, according to the established control
flow, with the subnet of the Workload and the Start as proposed in Figure 8.6. The subnets
for the acquisition and release of the resources, Figure 8.3(d), are also linked in this Petri net

8.4. Tool development 133

to its predecessor and successor steps, however they still need to be linked to the subnets of
the resources they manage, as in Figure 8.3(e).

The second part of the algorithm carries out the composition of the End connector subnets
with the partial mlgspn. If we composed the Ends and the partial mlgspn in the first part of
the algorithm, then partial mlgspn would be wrong, concretely in the case of sub-scenarios
which refine more than one Step. Figure 8.9(a) depicts the translation and “too-early” com-
position of a sub-scenario that is called by two different Steps. We observe that the result
is that the sub-scenario cannot return the execution flow to the requester scenario. However,
Figure 8.9(b) depicts the translation obtained by delaying the composition of the Ends, which
is the expected one for the system. In fact, this was the only case in which we could not find
a solution to meet E2, so we had to delay the composition.

After the execution of this second part, partial mlgspn represents everything in the system
except the resources. This is so because we are translating scenario by scenario. Not being
part of a concrete scenario, the resources belong to the root CSM -as shown in the metamodel
in Figure 8.1-, their position in the DOM tree is illustrated in Figure 8.8. Therefore, the third
part of the algorithm translates passive resources and compose them with the partial mlgspn.

The last part of the algorithm (lines 21..24) is dedicated to the translation and composition
of the active resources. But prior to this task, it is called the function add-host-characteristics-
to-steps (line 20). Considering that each Step executes on a processing resource, this function
is responsible for discovering this target resource following the “scope rules” given in [PW07]
and substitutes the generic labels host acq and host rel (recall Figure 8.2) by the actual
name of the host. Thanks to this, the algorithm correctly merges each active resource with
the net in this last part. At the end of the algorithm, partial mlgspn already represents the
behavior of the whole CSM.

Although the tool checks the input CSM for some inconsistencies, it is worth noting
that we ideally assume a “well-formed” CSM, otherwise the tool could produce an incorrect
GSPN. For example, when entering a Fork, the n units of the previously acquired passive re-
source may be used by at most n threads of the Fork and they will be eventually released. Fig-
ure 8.10(a) depicts an erroneous CSM since 1 unit is acquired but 3 released. Figure 8.10(b)
depicts the erroneous Petri net that the tool will produce.

8.4.3 Remarks on the analysis of the resulting GSPN

The subnets obtained in Section 8.3 are GSPNs free of choices (formally speaking, they are
state-machine or marked-graph PNs). However, when they are composed by Algorithm 8.1,
the free-choice property is no longer kept. Therefore, the modeling power of the final GSPN
is not restricted to free-choice systems, it can also model resource sharing and competi-
tion (formally speaking, the type of the GSPN produced by Algorithm 8.1 is a simple-net).
This can be observed in Figure 8.15 where transitions t92|BufferManager acq and
t59|BufferManager acq work at the same time as synchronization and choice regard-
ing place P78|BufferManager.

Regarding boundedness, the final GSPN will be unbounded when there exist at least one
open workload. For bounded GSPNs it can be applied classical exact solution techniques
based on analyzing the underlying continuous time Markov chain (CTMC). For unbounded

134 8. Model To Model Transformations: From CSM To GSPN

End1

Start
Step_1

Step_N

Step_MStep_2

Step::subscenario()

Step_3

Step_4

Step::subscenario()

Scenario_1 Scenario_2Subscenario

repCount = 10 repCount = 20

t3

π = 10/11

t2
|subscenario

π = 1/11

p2

t1|Step_1

p1|Step_1

p9|Start

t9|Start

t10|Step_N

p10|Step_N

t11|Step_M

p11|Step_M

p12|End1

t12|sce_End1

t7

π = 20/21

t6|subscenario

π = 1/21

p7

t5|Step_3

p5|Step_3

t4|Step_2

p4|Step_2

t8|Step_1

p8|Step_1

Scenario_1 Subscenario Scenario_2

t3

π = 10/11
t2
|subscenario

π = 1/11

p3

t1|Step_1

p1|Step_1

p9|Start

t11|Start

t12|Step_N

p10|Step_N

t13|Step_M

p11|Step_M

p12|sce_End1

t9|sce_End1

t8

π = 20/21

t7|subscenario

π = 1/21

p7

t6|Step_3

p5|Step_3

t5|Step_2

p4|Step_2

t10|Step_4

p8|Step_4

Scenario_1 Subscenario Scenario_2

t4|sce_End1

(a)

(b)

p3

p6

p2 p6

Figure 8.9: Different End compositions

8.5. Example of system analysis 135

GSPNs, the state space is not finite and consequently its underlying CTMC neither. In this
case, depending on the structure of the GSPN, matrix geometric techniques[Hav95] or perfor-
mance bounds[CS93] can be successfully applied for performance analysis. In cases where
the GSPN cannot be analyzed using the previous techniques, simulation may be a good
choice. For a comprehensive boundedness characterization of the GSPN produced by the
tool, we can say that the net will be bounded if and only if one of the following situations
arise:

1. all the workloads are closed and there is no Fork with asynchronous paths.

2. all the workloads are closed and all the elements in the asynchronous paths of the Forks
(i.e., the paths that finish in asynchronous Ends) are in the scope of some PassiveRe-
source with multiplicity less than infinite.

Formally speaking, if any of the previous situations happens, all the places will be covered
by a P-invariant, and then the Petri net will be bounded.

(a) (b)

Passive
Resource

Buffer

t1|Buffer_acq

t3|Buffer_rel

p1|Buffer

t1|Buffer_relt2|Buffer_rel

Step_s1
Resource

ResRel

Units=1

ResRel

ResourceUnits=1

Fork

ResAcq

ResourceUnits=1

Units=1Resource

ResRel

Figure 8.10: Erroneous modeling and translation of a Fork

8.5 Example of system analysis

This section applies the proposed translation to the models of a system with two scenarios.
The system is a secure building and has been taken from [XWP03]. The first scenario repre-
sents the acquisition and storing of the building video images (A/S-V), Figures 8.11 and 8.13
depict its models: sequence diagram (SD) and the CSM, respectively. The second scenario
represents the access control (AC) of the secure building doors, Figure 8.12 depicts its SD,
while the CSM can be found in [PW07]. [XWP03] provides an LQN model of this system,

136 8. Model To Model Transformations: From CSM To GSPN

GetImage

<<Resource>>

VideoController BufferManager StoreProc Database
{PAcapacity=10}

procOneImage
{rep=(value=$N)}

getBuffer()

cycleInit

<<GaScenario>>

<<GaAcqStep>>{acqRes=Buffer, resUnits=1}

allocBuf()

extOpCount=(value=$P)}

<<GRMpass>>
{PAname=Buffer,

PAunits=1}

freeBuf()

<<GRMrelease>>{PAname=Buffer,PAunits=1}

releaseBuf()

passImage(i,b)

storeImage(i,b)

{hostDemand=(value=1.1,unit=ms,
statQ=mean,source=assm)}

{hostDemand=(value=$B*0.9,unit=ms,

{hostDemand=(value=$P*1.5,unit=ms,

getImage(i,b)

{hostDemand=(value=0.9,unit=ms,
statQ=mean,source=assm)}

(1,’s’)),

{hostDemand=(value=2,unit=ms,
statQ=mean,source=assm)}

store(i,b)

writeImg(i,b)

statQ=mean,source=assm),
externalOpCount=(value=$B)}

<<Resource>> <<Resource>> <<Resource>> <<Resource>>

statQ=mean,source=assm)}

{hostDemand=(value=0.5,unit=ms,

statQ=mean,source=assm)}

<<GaStep>>

<<GaStep>>

<<GaWorkloadEvent>>

{pattern=(closed=(population=1,

<<GaStep>>

extDelay=(source=est,statQ=percent,

statQ=mean,source=assm),

<<GaStep>>

<<GaStep>>

{hostDemand=(value=0.5,unit=ms,

statQ=mean,source=assm)}

value=$Cycle,unit=,precision=95)))}

<<GaStep>>

{hostDemand=(value=1.5,unit=ms,

<<GaStep>>

<<GaStep>>
{hostDemand=(value=0.2,unit=ms,

statQ=mean,source=assm)}

statQ=mean,source=assm)}

<<GaStep>> <<GaStep>>

<<GaStep>>

{hostDemand=(value=1.8,unit=ms,

<<GaStep>>

Figure 8.11: Sequence diagram for A-S/V scenario, taken from [XWP03]

moreover the LQN is profiled through several experiments which offer interesting perfor-
mance results. We will compare these results with ours.

8.5.1 Qualitative properties analysis

From the CSM of the A/S-V scenario we obtained the corresponding GSPN automatically,
using our tool. We firstly perform a qualitative analysis of the GSPN, which revealed a
deadlock in the procOneImage sub-scenario, Figure 8.13(b). The deadlock was then studied
in the UML SD and projected into the CSM as follows. The Fork splits the sub-scenario
into two execution threads: the long part (sub-scenario asynchronous part) and the short one
(synchronous part). The synchronous part cycles to the start of the sub-scenario and acquires
the BufferManager again but has to wait for the Buffer, which could be still being used by the
asynchronous one. In turn, the asynchronous part tries to acquire the BufferManager, then
leading to a deadlock caused by a circular wait.

To evade the problem, the acquisition of resources was swapped in the CSM, see Fig-

8.5. Example of system analysis 137

<<GaStep>>

{hostDemand=(value=0.2,unit=ms,statQ=mean,source=assm);
prob=(value=0.2,source=assm)}

<<GaStep>>

{prob=(value=0,source=assm)}

<<GaScenario>>

{hostDemand=(value=1.8,unit=ms,statQ=mean,source=assm)}

prob=(value=1,source=assm)}
{hostDemand=(value=500,unit=ms,statQ=mean,source=assm);

<<Resource>> <<Resource>> <<Resource>> <<Resource>> <<Resource>>

DoorLock Alarm AcessController Database Disk

{extOpCount=(value=1)}

<<GaStep>>

ReadCard

admit(cardInfo) getRights()

O

O
readRights()

[not_in_cache] readData()
prob=(value=0.4,source=assm)}

checkRights()[OK]openDoor()

[not OK]alarm() writeEvent()

[need to log?] logEvent()

writeRec()

<<Resource>>

CardReader

<<GaStep>>

<<GaStep>>

<<GaStep>>

{hostDemand=(value=0.3,unit=ms,statQ=mean,source=assm)}
<<GaStep>>

{hostDemand=(value=3,unit=ms,statQ=mean,source=assm)}
<<GaStep>>

{hostDemand=(value=1.8,unit=ms,statQ=mean,source=assm)}

{hostDemand=(value=1.8,unit=ms,statQ=mean,source=assm)}

{hostDemand=(value=1.5,unit=ms,statQ=mean,source=assm);
<<GaStep>>

<<GaStep>>

{hostDemand=(value=1.8,unit=ms,

statQ=mean,source=assm)}

(value=$UserR,unit=s,statQ=percent,precision=95,source=est)}

{pattern=poisson(value=0.5,unit=s)}

<<GaWorkloadEvent>>

<<GaStep>>

{respT=(value=1,unit=s,statQ=percent,precision=95,source=req),

Figure 8.12: Sequence diagram for AC scenario, taken from [XWP03]

ure 8.14. The GSPN was again generated automatically, from the new CSM, see Figure8.151.
The new analysis showed that the GSPN was deadlock free.

In the LQN paradigm, the one applied in [XWP03], when a resource is acquired, its
layer cannot be traversed again until the execution flow returns back to a previous layer.
Then, the layer of the BufferManager cannot be traversed back (and the resource released)
before its next layer is completed. To avoid this situation, in [XWP03], the BufferManager
is duplicated, which solves the problem of the not nested operations with resources. But in
our opinion, it creates a new one, the problem is that if the scenario could reach a deadlock
then it would not be realized with the LQN. As a conclusion, the use of the LQN paradigm
for performance analysis is motivated when nested services prevail in the system.

8.5.2 Quantitative properties analysis

Once the GSPN has been shown to own good qualitative properties (deadlock free and live-
ness), we carry out similar experiments to the ones presented in [XWP03]. Tables 8.3 to 8.6
offer results about: cycle time in seconds for polling all the cameras in the A/S-V scenario;
response time (RT) in seconds for a human user accessing the door in the AC scenario; and
the normalized utilization of the resources shared by both scenarios. The normalized uti-
lization means the ratio of the mean number of busy resources out of the total number of
the corresponding resources. The results in the Tables have been obtained computing, in the
GSPN in Figure 8.15, the throughputs of some transitions and the mean number of tokens in

1To avoid cluttering, the GSPN in Fig.8.15 appears without the arcs between ProcessingResources and Steps.

138 8. Model To Model Transformations: From CSM To GSPN

(b) (a)

ResRel

Block

ExtOp
write

Applic
CPU

Processing
Resource

Component

StoreProc

Manager

Component
Buffer

releaseBuf

ResRel

ResRel

ResRel

Message
Async

ResAcq

freeBuf

ResAcq

storeImage

store

ResAcqComponent

Database

Processing
Resource

DB CPU

Passive
Resource

Buffer

ResRel

End

ResAcq

ResAcq

ResAcq

ResRel

getImage

passImage

allocBuf

FORK

ResAcq

cycleInit

procOneImage repetitionCount=$N

ResRel

Controller

Component
Video

Workload

closed
population=1

End

getBuffer

Start
procOneImage

Component

GetImage

Start

End

writeImg

Figure 8.13: CSMs: (a) A-S/V scenario and (b) procOneImage sub-scenario. Taken from [PW07]

8.5. Example of system analysis 139

ResAcq

ResAcq

ResAcq

allocBuf

Component
GetImage Manager

Component
Buffer

Passive
Resource

Buffer

Start

getBuffer

Workload

closed
population=1

Figure 8.14: The A/S-V scenario without deadlock

some places:

• The Cycle time is computed as the inverse of the throughput of transition t END.

• Using Little’s law, the response time (RT) of AC scenario is equal to
Mean number of tokens in P InExe

Throughput(T Arrival)

• The Normalized resource utilization of X ,
where X ∈ {GetImage,Buffer,StProc,AppCPU},
is computed as Number of X resources−Mean number of tokens in X

Number of X resources

Table 8.3 presents the results when there exists a unique instance of each resource. Exper-
iments considered 10, 20, 30 and 40 cameras in the system. GetImage and Buffer components
show to be the critical resources, they are busy almost all the time. The other resources are
not affected by the number of cameras. The A/S-V cycle time shows an increment propor-
tional to the number of cameras, while the RT is not affected. The purpose of the next studies
is to decrease the A/S-V cycle time for 40 cameras without increasing the AC response time.

Table 8.4 gives the results when the number of Buffers is increased. The A/S-V cycle
time decreases only when the number of Buffers changes from 1 to 2, this is because the
“synchronous and asynchronous parts” in the A/S-V can now work concurrently. However,
new increments in the number of Buffers do not increment the system concurrency, then the
A/S-V cycle time is not decreased. The utilization of the Buffer, which is always saturated,
confirmed this. However this resource is not the bottleneck since its increments do not de-
crease the A/S-V cycle time. So, the bottleneck has to be either the StoreProc or GetImage
components, which are fully saturated too. Actually, the bottleneck is the StoreProc because
the GetImage only works in the synchronous part and can never exist concurrent executions
of the synchronous part. This conclusion can be reached when simulating the GSPN, then
counting the mean number of tokens in place P69 in Figure 8.15, that is 0. This bottleneck in
StoreProc forces the execution of the asynchronous part to be sequential.

Our next study (Table 8.5) gives the results when there are 40 cameras, 4 Buffers and the
number of StoreProc is increased. When a new StoreProc is added, then the asynchronous

1408.ModelToModelTransformations:FromCSMToGSPN

P
1
0
8

V
i
d
e
o

C
o
n
t
r
o
l
l
e
r

t
7
7
|
E
n
d
r
e
p

A
p
p
C
P
U
_
a
c
q

t
7
5
|
C
i
c
l
e
I
n
i
t

P
6
4

A
C
Q
U
I
R
E
/
S
T
O
R
E
-
V
I
D
E
O

S
C
E
N
A
R
I
O

t
7
8
|
r
e
p
_
p
r
o
c

O
n
e
I
m
a
g
e

w
a
i
t

P
7
9
|
B
u
f
f
e
r

P
7
8
|
B
u
f
f
e
r
M
a
n
a
g
e
r

P
7
2
|
G
e
t
I
m
a
g
e

P
8
8
|
S
t
o
r
e
P
r
o
c

T
8
1
|
p
r
o
c
O
n
e
I
m
a
g
e

P
6
9

t
6
2
|
B
u
f
f
e
r
_
a
c
q

t
5
9
|
B
u
f
f
e
r
M
a
n
a
g
e
r
_
a
c
q

T
8
3
|
a
l
l
o
c
B
u
f

t
6
4
|
B
u
f
f
e
r
M
a
n
a
g
e
r
_
r
e
l

T
8
5
|
p
a
s
s
I
m
a
g
e

T
8
2
|
g
e
t
B
u
f
f
e
r

T
8
4
|
g
e
t
I
m
a
g
e

t
5
7
|
G
e
t
I
m
a
g
e
_
a
c
q

t
7
6
|
S
t
o
r
e

P
r
o
c
_
a
c
q

T
8
6
|
S
t
o
r
e
I
m
a
g
e

T
8
7
|
S
t
o
r
e

t
7
2
|
D
a
t
a
b
a
s
e
_
a
c
q

T
8
8
|
w
r
i
t
e
I
m
g

P
1
6
|
D
a
t
a
b
a
s
e

1
0

t
6
9
|
D
a
t
a
b
a
s
e
_
r
e
l

T
8
9
|
f
r
e
e
B
u
f

T
9
0
|
r
e
l
e
a
s
e
B
u
f

t
9
2
|

B
u
f
f
e
r

M
a
n
a
g
e
r
_
a
c
q

t
9
6
|
B
u
f
f
e
r
M
a
n
a
g
e
r
_
r
e
l

t
9
6
|
B
u
f
f
e
r
_
r
e
l

t
7
6
|
S
t
o
r
e

P
r
o
c
_
r
e
l

P
8
|
A
c
c
e
s
s
C
o
n
t
r
o
l
l
e
r

P
1
0
8

P
1
1
|
C
a
r
d
R
e
a
d
e
r

t
1
2
|
C
a
r
d

R
e
a
d
e
r
_
a
c
q

T
5
|
R
e
a
d
C
a
r
d

t
1
4
|
A
C
_
a
c
q

T
6
|
a
d
m
i
t

T
7
|
g
e
t
R
i
g
h
t
s

T
8
|
r
e
a
d
R
i
g
h
t
s

t
2
4
|
d
u
m
m
yt
2
5
|
d
i
s
k
_
a
c
q

T
9
|
r
e
a
d
D
a
t
a

t
2
5
|
d
i
s
k
_
r
e
l

t
3
1
|
D
a
t
a
b
a
s
e
_
r
e
l

T
1
0
|
c
h
e
k
R
i
g
h
t
s

t
3
7
|
D
o
o
r
L
o
c
k
_
a
c
q

P
3
9
|
D
o
o
r
L
o
c
k

T
4
1
|
o
p
e
n
D
o
o
r

T
5
8
|
l
o
g
E
v
e
n
t

T
5
5
|
w
r
i
t
e
_
E
v
e
n
t

T
5
9
|
w
r
i
t
e
_
r
e
c

A
C
C
E
S
S

C
O
N
T
R
O
L

S
C
E
N
A
R
I
O

P
R
O
C

O
N
E

I
M
A
G
E

S
U
B
S
C
E
N
A
R
I
O

t
7
2
|
D
a
t
a
b
a
s
e
_
a
c
q

P
1
0
|
A
p
p
C
P
U

P
1
7
|
D
B
C
P
U

t
5
1
|
d
i
s
k
_
r
e
l

t
5
2
|
D
a
t
a
b
a
s
e
_
r
e
l

t
5
3
|
A
C
_
r
e
l

t
5
4

t
4
7
|
D
a
t
a
b
a
s
e
_
a
c
q

t
5
0
|
d
i
s
k
_
a
c
q

t
5
3
|
A
C
_
r
e
l

P
2
5
|
D
i
s
k

t
_
E
N
D

T
_
A
r
r
i
v
a
l

P
_
I
n
E
x
e

T
1
0
4
|
w
r
i
t
e
B
l
o
c
k

Figure8.15:GSPNforACandA/S-Vscenarios

8.5. Example of system analysis 141

Average Normalized

(1) time resource utilization

Cycle RT GetImage Buffer StProc. AppCPU

10 0.328 0.187 0.992 0.9992 0.590 0.569

20 0.656 0.186 0.998 0.9996 0.590 0.569

30 0.985 0.182 0.997 0.9997 0.590 0.569

40 1.316 0.183 0.998 0.9998 0.592 0.570

(1) Number of cameras.

Table 8.3: GSPN results

part will allow concurrent executions, then decreasing the A/S-V cycle time. Before the
replication of the StoreProc, the Buffer was almost fully saturated, because the synchronous
part had to wait for an empty Buffer. After the replication, the Buffers are released faster and
the synchronous part does not have to wait so long for a free Buffer. It is worth noting that
now the utilization of the AppCPU has increased, what explains the slight increment in the
AC user RT. When the StoreProc changes to 3 units, the A/S-V cycle time does not decrease
anymore, so, the StoreProc is no longer the bottleneck. Therefore, to improve the system
performance with the current design, the unique option already available is to replicate the
AppCPU, which actually is saturated. Table 8.6 gives the results of these experiments. When
an AppCPU is added, both RT and A/S-V cycle time decrease their estimated values.

Average Normalized

(2) time resource utilization

Cycle RT GetImage Buffer StProc. AppCPU

1 1.316 0.183 0.998 0.9998 0.592 0.570

2 1.130 0.198 0.998 0.9940 0.998 0.675

3 1.117 0.188 0.998 0.996 0.999 0.672

4 1.100 0.186 0.998 0.997 1.0 0.673

7 1.110 0.190 0.998 0.998 1.0 0.673

10 1.111 0.178 0.998 0.998 1.0 0.673

(2) Number of Buffers.

Table 8.4: GSPN results: number of Buffers

142 8. Model To Model Transformations: From CSM To GSPN

Average Normalized

(3) time resource utilization

Cycle RT GetImage Buffer StProc. AppCPU

1 1.100 0.186 0.998 0.997 1.0 0.673

2 0.798 0.198 0.997 0.830 0.940 0.947

3 0.756 0.189 0.997 0.690 0.651 0.986

(3) Number of StoreProc.

Table 8.5: GSPN results: number of StoreProc threads

Average Normalized

(4) time resource utilization

Cycle RT GetImage Buffer StProc. AppCPU

1 0.798 0.198 0.997 0.830 0.940 0.947

2 0.640 0.171 0.997 0.620 0.665 0.589

3 0.645 0.173 0.997 0.615 0.652 0.393

(4) Number of AppCPU.

Table 8.6: GSPN results: number of AppCPU

8.5.3 LQN and GSPN results comparison

When comparing the results obtained here with those in [XWP03], we can see that they are
very close, for example, if a resource is saturated in the LQN, then it is in the GSPN analysis
too. Therefore, for this case study there is no loss of information in the CSM representation,
nor in the CSM-GSPN translation. Then, it seems that the proposed translation and its auto-
matic implementation may work as good as a performance analyzable model that has been
directly conceived by a domain expert.

Figure 8.16 shows graphically a comparison between our results and the ones
in [XWP03]. Among the results discussed in the previous section, we have chosen a rep-
resentative subset for comparison: the cycle time of A/S-V scenario, the utilization of the
StoreProc and of the AppCPU. In each graph, we represent information in Table 8.3 and in
Table 8.6. Table 8.3 is the base case of the study, while Table 8.6 is the most complex case
–the one where more resources are replicated–. Of course we compare these two cases with
their analogous in [XWP03]. For the base case, the x-axis represents tens of cameras. For the
case in Table 8.6, the x-axis represents the number of AppCPUs used.

In graph 8.16(a), for the base case our results are identical to those obtained in [XWP03]
using LQNs, indeed you cannot distinguish these two lines in the graph. Also for the base
case but in graphs (b) and (c) results are extremely close.

8.6. Conclusion 143

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

GSPN study in Table 3
Analogous LQN study

GSPN study in Table 6
Analogous LQN study

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1 2 3 4

GSPN study in Table 3
Analogous LQN study

GSPN study in Table 6
Analogous LQN study

(a) cycle time (b) utilization of StoreProc

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4

GSPN study in Table 3
Analogous LQN study

GSPN study in Table 6
Analogous LQN study

(c) utilization of AppCPU

Figure 8.16: Comparison with the results in [XWP03]

Regarding the most complex case, results in (a) and (b) converge for 2 and 3 AppCPUs,
however they are different when just one AppCPU is considered. Results in part (c) are very
close for GSPNs and LQNs.

Finally and not represented in these graphs, it is worth noting that we have also compared
the response time of the Access Control scenario. It has been almost constant for all studies.
However, in our study, these response times are around 180 milliseconds, while in [XWP03]
are around 130 milliseconds. Even if the requirement was satisfied in both studies, there is a
substantial gap between results; maybe not in terms of absolute value (they are 50 millisec-
onds of difference) but in terms of relative values (our obtained RT is around 38% higher than
their one).

8.6 Conclusion

This chapter has shown part of our research work in model-to-model transformations; the part
that uses the intermediate model CSM. The contributions of this chapter are: first, we have
presented a theory underlaying the tool (CSM-GSPN transformation patterns), preliminary
ideas were given in [WPP+05]. Second, we have developed a tool that implements this
theory and we have shown the main points of its development. Lastly, we put the tool to work
and we applied the model transformation to a real case study from literature. We evaluated

144 8. Model To Model Transformations: From CSM To GSPN

the generated GSPN and we compared the performance estimation obtained with the LQN
results in [XWP03].

Chapter 9

Model To-Model Transformations:
D-KLAPER and GSPNs

This chapter describes the second part of our research in model-to-model transformations,
which is centered in the intermediate language D-KLAPER. Since this language was con-
ceived as resource-oriented, it is specially well-suited for representing software models that
are engineered following the component-based paradigm. We first present a slight exten-
sion of D-KLAPER metamodel that enables it to create models that represent the reactive
behaviors of self-adaptive systems. Later in this chapter, there are presented theories for the
model-to-model transformation chain from UML state machine diagrams to the extension of
D-KLAPER and from the extended D-KLAPER to GSPNs.

9.1 Motivation

Self-adaptive systems, to the extent that they maintain ongoing interactions with their envi-
ronment and are able to react to external stimuli, are reactive systems. Using this membership,
we describe model transformations for the particular concepts of reactive systems that can be
directly used by reactive self-adaptive systems.

Reactive systems cannot be described in terms of a single function that maps inputs to
outputs. The response that a reactive system provides to an input event, for example, depends
on the current state of the system, which, in turn, is a function of the already received inputs
[HP85]. Additionally, the system may offer services or behaviors that can be invoked, also
by third parties, in the form of events to which the system reacts. Some examples illustrate
them. Real-time systems, after time-outs, awake tasks by sending events, so they react to
accomplish their works. An agent may be requested to perform some behavior by means of a
call to an event it offers. Service software reacts to incoming calls and manages them to offer
adequate responses.

At this regard, we identified three necessary and intrinsic abilities of systems that show
reactive behavior:

145

146 9. Model To-Model Transformations: D-KLAPER and GSPNs

(a) Their ability to suspend their execution until the eventual reception of a signal or
event.

(b) Their ability to accept and manage a signal/event while they are doing some com-
puting work.

(c) Their ability to send signals/events to their components or to another systems for
them to react.

Designing and maintaining the functionality of such systems is a challenging task and so are
their extra functional properties. In this respect, this chapter describes our contribution to sup-
port the design and management of reactive software systems by means of the model-based
analysis of their effectiveness, focusing in particular on their ability to meet extra functional
and QoS requirements related to performance and dependability attributes.

The idea of exploiting MDD methodologies for QoS assessment has emerged in recent
years (see, for example, [AGM08, BKR09, MM06] and papers in [wos10]), but existing
MDD-based methodologies for the generation of QoS analysis models did not consider the
modeling of adaptable reactive systems yet. Following MDD methodologies and the ap-
proach of two-step transformation process from design oriented to analysis oriented models,
we propose model-to-model transformations for QoS assesment of reactive systems. As pivot
language between transformations we propose the utilization of an extension of D-KLAPER
[GMS07a, GMS07b], which is a resource oriented intermediate language.

This chapter builds on and extends results presented in [GMR09, GMS07a, GMS07b].
Specifically, we extend the intermediate modeling language presented there with a new simple
feature aimed at modeling the specific aspects of reactive systems. The proposed extension
(illustrated in Section 9.2) follows the underlying philosophy of this intermediate language
definition maintaining it as minimal as possible.

The chapter is organized as follows. Section 9.2 presents the core concepts of D-KLAPER
and the proposed extension. In Section 9.3, we describe the proposed transformation path and
we show how this notation can be used to model reactive systems. In Section 9.4, it is shown
the practical application of the presented ideas trough a simple example of adaptable reactive
system. Finally, Section 9.5 concludes the chapter.

9.2 The D-KLAPER intermediate model

D-KLAPER [GMS07b] is defined as a MOF (Meta-Object Facility) compliant metamodel,
where MOF is the metamodeling framework proposed by the Object Management Group
(OMG) for the management of models and their transformations within the MDD approach
to software development [KWB03]. We point out that D-KLAPER is not intended to be di-
rectly used by system designers. Indeed, in the modeling framework its authors envisaged,
D-KLAPER plays a role analogous to that played by the bytecode language in a Java envi-
ronment. Hence, D-KLAPER provides a purposely minimal set of elementary and abstract
concepts and notations. More expressive concepts and notations used by system designers
to build their models should then be mapped to D-KLAPER, with the support of automatic

9.2. The D-KLAPER intermediate model 147

model transformation tools. In particular, D-KLAPER is built around these two elementary
abstract concepts: (i) a software system (and its underlying platform) can be modeled as a
set of resources which offer and require services; (ii) a system change can be modeled by a
change in the binding between offered and required services.

Hereafter, we illustrate the main classes of the D-KLAPER metamodel illustrated in Fig-
ure 9.1; for a complete description of D-KLAPER the interested reader can refer to [GMR09].
The red line in Figure 9.1 highlights the proposed extension.

Resource and Service metaclasses provide an abstract representation of the software sys-
tem and the part of its environment consisting of the platform where it is deployed. This
representation is based on the consideration that systems are often structured according to a
layered architecture, where components at a given layer actually play the role of resources
exploited by upper layers; hence, this overall architecture is modeled as a set of Resources
which offer Services (services, in turn, may require the services of other resources to carry
out their own task). A D-KLAPER Resource is thus an abstract modeling concept used to rep-
resent both software components and physical resources like processors and communication
links.

Workload metaclass models the part of the system environment consisting of the demand
arriving to the system from external users (which may be human beings, or other systems),
represented by a set of Workloads.

The metaclasses described above share the Behavior metaclass, which provides a com-
mon representation for the dynamics of the activities occurring within each submodel. As
shown in Figure 9.1, a Behavior is modeled as a directed graph of Steps. Each Step may be
a:

• Activity step: it models an activity that may take time to be completed, and/or which
may fail before completion, thus providing the basic information for performance or
dependability analysis. A special kind of Activity is a ServiceCall, which models the
request for the service provided by some Resource. A ServiceCall may have Param-
eters. D-KLAPER Parameters are intended to be an abstraction of the parameters ac-
tually used in the service requests addressed to hardware or software resources. For
example, a “List” parameter sent to some list processing resource could be abstracted
by an integer parameter representing its size, under the assumption that this is the only
relevant information for performance analysis purposes. The relationship between a
ServiceCall and the actual recipient of the call is represented by means of instances of
the Binding metaclass.

• Control step: it models transition rules from step to step, like a branch or a fork/join.

• Reconfiguration step: it models a basic change operation, corresponding in D-
KLAPER to the addition or removal of a Binding between a ServiceCall step and
the corresponding Service. Only the behavior associated with a TriggerProcess or an
AdaptationService is allowed to contain Reconfiguration steps.

The semantics of a Behavior are similar to that of other behavioral models like Execu-
tion Graphs [SW02a] or UML Activity Diagrams [Obj02]. As D-KLAPER is intended to
support the stochastic analysis of performance or dependability attributes, timing, failure and

148 9. Model To-Model Transformations: D-KLAPER and GSPNs

control information associated with steps of a behavior is specified according to a stochastic
setting: thus, information like the time to failure or the time to completion of an Activity
are defined by suitable random variables; analogously, control information like the selection
among alternative transitions, or the number of repetitions of a loop is expressed by suit-
able probabilities and random variables. D-KLAPER supports the specification of random
variables in different ways, ranging from their mean value, to higher order moments, up to
the complete distribution. It depends on the target QoS analysis methodology whether this
information can be thoroughly exploited (e.g., analytic methodologies for queueing network
models usually consider only mean values).

9.2.1 Metamodel extension

The D-KLAPER metamodel has been extended with a new association between Binding and
Transition shown with a red line in Figure 9.1. A D-KLAPER Transition establishes the
execution order of two or more Steps. The new association is introduced to allow a Step to
wait for the execution of its successor/s, so, now a successor Step may not execute immedi-
ately after its predecessors complete. Now, a Step can wait the execution of a ServiceCall
associated with the same Binding as the Transition, then accounting for the first one of the
three abilities studied for reactive systems, (showed as (a) in section 9.1 list), i.e., to suspend
system execution until the eventual reception of an event represented by the association be-
tween Binding and ServiceCall. Summarizing, the new association allows gaining the ability
(c) since the system now can send events, precisely through ServiceCalls which, by means of
Bindings, are bound to Transitions. On the other hand, ability (b) is also gained since a Step
can be interrupted when any of its out Transitions receives an event through their associated
Binding due to the occurrence of the bound ServiceCall.

Some issues deserve to be clarified:

• A Transition without associated Binding is “taken” when its precedent Step (role from)
finishes its execution.

• A Transition with associated Binding is “active” when its from Step is executing. A
Transition with associated Binding is “taken” when it is active and the ServiceCall as-
sociated to its same Binding is performed. When a Transition with associated Binding
is taken, the system: 1) interrupts its from Step; 2) deactivates itself and all the Transi-
tions with the same from as it; and 3) activates the to Step. So, when the ServiceCall
associated to the Binding of an “active” Transition takes place, the execution is shifted
immediately from its from to its to Step.

• It is worth noting that since each Binding can be associated with several Transitions,
it can happen that these transitions could be concurrently active and waiting for the
ServiceCall execution to be taken. We have decided that only one of these Transitions
may be taken (the choice will be non-deterministic). Consider that another alternatives
could be taken into account, for example: 1) to allow to fire all Transitions associated
with the same Binding; 2) to perform a probabilistic choice by assigning an attribute
“probability” to each Transition.

9.2. The D-KLAPER intermediate model 149

0..1

KlaperModel

Workload

Control Start End Activity

Branch Fork Join

ActualParam

Binding

Acquire Release

Step

Behavior

Service

Resource

0..1

0..*

Reconfig

CreateBinding DestroyBinding

0..*

{ordered}
actual

Param

ServiceCall

0..*
0..*

0..1
Transition

in 0..*

out 0..*

0..*

0..*
 0..1to

0..1 from

0..1

NestedBehavior

0..1

resource

offeredService

0..1
behavior

Figure 9.1: D-KLAPER metamodel

We show through four examples, depicted in Figure 9.2, that the proposed extension is
able to model the characterizing points of reactive systems introduced in Section 9.1. They
show two activities, activity1 and activity2 in sequence. In this Figure, the new
associations between Bindings and Transition are depicted as dotted lines.

Part (a) in Figure 9.2 depicts these two activities as a fragment of a workflow with nei-
ther interruption nor suspension abilities, i.e., the typical order between activities that was
already possible to model with D-KLAPER. Part (b) extends the previous one considering
interruption of activity1 due to the reception of a signal (signal1). The activation of
the outgoing Transition from activity1 which is associated to the Binding is made at the
same time as the activation of the activity itself. Therefore, if signal1 is received (i.e. it
is executed the ServiceCall associated with the same Binding) while activity1 is execut-
ing, the Transition associated with the Binding is taken, then deactivating immediately the
execution of activity1 and starting also instantaneously the execution of activity2.
In general, the activation of an outgoing Transition with associated Binding from a Step is
made at the same time as the activation of the Step itself. Note that the interruption due to

150 9. Model To-Model Transformations: D-KLAPER and GSPNs

a signal could lead the execution to another Step different to activity2, but it has been
used the same to keep the example simple. If signal1 is not received, then activity1
finishes its execution, the Transition without associated Binding is taken then deactivating
both activity1 and the Transition with associated Binding, and just after activity2 is
activated and starts its execution.

Part (c) in Figure 9.2 extends part (a) considering suspension of activity2 until an
event/signal reception. Suspension is modeled with a Step whose outgoing Transitions are
associated with a Binding entity. In this case, activity1 and activity2 are connected
by means of an intermediate activity called inSuspension. Execution of activity1
is always completed (non interrupted) and later the execution can be suspended until the
reception of signal1, which is necessary to proceed with activity2.

Part (d) in Figure 9.2 extends part (a) by considering the mix of both interruption and
suspension. On the one hand, if activity1 is in execution and signal1 is received, the
execution is interrupted, the Transition is taken and activity2 is activated to execution.
On the other hand, if activity1 completes but signal1 has not been received yet, then
the execution is suspended until reception of such signal. In short, activity2 immediately
starts its execution if and only if signal1 is received. Note that part (d) is almost the
same as part (b) but removing the transition without associated Binding (second link between
Activity1 and Activity2) in order to gain the suspension property.

9.3 The model-driven framework for reactive systems

In this section we follow the key points of an MDD-based approach to the generation of a
performance/reliability model for a reactive system (explained in section 9.3.1). We first give
a short overview of the selected design model (section 9.3.2) and then of the two transforma-
tions steps (sections 9.3.3 and 9.3.4) built around D-KLAPER.

9.3.1 The basic methodology

As we mentioned previously, the goal of an intermediate language is splitting the complex
task of deriving an analysis model (e.g., a Petri net or a queueing network) from a high
level design model (expressed using some design oriented notation) into two separate and
presumably simpler steps.

The input of our framework is represented by a design-level model of a reactive system.
There exist some non-formal languages and notations that allow to model reactive behavior
in software systems. Among them Harel statecharts [Har87] or UML state machines [Obj02].
We select UML state machines as design models since they have become a de facto standard
for software reactive behavior specification and we show how the proposed D-KLAPER ex-
tension is able to tackle the new design model characteristics. In the next subsection, we
briefly recall the UML state machines syntax, and identify how they address the three identi-
fied abilities for reactive behavior (suspension, interruption and event sending).

Independently from the selected notation, design models may lack performance and/or
reliability information which is necessary to derive meaningful analysis models. Therefore,
these models must be annotated with missing information about non-functional attributes.

9.3. The model-driven framework for reactive systems 151

from

to

Yes

S
u

sp
en

si
on

Interruption

Yes

(b)

(c) (d)

from

to

Activity
name="Activity1"

λinternalExecTime= 1

Activity
name="Activity2"
internalExecTime= 2λ

from

to

Binding

from

to

from

to

from

to

Activity
name="Activity1"

λinternalExecTime= 1

Activity
name="Activity2"
internalExecTime= 2λ

Binding

from

to

Activity
name="Activity1"

λinternalExecTime= 1

Activity
name="Activity2"
internalExecTime= 2λ

from

to

Binding

Activity
name="Activity1"

λinternalExecTime= 1
from

to

Activity
name="Activity2"
internalExecTime= 2λ

from

to

from

to

from

to

from

to

from

to

from

to

from

to

from

to

No

No

(a)

from

to

Activity
name="InSuspension"
internalExecTime=0

from

to

from

to

ServiceCall

ServiceCall

ServiceCall

 .signal1"
serviceName="Service1.

isSynch=false

name="sendSignal1"

isSynch=false
 .signal1"

isSynch=false
 .signal1"

serviceName="Service1.

serviceName="Service1.
name="sendSignal1"

name="sendSignal1"

Figure 9.2: D-KLAPER examples for combination of Interruption/Suspension

In the case of UML design models, annotations can be added following the MARTE-DAM
profile [BMP11].

152 9. Model To-Model Transformations: D-KLAPER and GSPNs

At this point, we generate D-KLAPER models starting from the design models with
performance/reliability annotations using model-to-model transformations and following the
main steps illustrated in [GMS07a].

Finally, we can generate from the D-KLAPER model a performance and/or reliability
model expressed in some machine interpretable notation, and then we can solve it using
suitable solution methodologies. In our framework, we take advantage from the already
defined translations from D-KLAPER into formalisms that can adequately represent reactive
behavior, such as Petri nets [PPM10], and we modify and update the translation process to
effectively support the reactive property added to D-KLAPER.

The predictions obtained from the analysis of performance and/or reliability models ob-
tained at this step can be exploited to perform what-if experiments and to drive design deci-
sions leading to meet the desired quality requirements.

9.3.2 UML state machines as reactive systems models

A UML state machine is made of states and transitions. There are different kind of states
(e.g., pseudostate, simple or composite). States own outgoing transitions that target another
states. So transitions link states and are made of two parts. The reactive part that specifies
the event that triggers the transition, and the proactive part that specifies the event that will
be send. When the reactive part is empty, it is called automatic and taken as soon as the
activity completes its execution. In a state, it can also be specified an activity, which is meant
to spend some computation time.

A UML state machine can specify the three abilities identified for reactive behavior:

• There can be sent events between state machines. That events can be produced among
others by the proactive part of a transition.

• Execution interruption is modeled by a state that when executing an activity accepts an
event (obviously an event that can trigger one of its outgoing transitions).

• The execution can be suspended in a state, but it is necessary condition that all its
outgoing transitions own reactive part, i.e., a trigger event. Assuming that, there are
two ways for modeling suspension: (a) If the state has not activity, then the execution
is suspended upon entrance in the state; (b) If it owns activity, then the execution is
suspended from the activity termination to the arrival of an event triggering whatever
transition.

Note that the purpose of this work is not the comprehensive transformation of every
characteristic of UML state machines into D-KLAPER model, but the enhancement of D-
KLAPER to deal with reactive systems. Hence, the use of simple UML state machines is
enough to show the three studied properties of reactive systems. Herein, it is carried out the
transformation of such simple UML state machines; being out of the scope of this work com-
plex state machines, such as those with composite states, concurrent regions, deferred events,
or history states.

9.3. The model-driven framework for reactive systems 153

9.3.3 Transforming UML state machines into D-KLAPER models

In this section we present how a generic simple state of a UML state machine, see Figure 9.3,
is translated into a D-KLAPER model, see Figure 9.4. Considering that a UML state machine
is an aggregation of states, together with its outgoing transitions, we could easily obtain the
D-KLAPER model corresponding to a UML state machine made of simple states.

We describe the translation through Figure 9.4, that obviously follows the execution
model of a simple state proposed by UML. First, upon state entrance, the entry action has to
be executed, so it is converted into a D-KLAPER activity that has an internalExecTime
equals to zero. Then, the doActivity is also converted into a D-KLAPER activity but in this
case the internalExecTime has to be greater than zero. The translation of an event-
driven outgoing transition is more laborious:

• the reactive part is represented in D-KLAPER by a link to a Binding.

• the proactive part in UML can be specified either by an action or by the sending of an
event. In D-KLAPER, the former will be obviously translated as the entry actions, and
the latter with a ServiceCall.

• finally, the exit action specified in the state is also translated as a part of the transition,
see Figure 9.4.

The translations for internal transitions and automatic outgoing transitions are the same as
the previous one but considering that:

• the internal does not executes the exit action.

• the automatic has not reactive part.

Finally, it is interesting to remark that:

• wherever an action (entry or exit) can be specified, then it can be substituted by the
sending of an event. In fact, that is what happened in the proactive part of a transition.

• the translation of the exit action will appear as many times as outgoing transitions exist
in the state (both automatic and event-driven).

Exit / Action3

INT: Event1/Action2

DO:Activity1

entry / Action1

GenericState

/Action4

Event2 /stateMachine2. Event3

Figure 9.3: UML model of a generic state

154 9. Model To-Model Transformations: D-KLAPER and GSPNs

from

.Event3"

ServiceCall

isSynch=false
from

to

serviceName="stateMachine2.

\ENTRY

INCOMING TRANSITION

EVENT−DRIVEN

TRANSITION
AUTOMATIC

INTERNAL TRANSITION

\EXIT

\EXIT

TRANSITION

DO

internalExecTime=0
name="Action3"

Activity internalExecTime=0
name="Action3"

Activity

Binding

Binding

to

toto

from

to

from

name="Activity1"
Activity

to

from

to

name="Action2"
internalExecTime=0

to

Activity

internalExecTime=x >0

from

from

name="Action1"
internalExecTime=0

Activity

Activity

from

internalExecTime=0
name="Action4"

from

Figure 9.4: D-KLAPER model of a generic state

9.3.4 Transforming D-KLAPER models into Petri nets

D-KLAPER can be transformed to a number of analysis models, for example Deterministic
and Stochastic Petri nets (DSPN) [AMC87], that (1) will allow the evaluation of performance
and reliability and (2) since they are a formal method, the source model can also gain a
representation with formal execution semantics.

A DSPN system is a 8-tuple S = (P, T,Π, I, O, H,W,M0), where P is the set of
places, T is the set of transitions (immediate and timed), P ∩ T = ∅; Π : T → IN is
the priority function that assigns a priority level to each transition. I,O,H : T → 2P are

9.4. Example application 155

the input,output, inhibition functions, respectively, that map transitions onto the power set
of P ; W : T → IR is the weight function that assigns rates to exponentially distributed
transitions, constant delays to deterministic transitions and weights to immediate transitions.
M0 : P → IN is the initial marking of the net.

The Petri nets in Figure 9.5 correspond to the translation of the D-KLAPER in Figure 9.2
which indeed introduced the three abilities we identified for reactive behavior.

The event sending ability is represented in parts (b), (c) and (d) in Figure 9.5 by means
of ServiceCall transitions, which are in charge of create a token in the Binding place.
The suspension ability is represented in parts (c) and (d) by means of TransitionBind. In
these parts, TransitionBind are the only ones that link Activity1 with Activity2
Petri net fragments. Therefore the execution flow cannot reach Activity2 until the firing
of such transitions, which are further waiting for the creation of a token in Binding places.
Interruption ability is represented in parts (b) and (d) through arcs between Activity1
places and TransitionBind. In these parts, if a token in Binding place is created while
Activity1 is executing, the token will be removed from the input place of Activity1,
then interrupting it, and a token wil be created in Activity2 place. The translation of the
rest of D-KLAPER metaclasses, which are not illustrated in this chapter, follows the ideas
introduced in [PPM10].

9.4 Example application

In this section, we illustrate reactive behavior with a simple example of a dynamic software
system. UML state machines and a sequence diagram describe the behavioral design of the
system, they are also extended with a profile, MARTE-DAM [BMP11], that introduces per-
formance and reliability system views. These diagrams are translated into a D-KLAPER
model which preserves the desired reactive properties and also accounts for performance and
reliability. Finally, the translation of D-KLAPER model into Petri Nets and their analysis
help to verify, in early life-cycle stages, whether the system fulfills some performance and
cost requirements taking also into account some dependability properties such as availabil-
ity/reliability.

9.4.1 Structural specification

A UML component diagram extended with MARTE-DAM annotations [BMP11] is depicted
in Figure 9.6(a). Component C1 offers service S0 and perform calls to S1, indeed there are
two choices to invoke S1:

• a) as an Internet service that comes at a price;

• b) as a COTS component that has already been integrated and executes for free, there-
fore being the default option.

C1 is made of four classes as detailed in Figure 9.6(b). The C2 COTS component relia-
bility specification warns about a Mean Time To Failure (MTTF) equal to 105 time units (tu),
and a Mean Time to Repair (MTTR) of 5 · 103 tu.

156 9. Model To-Model Transformations: D-KLAPER and GSPNs

S
u

sp
en

si
on

Interruption
Yes

(b)

(d)(c)

Yes

λ1

λ2

λ1

λ1

λ2

λ1

TransitionBind

λ2

λ2

TransitionBind

TransitionBind

=1π

=1π

=2π

=2π =2π

=2π=1π

No

Activity1

Activity2

ServiceCall

(a)

ServiceCall

Binding

No

ServiceCall

Activity1

Activity2

InSuspension

Activity2

Activity2

Binding

Activity1Activity1

Binding

lostEvent

lostEvent

lostEvent

Figure 9.5: Petri net examples for combination of Interruption/Suspension/EventSending (transforma-

tion of Figure 9.2)

9.4. Example application 157

{PAcapacity=1}

{PAcapacity=1}

S0

<<PExecutionStep>>
{serviceDemand=200;}

S0

ProviderSelector

Monitor S1

<<delegates>>

(b)

S0server

<<delegates>>C1

Main

 3{MTTR=5·10

 5DaFailure={MTTF=10 }

DaRepair= , distribution=’exp’};

C1

C2

Internet
Provider

S1

(a)

<<PExecutionStep>>
{serviceDemand=120;}

<<DaComponent>>

Figure 9.6: Components diagrams.

9.4.2 Reactive specification

Sequence diagram in Figure 9.7 offers a high-level view of the interactions in the system.
When a Client asks for S0, the S0server class manages the request, then creating an instance
of a Main object. The Main object cooperates with the system Monitor and ProviderSelector
to effectively resolve the request. Figures 9.8, 9.9 and 9.10 respectively depict the UML
state machines of the Main, Monitor and ProviderSelector. The behavior of ProviderSelector
represents the AdaptationService of the system since it decides whether S1 service calls will
be requested to C2 or to InternetProvider. classes.

The Main state machine will help to illustrate suspension and event sending. Suspension
is accomplished by CallingS1 state, when it is reached, the object will wait for the eventual
arrival either of restart or S1response. Note that being the entry action execution
immediate, the object is truly waiting for an event to react. Regarding event sending there are

158 9. Model To-Model Transformations: D-KLAPER and GSPNs

several examples in this state machine, e.g., before entering in Calling state, Main sends the
start event to the Monitor.

The other ability we identified for reactive behavior, i.e. interruption, is illustrated in
the Monitor state machine. When monitoring, the stop event can interrupt the time-out
execution to bring the Monitor to idle.

<<SWresource>>

C1::S0server
{PAcapacity=1}

<<SWresource>>

C1::S0main

S0request

S0response

O

O

O

create(Providerselector,monitor)

response

{pattern=(open=(interArrivalTime=(exp(500,tu))))}
<<GaWorkloadEvent>>

<<GaAcqStep>>
{acqRes=C1,

resUnits=1}

<<GaRelStep>>

resUnits=1}
{relRes=C1,

Figure 9.7: Sequence diagram representing the S0 requests.

9.4.3 Translation into D-KLAPER models

Figure 9.11 depicts the D-KLAPER corresponding to the sequence diagram in Figure 9.7,
here it is important to note how the system workload is represented.

Figures 9.12, 9.13 and 9.14 depict D-KLAPER models for the UML state machines of
the Main, monitor and ProviderSelector respectively. In the D-KLAPER model of the Main
class, Figure 9.12, the call and the response to the external service S1 (CompBinded.S1 and
S1response in the UML state machine) are translated as service calls. In the D-KLAPER
model of the ProviderSelector class, Figure 9.14, the dashed part represents the necessary
bindings for S1 to be called, note that this is not yet specified in the UML model. However
we assume this behavior is associated with the entry and exit actions in the ProviderSelector
state machine states. Hence, note that this fact implies a D-KLAPER manual translation.

9.4. Example application 159

<<PaStep>>

{hostDemand = 70,ms}

<<PaStep>>

{hostDemand = 90,ms}

Activity1

DO:Activity1

DO:Activity3

S1response / monitor.stop

/monitor.start
restart

Activity3

entry:CompBinded.S1

create(ProviderSelector,monitor)

/S0server.response

CallingS1

Figure 9.8: Main UML State machine

/providerSelector.notAvailable

start

stop

MonitoringIdle

τDO:timeout()

Figure 9.9: Monitor state machine

DO:timeout(5000)

UsingInetProviderUsingC2

notAvailable / main.restart

entry / activateC2

exit / deactivateC2

entry / activateInetProvider

exit / deactivateInetProvider

Figure 9.10: ProviderSelector state machine

Finally, the provider components D-KLAPER models appear in Figure 9.15. These two

160 9. Model To-Model Transformations: D-KLAPER and GSPNs

models are obtained automatically translating the component diagram in Figure 9.6.

scheduling=FIFO

Start

from

to

name="S0request"

Service

type=open

Workload

arrivalProcess=0.002

ServiceCall

resourceType="main"

isSynch=true
serviceName="S0request"

from

to

End

Behavior

Resource

type="C1"
name="C1::S0server"
capacity=1

Figure 9.11: D-KLAPER model representing the sequence diagram in Fig. 9.7.

9.4.4 Translation into Petri nets and evaluation

Now, we proceed to evaluate the example, so to acquire knowledge and validate some non-
functional properties. Concretely, the mean response time of S0 and the mean monetary cost
for an S0 execution. Requirements of the system established that “the mean response time of
S0 has to be less than 700 time units (tu)” and “the mean cost for serving an S0 request must
not exceed two monetary units (mu)”. A system restriction says that the InternetProvider
offers each S1 service call at a cost of 10 mu.

The D-KLAPER models in Figures 9.11 to 9.15 have been translated into a Determin-
istic and Stochastic Petri Net (DSPN) [AMC87], following the patterns in Figure 9.5 and
ideas from [PPM10]. The obtained DSPN is then used to evaluate system performance and
execution costs.

Variable τ in Figure 9.9 represents a threshold for the system to acknowledge C2::S1
calls; upon expiration the monitor assumes that C2 is no longer available. The higher τ is,
the more C2 will be used, then it may happen to the system to wait for C2 while in fact it is
unavailable. However, the lower τ is, the more the InternetProvider will be used, in this case
the monitor may predict C2 unavailability when it can be only performing an unusual slow
service.

Figure 9.16 (a) depicts S0 mean response time w.r.t. τ . The performance requirement
is met from τ = 440 (693.7tu) to τ=1640 (699.58tu) and a minimum is obtained around
τ = 840. Hence, timeouts lower than 440 confuse the system as explained in the previous
paragraph, i.e., predicting erroneous C2 unavailabilities. However, timeouts higher than 1640
lead the system to wait for C2 even when it is dropped.

9.4. Example application 161

to

to

from

to

from

to

from

to

ServiceCall
serviceName="monitor.start"
isSynch=true

ServiceCall
resourceType="ServiceProvider"

isSynch=true
serviceName="S1"

from

to

Binding

Binding

ServiceCall
serviceName="monitor.stop"
isSynch=false

from

to

internalExecTime=90
name="activity3"

Activity

from

to

serviceName="S0server.response"
isSynch=false

ServiceCall

from

to

End

name="S0request"
ServiceResource

scheduling=FIFO
capacity=*

type="main"
name="main"

internalExecTime=70
name="activity1"

Activity

from

from
internalExecTime=0.0
name="CallingS1"

Activity

Behavior

Start

Figure 9.12: D-KLAPER model representing the main class.

Figure 9.16 (b) depicts the mean cost of executing S0 w.r.t. τ . The function decreases
because, as explained, C2, the free component, is more used for higher values of τ . The
requirement is fulfilled for τ values upper than 520, since then, the mean cost is less than 2
mu.

Considering these two graphs, we observe that the non-functional requirements are met
from τ=520 to τ=1640.

162 9. Model To-Model Transformations: D-KLAPER and GSPNs

Start
from

to

internalExecTime=0.0
name="Idle"

Activity

from

to

Binding Binding

Workload
population=1

Behavior

from

to

Activity
name="Monitoring"
internalExecTime= τ

to

from

from

to

name="sendNotAvailable"
serviceName="ProviderSelector."

.notAvailable"

ServiceCall

isSynch=false

Figure 9.13: D-KLAPER model of the monitor state machine (in Figure 9.9).

9.5 Conclusion

In this chapter we have presented a Model-Driven approach whose goal is to support the
QoS assessment of adaptable reactive systems. The approach follows the two-step model
transformation process passing through the intermediate model D-KLAPER. We have ex-
tended the modeling power of D-KLAPER to capture the core features (from a perfor-
mance/dependability viewpoint) of an adaptable reactive system model. This approach can
be automated and implemented as a part of the KlaperSuite [CFD+11].

9.5. Conclusion 163

Start
from

to

name="ActivateC2"
Activity

name="DeactivateC2"
Activity

from

to

from

to

name="ActivateInetProvider"
Activity

from

to

from

to

Binding

Workload
population=1 Start

from

to

from

to

End

Start
from

to

from

to

End

Start
from

to

from

to

End

Start
from

to

from

to

End

Behavior

to

from

name="SendFail"
ServiceCall

ServiceName=main.restart
isSynch=false

name="DoTimeout"
Activity

InternalExecTime=5000

Activity
name="DeactivateInetProvider"

to

NestedBehavior

name="BindC2"

TargetService=C2.S1
SourceStep=main.S0request.S1serviceCall

CreateBinding

NestedBehavior

DestroyBinding

TargetService=C2.S1
SourceStep=main.S0request.S1serviceCall
name="UnbindC2"

SourceStep=main.S0request.S1serviceCall

CreateBinding

name="BindInetProvider"

TargetService=InternetProvider.S1

NestedBehavior

NestedBehavior

DestroyBinding

TargetService=InternetProvider.S1

name="UnbindInetProvider"
SourceStep=main.S0request.S1serviceCall

from

Figure 9.14: D-KLAPER model of the providerSelector statechart (in Figure 9.10).

164 9. Model To-Model Transformations: D-KLAPER and GSPNs

−5

(a) (b)

name="S1"
Service

Start
from

to

Behavior

from

to

End

Start
from

to

name="S1"
Service

Resource
type="S1provider"
name="C2"
capacity=1
scheduling=FIFO

Behavior

from

to

End

name="S1execution"
internalExecTime=120

Activity

internalFailTime=5000
internalFailProb=10

Resource
type="S1provider"
name="InternetProvider"
capacity=*
scheduling=FIFO

name="S1execution"
internalExecTime=200

Activity

Figure 9.15: D-KLAPER models representing S1 providers: (a) C2 (b) InternetServiceProvider

9.5. Conclusion 165

Figure 9.16: Results of the system evaluation

166 9. Model To-Model Transformations: D-KLAPER and GSPNs

Chapter 10

Conclusion

In this thesis we have presented our research on the new and exciting paradigm of self-
adaptive software.

Firstly, we believe it is very favorable the usage of an architetural approach for self-
managed systems since it leverages greatly the rest of the research. Therefore, we tuned
the concepts already proposed in a three-layer architecture for self-managed systems for the
specific type of sofware that uses self-management capabilities to satisfy its extra functional
requirements.

Using the architectural approach, we proposed solutions for the analysis and management
of extra functional properties of software systems -such as performance and energy consump-
tion. Moreover, we pursued reliable analysis results rather than specific ones coming from
ad-hoc or newly implemented evaluation techniques. In order to meet that objective, the re-
sults we present are based on the utilization of formal methods such as stochastic Petri nets,
hidden Markov models, or Markov-modulated Poisson processes. On the one hand, these
formal methods provided us with accepted and verifiable analysis techniques whereas they
allowed us to be confident of their results accuracy. That fact facilitated a part of our work
because we could take advantage of the extensive research work already proposed for model-
ing and analyzing software systems using formalisms and trust its results. On the other hand,
some modeling challenges had not been yet addressed; probably owing to its specific mani-
festation in self-adaptive systems -rather than to the broader software QoS analysis- and the
novelty of these systems. One of these challenges is the modeling of the dynamic workload.
We built-on theories for modeling workload already proposed and we presented a modeling
approach that included in the formal model some important concepts that are specific to self-
adaptive systems; for example, the transient times between workload changes. This research
has produced [PPMB10, PPMM11a, PPMM11b, PPM11, PPMM12a, PPMM12b] published
works.

For obtaining a formal model to analyze, we have followed Model-Driven Engineering
principles. According to the recent proposal regarding the spliting of the transformation be-
tween software design model and analyzable model into two steps, we have used intermediate
models already proposed for extra functional properties representation. We have presented

167

168 10. Conclusion

translation theories from two of these intermediate models to stochastic Petri nets. This re-
search has produced [PPM10, PPMMG10] published works.

We have performed different experiments and examples using the proposed theories. We
have presented the results of these experiments, which show that the enhancement of a soft-
ware system with self-adaptive capabilities can be an opportunity for improving its extra
functional properties.

The research performed in this thesis helps software developers to predict the expected
behavior of the self-adaptive systems they construct. Furthermore, this thesis proposes the-
ories for carrying out one of the most challenging tasks of self-adaptive software systems
development, the adaptation plan generation considering tradeoffs between different extra
functional properties of software.

Thinking of future work, there is plethora of challenges in sight. For example, research on
fine-grained evaluation techniques for extra functional properties of self-managed software
different from the ones we deeply worked in this thesis -e.g., security or safety. Furthermore,
owing to the quick development of sofware engineering concepts for self-adaptive software,
more challenges are daily arising. Some examples are the research on the prediction of self-
adaptation capabilities in virtualized systems; or the predicition of software behavior when
applying self-management theories to sofware services that are executed in the cloud. The
analysis of the latter situation is delicated because it should be considered that the execution
infrastructure offered by the cloud computing providers is in turn self-managed, and probably
depending on the service behavior.

Relevant Publications Related to
the Thesis

[PPCM13] Diego Perez-Palacin, Radu Calinescu, and José Merseguer. log2cloud:
Log-based Prediction of Cost-Performance Trade-offs for Cloud De-
ployments. To appear on SAC’13.

[PPM10] Diego Perez-Palacin and José Merseguer. Performance evaluation of
self-reconfigurable service-oriented software with stochastic Petri nets.
Electronic Notes in Theoretical Computer Science, 261:181 – 201,
2010. Proceedings of PASM’09.

[PPM11] Diego Perez-Palacin and José Merseguer. Performance sensitive self-
adaptive service-oriented software using hidden Markov models. In
Proceedings of WOSP/SIPEW ’11, pages 201–206, 2011.

[PPMB10] Diego Perez-Palacin, José Merseguer, and Simona Bernardi. Perfor-
mance aware open-world software in a 3-layer architecture. In Pro-
ceedings of WOSP/SIPEW ’10, pages 49–56, 2010.

[PPMB12] Diego Perez-Palacin, José Merseguer, and Simona Bernardi. Perfor-
mance aware self-managed software: evaluation using Petri nets. Sub-
mitted to a journal.

[PPMM11a] Diego Perez-Palacin, Raffaela Mirandola, and José Merseguer. Enhanc-
ing a QoS-based self-adaptive framework with energy management ca-
pabilities. In Proceedings of the joint ACM SIGSOFT conference –
QoSA and ACM SIGSOFT symposium – ISARCS on Quality of soft-
ware architectures – QoSA and architecting critical systems – ISARCS,
QoSA-ISARCS ’11, pages 165–170, New York, NY, USA, 2011. ACM.

[PPMM11b] Diego Perez-Palacin, Raffaela Mirandola, and José Merseguer. Soft-
ware architecture adaptability metrics for QoS-based self-adaptation. In
Proceedings of the joint ACM SIGSOFT conference – QoSA and ACM
SIGSOFT symposium – ISARCS on Quality of software architectures –
QoSA and architecting critical systems – ISARCS, QoSA-ISARCS ’11,
pages 171–176, New York, NY, USA, 2011. ACM.

169

170 10. Conclusion

[PPMM12a] Diego Perez-Palacin, José Merseguer, and Raffaela Mirandola. Anal-
ysis of bursty workload-aware self-adaptive systems. In Proceedings
of the third joint WOSP/SIPEW international conference on Perfor-
mance Engineering, ICPE ’12, pages 75–84, New York, NY, USA,
2012. ACM.

[PPMM12b] Diego Perez-Palacin, Raffaela Mirandola, and José Merseguer. QoS
and energy management with Petri nets: A self-adaptive framework.
Journal of Systems and Software, 85(12):2796 – 2811, 2012.

[PPMMG10] Diego Perez-Palacin, Raffaela Mirandola, José Merseguer, and Vin-
cenzo Grassi. QoS-based model driven assessment of adaptive reactive
systems. In ICST Workshops, pages 299–308. IEEE Computer Society,
2010.

Appendixes

171

172 10. Conclusion

Appendix A

Generalized Stochastic Petri Nets

A PN system is a tuple PN, where P and T are the sets of places and transitions, Pre and
Post are the |P |×|T | sized, natural valued, pre- and post- incidence matrices. For instance,
Post[p, t] = w means that there is an arc from t to p with multiplicity w. When all weights
are one, the PN is ordinary. C = Post − Pre is the incidence matrix of the net. For pre-
and postsets we use the conventional dot notation, e.g., •t = {p ∈ P : Pre[p, t] ≥ 1}, that
can be extended to sets of nodes. If N � is the subnet of N , defined by P � ⊆ P and T � ⊆ T ,
then Pre

� = Pre[P �, T �], Post
� = Post[P �, T �] and M

�
0

= M0[P
�]. Subnets defined by

a subset of places (transitions), with all their adjacent transitions (places), are called P- (T-)
subnets.

A marking M is a |P | sized, natural valued, vector and M0 is the initial marking vector.

A transition is enabled in M iff M ≥ Pre[P, t]; its firing, denoted by M
t
→M

�, yields a new
marking M

� = M + C[P, t]. The set of all reachable markings is denoted as RS(N ,M0).
An occurrence sequence from M is a sequence of transitions σ = t1 . . . tk . . . such that

M
t1→ M1 . . .Mk−1

tk→ Given σ such that M
σ
→ M

�, and denoting by σ the |T | sized
firing count vector of σ, then M

� = M+C · σ is known as the state equation of N .
A GSPN is a tuple G = (N ,Π, S̄, r), where N is a PN system and the set of transitions

T is partitioned in two subsets Tt and Ti of timed and immediate transitions, respectively.
Π is a natural valued, | T | sized, vector that specifies a priority level of each transition.
Timed transitions have zero priority, immediate transitions have priority greater than zero. A
transition t ∈ T , enabled in marking M, can fire if no transition t� ∈ T : Π[t�] > Π[t] is
enabled in M. Timed transition firing delays are random variables, distributed according to
negative exponential probability distribution functions. Immediate transitions fire instead in
zero time. S̄ is a non negative real valued, |Tt | sized, vector of the mean transition firing
times. The positive real valued vector r is |Ti| sized, and specifies the weights of immediate
transitions for probabilistic conflict resolution.

173

174 A. Generalized Stochastic Petri Nets

Appendix B

GSPN Composition

B.1 MLGSPN Composition

The definition of the composition of multi-labeled generalized stochastic Petri nets (ML-
GSPN) is an extension of the definitions in [DF96, BDH01, Ber03].

In [AMBC+95] a GSPN is defined as a 8-tuple S = (P, T,Π, I, O, H,W,M0), where P
is the set of places, T is the set of transitions (immediate and timed), P ∩T = ∅; Π : T → IN
is the priority function that assigns a priority level to each transition. I,O,H : T → 2P are
the input,output, inhibition functions, respectively, that map transitions onto the power set of
P ; W : T → IR is the weight function that assigns rates of timed transitions and weights to
immediate transitions. M0 : P → IN is the initial marking of the net.

In [Ber03] a multi-labeled GSPN (MLGSPN) is defined as a tripletMLS = (S,Ψ,Λ),

where S is a GSPN model, as defined above, Ψ : P → 2L
P

is the labeling function that

assigns to a place a set of labels belonging to 2L
P

, where 2L
P

is the power-set of the label of

the places LP , and Λ : T → 2L
T

is the labeling function that assigns to a transition a set of

labels belonging to 2L
T

.
Given two MLGSPN modelsMLS1 = (S1,Ψ1,Λ1) andMLS2 = (S2,Ψ2,Λ2), we

formally define the MLGSPN composition over the set of labels LT and LP as:

MLS =MLS1 | |
LT ,LP

MLS2

The resulting transitions and places ofMLS are the sets:
T = T1\T

ET

1 ∪ T2\T
ET

2 ∪ TNEW
P = P1\P

EP

1 ∪ P2\P
EP

2 ∪ PNEW
where:

• TET

2 (PEP

2) as the set of all transitions (places) inMLS2 which are labeled by any
label in the set ET (EP).

• ET = LT ∩ Λ1(T1) ∩ Λ2(T2)

175

176 B. GSPN Composition

• EP = LP ∩Ψ1(P1) ∩Ψ2(P2)

• Ti\T
ET

i (Pi\P
EP

i) means the transitions (places) in Si that will not be composed.

• TNEW =
�
ti∈T1

(ti × (⊗l∈{Λ1(ti)∩ET }{T
l
2}))

• PNEW =
�
pi∈P1

(pi × (⊗l∈{Ψ1(pi)∩EP }{P
l
2}))

• ⊗ is the Cartesian product.

• T l2 (P l2) is defined as the set of transitions (places) inMLS2 being one of their labels
l. Note that

�
l∈ET

T l1 = TET

1 .

Let:

• σT :
�
L⊆ET

{TL1 ×T
L
2 ×...×T

L
2 } → TNEW be a bijection that assigns a new transition

to each set of transitions (t1, t2, ..., tn) ∈ T1×T2× ...×T2 where L ≡ (Λ1(t1)∩ET),
for all j, k = {2...n}{(j �= k)⇒ (tj �= tk)} and for all i = {2...n}(L ∩ Λ2(ti)) �= ∅.

• σP :
�
L⊆EP

{PL1 ×P
L
2 × ...×P

L
2 } → PNEW be a bijection that assigns a new place

to each set of places (p1, p2, ..., pn) ∈ P1 × P2 × ...× P2 where L ≡ (Ψ1(p1) ∩EP),
for all j, k = {2...n}{(j �= k)⇒ (pj �= pk)} and for all i = {2...n}(L∩Ψ2(pi)) �= ∅.

Function F ∈ {I(), O(), H()} ofMLS is:
(a) case t ∈ T1\T

ET

1 :

F (t) = F1(t)\(F1(t) ∩ P
EP

1)
�

�
p∈PNEW

(p | σP (p1, p2, ..., pj) ≡ p ∧ (F1(t) ∩ p1) �= ∅)

(b) case t ∈ T2\T
ET

2 :

F (t) = F2(t)\(F2(t) ∩ P
EP

2)
�






�
p∈PNEW

(p | σP (p1, p2, ..., pj) ≡ p

∧

∃i ∈ {2, ..., j}(F2(t) ∩ pi) �= ∅)






(c) case t ∈ TNEW ∧ t ≡ σT (t1, t2, ..., tj):

B.1. MLGSPN Composition 177

F (t) = F1(t1)\(F1(t1) ∩ P
EP

1)
�

�i=2
j (F2(ti)\(F2(ti) ∩ P

EP

2))
�

�
p∈PNEW

(p | σP (p1, p2, ..., pj) ≡ p ∧ (F1(t1) ∩ p1) �= ∅)
�






�
k=2..j(

�
p∈PNEW

(p | σ(p1, p2, ..., pj) ≡ p

∧

∃i ∈ {2, ..., j}(F2(tk) ∩ pi) �= ∅))






Function W () ofMLS is:

W (t) =






W1(t) if t ∈ T1\T
ET

1

W2(t) if t ∈ T2\T
ET

2

min(W1(t1),mini=2..j(W2(ti))) if t ∈ TNEW∧

t ≡ σT (t1, t2, ..., tj)

Function Π ofMLS is:

Π(t) =






Π1(t) if t ∈ T1\T
ET

1

Π2(t) if t ∈ T2\T
ET

2

min(Π1(t1),mini=2..j(Π2(ti))) if t ∈ TNEW∧

t ≡ σT (t1, t2, ..., tj)

Function M0 ofMLS is:

M0(p) =






M0
1 (p) if p ∈ P1\P

EP

1

M0
2 (p) if p ∈ P2\P

EP

2

M0
1 (p1) + Σ

j
i=2M

0
2 (pi) if p ∈ PNEW∧

p ≡ σP (p1, p2, ...pj)

Labeling functions Ψ() and Λ() ofMLS are:

Ψ(x) =






Ψ1(x) if x ∈ P1\P
EP

1

Ψ2(x) if x ∈ P2\P
EP

2

Ψ1(p1)∪(
�
i=2..j Ψ2(pi)) if x ∈ PNEW∧

x ≡ σP (p1, p2, ..., pj)

178 B. GSPN Composition

Λ(x) =






Λ1(x) if x ∈ T1\T
ET

1

Λ2(x) if x ∈ T2\T
ET

2

Λ1(t1)∪(
�
i=2..j Λ2(ti)) if x ∈ TNEW∧

x ≡ σT (t1, t2, ..., tj))

An example of composition is shown in Figure B.1. Figure 8.3(c) in Chapter 8 is an
example of the resulting priority function Π when (a) and (b) are composed using LT . The
DB acq transition in (a) is assigned an infinite priority. Therefore, when (a) is composed with
(b), the resulting transition DB acq has the lower priority, i.e. 2. The composition operator
does not satisfy the commutative property.

MLGSPN12

t124

l1,l2,l3

p14

p2 p3

l4

t134

l1,l2,l3

2

p6 p8

p5 p7 p9

MLGSPN1 MLGSPN2

LT , LP

LT = {l1,l2,l3} LP = {l4}

t1

l1,l2,l3

t2 t3 t4

l1 l1 l2

p1

p2 p3

p4

p5

p6

p7

p8

p9

l4 l4

Figure B.1: MLGSPN composition

Bibliography

[AAA+06] Bruno D. Abrahao, Virgilio Almeida, Jussara M. Almeida, Alex Zhang, Dirk
Beyer, and Fereydoon Safai. Self-adaptive SLA-driven capacity management
for internet services. pages 557 –568, apr. 2006.

[ADG98] Robert Allen, Rémi Douence, and David Garlan. Specifying and analyzing
dynamic software architectures. In FASE, pages 21–37, 1998.

[AGM08] Danilo Ardagna, Carlo Ghezzi, and Raffaela Mirandola. Rethinking the use of
models in software architecture. In QoSA, volume 5281 of Lecture Notes in
Computer Science, pages 1–27, 2008.

[AK03] Colin Atkinson and Thomas Kühne. Model-driven development: a metamod-
eling foundation. Software, IEEE, 20(5):36 – 41, sept.-oct. 2003.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Sec. Comput., 1(1):11–33, 2004.

[AMBC+95] Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli,
and Giuliana Franceschinis. Modelling with Generalized Stochastic Petri Nets.
John Wiley Series in Parallel Computing - Chichester, 1995.

[AMC87] Marco Ajmone Marsan and Giovanni Chiola. On Petri nets with deterministic
and exponentially distributed firing times. In Advances in Petri Nets 1987,
covers the 7th European Workshop on Applications and Theory of Petri Nets,
pages 132–145, London, UK, 1987. Springer-Verlag.

[Arm00] Phillip G. Armour. The five orders of ignorance. Commun. ACM, 43(10):17–
20, October 2000.

[Bal98] Gianfranco Balbo. Non–exponential stochastic Petri nets. In Performance
Models for Discrete Event Systems with Synchronizations: Formalisms and
Analysis Techniques, pages 345–386. KRONOS, Zaragoza, Spain, 1998.

[BCDW04] Jeremy S. Bradbury, James R. Cordy, Jürgen Dingel, and Michel Wermelinger.
A survey of self-management in dynamic software architecture specifications.
In WOSS, pages 28–33. ACM, 2004.

179

180 BIBLIOGRAPHY

[BCK05] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Boston ; Munich [u.a.], 2005.

[BCvH+03] Jonathan Billington, Søren Christensen, Kees M. van Hee, Ekkart Kindler,
Olaf Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael
Weber. The Petri net markup language: Concepts, technology, and tools. In
ICATPN, volume 2679 of LNCS, pages 483–505, 2003.

[BDH01] Simona Bernardi, Susanna Donatelli, and András Horváth. Implementing
compositionality for stochastic Petri nets. STTT, 3(4):417–430, 2001.

[BDIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
Model-Based Performance Prediction in Software Development: A Survey.
IEEE Trans. on Software Engineering, 30(5):295–310, May 2004.

[Ber03] Simona Bernardi. Building Stochastic Petri Net models for the verification of
complex software systems. PhD thesis, Dipartimento di Informatica, Università
di Torino, April 2003.

[BGG04] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for composed
services. In Proceedings of the 2nd international conference on Service ori-
ented computing, ICSOC ’04, pages 193–202, New York, NY, USA, 2004.
ACM.

[BJR99] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling
Language. Addison Wesley, 1999.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component
model for model-driven performance prediction. Journal of Systems and Soft-
ware, 82(1), 2009.

[BLM10] Luciano Bertini, Julius C.B. Leite, and Daniel Mossé. Power optimization
for dynamic configuration in heterogeneous web server clusters. Journal of
Systems and Software, 83(4):585 – 598, 2010.

[BMP11] Simona Bernardi, José Merseguer, and Dorina C. Petriu. A dependability pro-
file within marte. Software and Systems Modeling, 10(3):313–336, July 2011.

[BNG06] Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. Toward open-world
software: Issue and challenges. Computer, 39(10):36–43, 2006.

[BR04] Ricardo Bianchini and Ram Rajamony. Power and energy management for
server systems. Computer, 37(11):68 – 76, 2004.

[Buc03] Peter Buchholz. An em-algorithm for map fitting from real traffic data. In Peter
Kemper and William H. Sanders, editors, Computer Performance Evaluation /
TOOLS, volume 2794 of Lecture Notes in Computer Science, pages 218–236.
Springer, 2003.

BIBLIOGRAPHY 181

[CCG+09] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Francesco
Lo Presti, and Raffaela Mirandola. Qos-driven runtime adaptation of service
oriented architectures. In ESEC/FSE ’09: Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering, pages 131–140,
2009.

[CD01] Jeff Chase and Ron Doyle. Balance of power: Energy management for server
clusters. In HotOS’01, May 2001.

[CdLG+09] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff
Magee, editors. Software Engineering for Self-Adaptive Systems [outcome of
a Dagstuhl Seminar], volume 5525 of Lecture Notes in Computer Science.
Springer, 2009.

[CDPEV08] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa
Villani. A framework for QoS-aware binding and re-binding of composite web
services. J. Syst. Softw., 81(10):1754–1769, 2008.

[CDQ+05] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian Wang,
and Natarajan Gautam. Managing server energy and operational costs in host-
ing centers. SIGMETRICS Perform. Eval. Rev., 33(1):303–314, 2005.

[CFD+11] Andrea Ciancone, Antonio Filieri, Mauro Luigi Drago, Raffaela Mirandola,
and Vincenzo Grassi. Klapersuite: an integrated model-driven environment for
reliability and performance analysis of component-based systems. In Proceed-
ings of the 49th international conference on Objects, models, components, pat-
terns, TOOLS’11, pages 99–114, Berlin, Heidelberg, 2011. Springer-Verlag.

[CGK+11] Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela Mirandola,
and Giordano Tamburrelli. Dynamic qos management and optimization in
service-based systems. IEEE Trans. Software Eng., 37(3):387–409, 2011.

[CJH+11] Shuyi Chen, Kaustubh R. Joshi, Matti A. Hiltunen, Richard D. Schlichting,
and William H. Sanders. Using cpu gradients for performance-aware energy
conservation in multitier systems. Sustainable Computing: Informatics and
Systems, 2011.

[CKK01] Paul C. Clements, Rick Kazman, and Mark Klein. Evaluating Software Archi-
tectures. SEI Series in Software Engineering. Addison-Wesley, 2001.

[CLG+09] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic,
Giovanna Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina
Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff
Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller,
Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns,

182 BIBLIOGRAPHY

and Jon Whittle. Software engineering for self-adaptive systems: A research
roadmap. pages 1–26, 2009.

[CMCS12] Giuliano Casale, Ningfang Mi, Ludmila Cherkasova, and Evgenia Smirni.
Dealing with burstiness in multi-tier applications: Models and their parame-
terization. IEEE Trans. Software Eng. To appear, 2012.

[CMI07] Mauro Caporuscio, Antinisca Di Marco, and Paola Inverardi. Model-based
system reconfiguration for dynamic performance management. Journal of Sys-
tems and Software, 80(4):455–473, 2007.

[CMI11] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Model-Based
Software Performance Analysis. Springer, 2011.

[CNYM99] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-
Functional Requirements in Software Engineering (The Kluwer International
Series in Software Engineering Volume 5). Springer, 1st edition, October 1999.

[CPR07] Vittorio Cortellessa, Pierluigi Pierini, and Daniele Rossi. Integrating software
models and platform models for performance analysis. IEEE Transactions on
Software Engineering, 33:385–401, 2007.

[CS93] Javier Campos and Manuel Silva. Embedded product-form queueing networks
and the improvement of performance bounds for petri net systems. Perform.
Eval., 18(1):3–19, 1993.

[CS01] Lawrence Chung and Nary Subramanian. Process-oriented metrics for soft-
ware architecture adaptability. In RE, pages 310–311. IEEE Computer Society,
2001.

[CSM] CSM to GSPN Translator. http://webdiis.unizar.es/˜jmerse/csm2pn.html.

[CVP+08] Ítalo Cunha, Itamar Viana, João Palotti, Jussara M. Almeida, and Virgilio
Almeida. Analyzing security and energy tradeoffs in autonomic capacity man-
agement. pages 302 –309, apr. 2008.

[CZS10] Giuliano Casale, Eddy Z. Zhang, and Evgenia Smirni. KPC-Toolbox: Best
recipes for automatic trace fitting using Markovian Arrival Processes. Perform.
Eval., 67:873–896, September 2010.

[DAR] DARPA. Self adaptive software. DARPA, BAA 98-12, Proposer Information
Pamphlet, December.

[DDF+06] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaı̈ti, Erol
Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and
Franco Zambonelli. A survey of autonomic communications. ACM Trans.
Auton. Adapt. Syst., 1:223–259, December 2006.

BIBLIOGRAPHY 183

[DF96] Susanna Donatelli and Giuliana Franceschinis. PSR Methodology: integrating
hardware and software models. In ICATPN, volume 1091 of LNCS, pages
133–152, 1996.

[DKL+08] Rajarshi Das, Jeffrey O. Kephart, Charles Lefurgy, Gerald Tesauro, David W.
Levine, and Hoi Chan. Autonomic multi-agent management of power and per-
formance in data centers. In AAMAS ’08, pages 107–114, Richland, SC, 2008.
International Foundation for Autonomous Agents and Multiagent Systems.

[DN02] Liliana Dobrica and Eila Niemelä;. A survey on software architecture analysis
methods. IEEE Trans. on Software Engineering, 28(7):638–653, Jul 2002.

[DSP11] Salvatore Distefano, Marco Scarpa, and Antonio Puliafito. From UML to Petri
nets: The PCM-based methodology. IEEE Transactions on Software Engineer-
ing, 37:65–79, 2011.

[Edd04] Sean R. Eddy. What is a hidden Markov model? Nature Biotechnology,
22(10):1315–1316, October 2004.

[EKR03] E. N. (Mootaz) Elnozahy, Michael Kistler, and Ramakrishnan Rajamony.
Energy-efficient server clusters. PACS’02, pages 179–197, 2003.

[FMH93] Wolfgang Fischer and Kathleen Meier-Hellstern. The Markov-modulated Pois-
son process (MMPP) cookbook. Perform. Eval., 18:149–171, September 1993.

[Fra10] Estı́baliz Fraca. Implementación de un generador de estrategias de autocon-
figuración para la mejora de prestaciones de software autoadaptativo, March
2010. Master Sc Thesis. In spanish.

[GBMP97] Erann Gat, R. Peter Bonnasso, Robin Murphy, and Aaai Press. On three-layer
architectures. In Artificial Intelligence and Mobile Robots, pages 195–210.
AAAI Press, 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995.

[GMM06] Elena Gómez-Martı́nez and José Merseguer. Argospe: Model-based software
performance engineering. volume 4024, pages 401–410. Springer-Verlag,
Springer-Verlag, 2006.

[GMMT10] Carlo Ghezzi, Alfredo Motta, Valerio Panzica La Manna, and Giordano Tam-
burrelli. QoS driven dynamic binding in-the-many. In QoSA, pages 68–83,
2010.

[GMR09] Vincenzo Grassi, Raffaela Mirandola, and Enrico Randazzo. Model-Driven
assessment of QoS-Aware Self-Adaptation. In Software Engineering for Self-
Adaptive Systems, pages 201–222, Berlin, Heidelberg, 2009. Springer-Verlag.

184 BIBLIOGRAPHY

[GMS07a] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. Filling the gap
between design and performance/reliability models of component-based sys-
tems: A model-driven approach. Journal of Systems and Software, 80(4):528–
558, 2007.

[GMS07b] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. A model-driven
approach to performability analysis of dynamically reconfigurable component-
based systems. In WOSP ’07: Proceedings of the 6th international workshop
on Software and performance, pages 103–114, New York, NY, USA, 2007.
ACM.

[Gre] The GreatSPN tool. http://www.di.unito.it/˜greatspn.

[GS02] David Garlan and Bradley Schmerl. Model-based adaptation for self-healing
systems. In Proceedings of the first workshop on Self-healing systems, WOSS
’02, pages 27–32, New York, NY, USA, 2002. ACM.

[GT09] Carlo Ghezzi and Giordano Tamburrelli. Predicting performance properties
for open systems with kami. In QoSA, pages 70–85, 2009.

[Gus91] Riccardo Gusella. Characterizing the variability of arrival processes with in-
dexes of dispersion. Selected Areas in Communications, IEEE Journal on,
9(2):203 –211, feb 1991.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Sci. Com-
put. Program., 8(3):231–274, 1987.

[Hav95] Boudewijn R. Haverkort. Matrix-geometric solution of infinite stochastic petri
nets. In In Proceedings of the First International Computer Performance and
Dependability Symposium, pages 72–81. IEEE Computer Society Press, 1995.

[HBK11] Nikolaus Huber, Fabian Brosig, and Samuel Kounev. Model-based self-
adaptive resource allocation in virtualized environments. In Proceedings of the
6th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’11, pages 90–99, New York, NY, USA, 2011.
ACM.

[HBR+10] Jens Happe, Steffen Becker, Christoph Rathfelder, Holger Friedrich, and
Ralf H. Reussner. Parametric performance completions for model-driven per-
formance prediction. Perform. Eval., 67:694–716, August 2010.

[HL86] Harry Heffes and David M. Lucantoni. A markov modulated characterization
of packetized voice and data traffic and related statistical multiplexer perfor-
mance. Selected Areas in Communications, IEEE Journal on, 4(6):856 – 868,
sep 1986.

[HM08] Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing
- degrees, models, and applications. ACM Comput. Surv., 40(3), 2008.

BIBLIOGRAPHY 185

[HP85] David Harel and Amir Pnueli. On the development of reactive systems. In In
K. R. Apt, editor, Logics and Models of Concurrent Systems, volume F-13 of
NATO ASI Series, pages 477–498, 1985.

[HT02] András Horváth and Miklós Telek. Markovian modeling of real data traffic:
Heuristic phase type and map fitting of heavy tailed and fractal like samples.
In Performance Evaluation of Complex Systems: Techniques and Tools, Per-
formance 2002, Tutorial Lectures, pages 405–434. Springer-Verlag, 2002.

[IDC] IDC. http://www.idc.com.

[IFMW08] F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime adaptation in a service-
oriented component model. In SEAMS, 2008.

[JAVa] Java technology. http://www.sun.com/java/.

[javb] java.lang.Math specification. http://docs.oracle.com/javase/6/docs/api/java-
/lang/Math.html .

[JHJ+10] Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi, Richard D. Schlichting,
and Calton Pu. Mistral: Dynamically managing power, performance, and adap-
tation cost in cloud infrastructures. In Proceedings of the 2010 IEEE 30th In-
ternational Conference on Distributed Computing Systems, ICDCS ’10, pages
62–73, 2010.

[KC03] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

[KKH+09] Dara Kusic, Jeffrey Kephart, James Hanson, Nagarajan Kandasamy, and
Guofei Jiang. Power and performance management of virtualized computing
environments via lookahead control. Cluster Computing, 12:1–15, 2009.

[KM07] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural chal-
lenge. In FOSE ’07: 2007 Future of Software Engineering, pages 259–268,
2007.

[KM09] Jeff Kramer and Jeff Magee. A Rigorous Architectural Approach to Adap-
tive Software Engineering. Journal of Computer Science and Technology,
24(2):183–188, March 2009.

[KRG+10] Elsy Kaddoum, Claudia Raibulet, Jean-Pierre Georgé, Gauthier Picard, and
Marie-Pierre Gleizes. Criteria for the evaluation of self-* systems. In SEAMS
’10: Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pages 29–38, New York, NY, USA,
2010. ACM.

[KWB03] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture(TM): Practice and Promise. Addison Wesley Object Technology
Series, 2003.

186 BIBLIOGRAPHY

[Lad99] Robert Laddaga. Guest editor’s introduction: Creating robust software through
self-adaptation. IEEE Intelligent Systems, 14:26–29, 1999.

[Lad00] Robert Laddaga. Active software. In IWSAS’ 2000: Proceedings of the first
international workshop on Self-adaptive software, pages 11–26, Secaucus, NJ,
USA, 2000. Springer-Verlag New York, Inc.

[LGMC04] J.P. López-Grao, J. Merseguer, and J. Campos. From UML activity diagrams
to stochastic Petri nets: Application to software performance engineering. In
Proceedings of WOSP’04, pages 25–36, Redwood City, California, USA, Jan-
uary 2004. ACM.

[LR04] Robert Laddaga and Paul Robertson. Self adaptive software: A position pa-
per. In SELF-STAR: International Workshop on Self-* Properties in Complex
Information Systems, 2004.

[MA01] D.A. Menascé and V.A. F. Almeida. Capacity Planning for Web Services:
metrics, models, and methods. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2001.

[MCCS08] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni.
Burstiness in multi-tier applications: symptoms, causes, and new models.
In Proceedings of the 9th ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’08, pages 265–286, New York, NY, USA, 2008.
Springer-Verlag New York, Inc.

[MCL+01] John Mylopoulos, Lawrence Chung, Stephen Liao, Huaiqing Wang, and Eric
Yu. Exploring alternatives during requirements analysis. IEEE Software,
18:92–96, 2001.

[MD07] D.A. Menasce and V. Dubey. Utility-based QoS brokering in service oriented
architectures. In Web Services, 2007. ICWS 2007. IEEE International Confer-
ence on, pages 422 –430, july 2007.

[MM06] Antinisca Di Marco and Raffaela Mirandola. Model transformation in soft-
ware performance engineering. In QoSA, volume 4214 of Lecture Notes in
Computer Science, pages 95–110, 2006.

[MRG07] Daniel A. Menascé, Honglei Ruan, and Hassan Gomaa. Qos management in
service-oriented architectures. Perform. Eval., 64(7-8):646–663, August 2007.

[MZR+07] Ningfang Mi, Qi Zhang, Alma Riska, Evgenia Smirni, and Erik Riedel. Per-
formance impacts of autocorrelated flows in multi-tiered systems. Perform.
Eval., 64:1082–1101, October 2007.

[Obj02] Object Management Group. UML 2.0 superstructure specification, 2002.

[Obj05] Object Management Group, http://www.promarte.org. A UML Pro-
file for MARTE., 2005.

BIBLIOGRAPHY 187

[OD09] Hiroyuki Okamura and Tadashi Dohi. Faster maximum likelihood estimation
algorithms for markovian arrival processes. QEST ’09, pages 73–82. IEEE
Computer Society, 2009.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and
Alexander L. Wolf. An architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, 1999.

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-
based runtime software evolution. In ICSE ’98, pages 177–186, Washington,
DC, USA, 1998. IEEE Computer Society.

[PPM10] Diego Perez-Palacin and José Merseguer. Performance evaluation of self-
reconfigurable service-oriented software with stochastic petri nets. Electronic
Notes in Theoretical Computer Science, 261:181 – 201, 2010. Proceedings of
PASM’09.

[PPM11] Diego Perez-Palacin and José Merseguer. Performance sensitive self-adaptive
service-oriented software using hidden Markov models. In Proceedings of
WOSP/SIPEW ’11, pages 201–206, 2011.

[PPMB10] Diego Perez-Palacin, José Merseguer, and Simona Bernardi. Performance
aware open-world software in a 3-layer architecture. In Proceedings of
WOSP/SIPEW ’10, pages 49–56, 2010.

[PPMM11a] Diego Perez-Palacin, Raffaela Mirandola, and José Merseguer. Enhancing a
qos-based self-adaptive framework with energy management capabilities. In
Proceedings of the joint ACM SIGSOFT conference – QoSA and ACM SIG-
SOFT symposium – ISARCS on Quality of software architectures – QoSA and
architecting critical systems – ISARCS, QoSA-ISARCS ’11, pages 165–170,
New York, NY, USA, 2011. ACM.

[PPMM11b] Diego Perez-Palacin, Raffaela Mirandola, and José Merseguer. Software ar-
chitecture adaptability metrics for qos-based self-adaptation. In Proceedings
of the joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT sympo-
sium – ISARCS on Quality of software architectures – QoSA and architecting
critical systems – ISARCS, QoSA-ISARCS ’11, pages 171–176, New York,
NY, USA, 2011. ACM.

[PPMM12a] Diego Perez-Palacin, José Merseguer, and Raffaela Mirandola. Analysis of
bursty workload-aware self-adaptive systems. In Proceedings of the third joint
WOSP/SIPEW international conference on Performance Engineering, ICPE
’12, pages 75–84, New York, NY, USA, 2012. ACM.

[PPMM12b] Diego Perez-Palacin, Raffaela Mirandola, and Jos Merseguer. Qos and energy
management with petri nets: A self-adaptive framework. Journal of Systems
and Software, 85(12):2796 – 2811, 2012.

188 BIBLIOGRAPHY

[PPMMG10] Diego Perez-Palacin, Raffaela Mirandola, José Merseguer, and Vincenzo
Grassi. Qos-based model driven assessment of adaptive reactive systems. In
ICST Workshops, pages 299–308. IEEE Computer Society, 2010.

[PSL03] Chintan Patel, Kaustubh Supekar, and Yugyung Lee. A qos oriented frame-
work for adaptive management of web service based workflows. In In Pro-
ceeding of Database and Expert Systems 2003 Conference, pages 826–835.
Springer, 2003.

[PT07] Andriy Panchenko and Axel Thümmler. Efficient phase-type fitting with ag-
gregated traffic traces. Perform. Eval., 64:629–645, August 2007.

[PUMa] Core Scenario Model schema. http://www.sce.carleton.ca/rads/
puma/csm-metamodel/CSM.xsd.

[PUMb] PUMA project web page. http://sce.carleton.ca/rads/puma.

[PW07] Dorin Petriu and Murray Woodside. An intermediate metamodel with sce-
narios and resources for generating performance models from UML designs.
Software and Systems Modeling (SoSyM), 6(2):163–184, June 2007.

[Rab89] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[Ran10] Parthasarathy Ranganathan. Recipe for efficiency: principles of power-aware
computing. Commun. ACM, 53:60–67, April 2010.

[RM09] Claudia Raibulet and Laura Masciadri. Evaluation of dynamic adaptivity
through metrics: an achievable target? In WICSA/ECSA, pages 341–344, 2009.

[RWvM10] Philipp Reinecke, Katinka Wolter, and Aad P. A. van Moorsel. Evaluating the
adaptivity of computing systems. Perform. Eval., 67(8):676–693, 2010.

[Ryd96] Tobias Rydén. An EM algorithm for estimation in Markov-modulated Poisson
processes. Comput. Stat. Data Anal., 21:431–447, April 1996.

[Sat01] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Per-
sonal Communications, 8:10–17, 2001.

[SC01] Nary Subramanian and Lawrence Chung. Metrics for software adaptability. In
Proc. Software Quality Management, pages 95–108, 2001.

[Sch06a] D.C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-
puter, 39(2):25 – 31, feb. 2006.

[Sch06b] Philip Schrodt. Forecasting conflict in the balkans using hidden markov mod-
els. In Robert Trappl, Melvin F. Shakun, Tung Bui, Guy Olivier Faure, Gre-
gory Kersten, D. Marc Kilgour, and Peyman Faratin, editors, Programming
for Peace, volume 2 of Advances in Group Decision and Negotiation, pages
161–184. Springer Netherlands, 2006. 10.1007/1-4020-4390-2 8.

BIBLIOGRAPHY 189

[SM05] Monchai Sopitkamol and Daniel A. Menascé. A method for evaluating the
impact of software configuration parameters on e-commerce sites. In Proceed-
ings of the 5th international workshop on Software and performance, WOSP
’05, pages 53–64, New York, NY, USA, 2005. ACM.

[Smi90] C. U. Smith. Performance Engineering of Software Systems. The Sei Series in
Software Engineering. Addison–Wesley, 1990.

[ST09] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009.

[SW02a] Connie U. Smith and Lloyd G. Williams. Performance and Scalability of Dis-
tributed Software Architectures: an SPE Approach. Addison Wesley, 2002.

[SW02b] Connie U. Smith and Lloyd G. Williams. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley, 2002.

[SWHB06] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open versus
closed: a cautionary tale. In NSDI’06: Proceedings of the 3rd conference
on Networked Systems Design & Implementation, pages 239–252, Berkeley,
CA, USA, 2006. USENIX Association.

[TC11] Teik-Toe Teoh and Siu-Yeung Cho. Human emotional states modeling by hid-
den markov model. In Natural Computation (ICNC), 2011 Seventh Interna-
tional Conference on, volume 2, pages 908 –912, july 2011.

[TGEM10] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Medvidovic.
PLASMA: a plan-based layered architecture for software model-driven adap-
tation. In ASE ’10, pages 467–476, New York, NY, USA, 2010. ACM.

[USC+08] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and
Timothy Wood. Agile dynamic provisioning of multi-tier internet applications.
ACM Trans. Auton. Adapt. Syst., 3:1:1–1:39, March 2008.

[WC03] Matt Welsh and David Culler. Adaptive overload control for busy internet
servers. In Proceedings of the 4th conference on USENIX Symposium on In-
ternet Technologies and Systems - Volume 4, 2003.

[Wor98] World Cup 1998 Access logs. http://ita.ee.lbl.gov/html/
contrib/WorldCup.html. 1998.

[wos10] WOSP conference series, 1998-2010.

[WPP+05] M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, and J. Merseguer.
Performance by unified model analysis (PUMA). In Fifth International Work-
shop on Software and Performance (WOSP’05), pages 1–12, Palma, Spain,
July 2005. ACM.

190 BIBLIOGRAPHY

[WWT02] Wei Wei, Bing Wang, and Don Towsley. Continuous-time hidden Markov
models for network performance evaluation. Perform. Eval., 49(1-4):129–146,
2002.

[WY07] Hua Wang and Jing Ying. Toward runtime self-adaptation method in software-
intensive systems based on hidden Markov model. Computer Software and
Applications Conference, Annual International, 2:601–606, 2007.

[XML] The Extensible Markup Language (XML). http://www.w3.org/XML.

[XSL] The Extensible Stylesheet Language Family (XSL).
http://www.w3.org/Style/XSL.

[XWP03] J. Xu, M. Woodside, and D. Petriu. Performance analysis of a software design
using the UML Profile for Schedulability, Performance and Time. In TOOLS,
volume 2794 of LNCS, pages 291–310, 2003.

[YHZ+09] Jie Yang, Gang Huang, Wenhui Zhu, Xiaofeng Cui, and Hong Mei. Quality
attribute tradeoff through adaptive architectures at runtime. Journal of Systems
and Software, 82(2):319–332, 2009.

[ZFGH00] A. Zimmermann, J. Freiheit, R. German, and G. Hommel. Petri net modelling
and performability evaluation with TimeNET 3.0. In TOOLS, volume 1786 of
LNCS, pages 188–202, 2000.

[ZKSZ12] Pooria Zamani, Mohammad Kayvanrad, and Hamid Soltanian-Zadeh. Using
learned under-sampling pattern for increasing speed of cardiac cine mri based
on compressive sensing principles. EURASIP Journal on Advances in Signal
Processing, 2012(1):82, 2012.

Acronyms

CADA Collect, Analyze, Decide, Act loop

CSM Core Scenario Model

CT-HMM Continuous Time Hidden Markov Model

D-KLAPER Dynamic KLAPER

DARPA Defense Advanced Research Projects Agency

DOM Document Object Model

GSPN Generalized SPN

HMM Hidden Markov Model

IDC Index of Dispersion for Counts

KLAPER Kernel LAnguage for PErformance and Reliability analysis

LQN Layered Queueing Network

MAP Markov Arrival Process

MAPE-K Monitor, Analyze, Plan, Execute, Knowledge structure

MARTE The UML profile for: Modeling and Analysis of Real-Time and Embedded sys-
tems

MDE Model Driven Engineering

MMPP Markov Modulated Poisson Process

MOF MetaObject Facility

OMG Object Management Group

PUMA Performance by Unified Model Analysis

QN Queueing Network

191

192 BIBLIOGRAPHY

QoS Quality of Service

SOA Service Oriented Architecture

SPN Stochastic Petri Net

UML Unified Modeling Language

XML eXtensible Markup Language

