«as Universidad
101 Zaragoza

1542

Proyecto Fin de Carrera

Migracion y optimizacion de la aplicacion
VisionSurfer sobre plataforma Intel® 64 bits

Autor:

José Angel Gariburo Cortés

Director:
Oscar Puyal Latorre
Ponente:

José Luis Briz Velasco

Escuela de Arquitectura e Ingenieria
2013

Agradecimientos

Son muchas las personas que han hecho posible que yo haya llegado hasta
aqui. Nombrarlas a todas seria muy dificil, asi que me resignaré a nombrar a algunas
de las mas destacables.

Gracias a mis padres, ellos siempre han estado ahi y siempre lo estaran por
muy dificil que sea la empresa en la que me aventure. Ellos me han hecho ser mejor
persona dia a dia.

Gracias al resto de mi familia porque siempre me han dado todo su apoyo y
carifio.

Gracias a mis amigos por aguantarme todos estos afios, con lo bueno y con lo
malo, sin ellos esto tampoco habria sido posible.

Gracias a todos los profesores que tanto me han ensefiado durante todos estos
afios de estudio, ensefiandome a mirar con otros ojos al mundo.

Gracias a toda la gente de SCATI LABS. que me ha ayudado en todo lo posible
durante este periodo.

Gracias a los amigos que hice durante mi estancia en Dinamarca por darme
otro punto de vista sobre la vida.

Migracion y optimizacion de la
aplicacion VisionSurfer sobre
plataforma Intel® 64 bits

RESUMEN

En este Proyecto de Fin de Carrera se ha realizado un estudio sobre la
viabilidad y conveniencia de la migracion de la aplicacion comercial de manejo de
video VisionSurfer de su actual plataforma de 32 bits (IA32) a una de 64 (Intel®
64).

Esta aplicacion, gracias a su sistema "Cluster" de almacenamiento, permite al
usuario grabar la informacién en todos los discos duros repartidos entre los servidores
y asi garantizar la disponibilidad del video grabado ante fallos de discos duros e
incluso de un servidor completo.

Por otro lado dispone de un sistema inteligente gracias a la virtualizacion,
denominado Failover que, detecta la caida de aplicaciones de alguno de los equipos y
se pone en marcha automaticamente en otro servidor para garantizar la continuidad de
servicio.

En primer lugar se ha estudiado la arquitectura conocida como Intel® 64 y los
posibles problemas surgidos al migrar desde I[A32. Se han comprobado Ila
disponibilidad y correcto funcionamiento en 64 bits de las librerias usadas en 32 bits, y
se han buscado y comparado herramientas de andlisis estatico de cddigo que nos
puedan ayudar en esta tarea.

Con los resultados obtenidos se ha hecho una primera estimacion del coste
temporal aproximado de la migracion total de la aplicacion. Y se ha desarrollado una
aplicacion de ejemplo que sirva para entender y ejemplificar la aplicacion objetivo.
Debido a la extension y complejidad de la aplicacion VisionSurfer, finalmente se ha

procedido a la migracion de una aplicaciébn crucial dentro de esta llamada
SCATIRTPVIdeoClient.

A continuacién se han evaluado las posibilidades de mejora del rendimiento en
la aplicacion. Para ello se han buscado cuellos de botella, causados por el uso
intensivo de memoria, deteccion de posibles fugas de memoria y posibilidad de
vectorizacion.

Por dltimo se han realizado pruebas de aceptacion y evaluacion del
rendimiento.

[ndice

Capitulo 1. INtrodUCCION. ... e e e e e e Pag. 1

I 1Y/ 0 117> VT o Y S5 10 T |

1.20DbjetivVo Y @lCaNCe.......cevii e e Pag. 2
1.3MEtodOS Y tECNICAS.......ivieieiie e e e e ieieeieeieiieneneeene e PAQL 2
1.4Calendario del proyecto..........cccevvveie e, Pag. 3
Capitulo 2. FOrMaCiONo e e e e Pag. 5
2.1 Primer CONtACO.vvie it it e Pag. 7
2.2 Mejoras al compilar para 64 bits............cooiiiiiiiiii Pag. 9
2. 2. 1 WINGOWS...en ettt et e e e e et e e e e e e enas Pag. 11
A N |1 U Pag. 12
2.3 Otras formas de mejorar el rendimiento............................Pag. 12
2.4 Estimacion en coste de la migracion..................ccovvveennnn. Pag. 13
2.5 Guia de buenas practiCas.........cocveeviiiiiie i Pag. 14
2. 5. L EJeMPIOS. ..t Pag. 17
2.6 Diferentes analizadores estaticos.............coovvieviiiiinennnn. Péag. 19
Capitulo 3. Aplicacion Examples.......ccoooiiiiiiiii e, Pag. 26
Capitulo 4. Migracion de SCATIRTPVideoClient a 64 bits................. Pag. 29
4.1 Funcionamiento Cliente-Servidor...........ccoceviii i iennn, Pag. 29
4.2 Estimacion de la migracCion.........cooeveiiiiiiiiie e e Pag. 37
4.2.1 SCATIRTPVIdeoClieNnt.........c.vuvveiiiiii i, Pag. 37
4.2.2 SCatiVISION. ... vivieiie i i i e e e PAQL 38
4.3 Cambios librerias para 64 bitS............cceveeiviieieeeeeiieee e Pag. 38
4.4 Solucion warnings migracion a 64 bits.........cccceeee i veiennn. Pag. 41
Capitulo 5. Pruebas de rendimiento........ccccceevveiviiiiiiiiii e Pag.44
5.1 EXAMPIES. oot Pag. 44
5.2 ScatiRTPVIdeoClient........c.covii it Pag. 46
5.2.1 H.264 - MPEG-4 Compresion y Descompresion............... Pag. 47
Capitulo 6. Conclusiones y trabajo futuro.............ccovee i iiinen e, Pag. 50

Anexo 1. Codigo ensamblador aplicacién Hello World 32 y 64 bits...Pag. 52

Anexo 2. Windows 32 bits on Windows 64 bitS.............ccoceviiiie. P&ag. 55

Anexo 3. Resultados de la compilacién IPP 6.1 (x64).....................P&ag. 57
Anexo 4. Mejoras por el uso de lalibreria lPP.............cccccccciiin. Pag. 59
Anexo 5. Warnings PVS-Studio............ccoceiii i iiieeennn.Pag . 61
Anexo 6. Tabla librerias aplicacion VisionSurfer............................Pag. 69
Anexo 7. Herramientas de andlisis de Intel..................coccee i, P&g. 70
Anexo 8. Tablas pruebas rendimiento SCATIRTPVideoClient.......... Pag. 79

Bibliografia.o Pag. 83

Indice de figuras

0 U PP o7 [0 I
10 PN 12 (O IR
10 U PN 1210 IR
QU A e e e e e PG 10
QU D e e PG 1D
10 PP = 1o O)
10 PP = 1o 240
10 < N < (o P2
QU 9. e e e e PAYL 28
0 U= T PP o= (o 2L
10 U PP = 1o R0
10 U PP =10 R0
0= T R PP =10 PR 24
FIgUra L. e e e e e e PG 33
10 U < (o Y
FIQUIA 16, .. e e e e e e e e e e e PG 34
0 U PP =10 PG 1o
0 U] = T PP =10 P 1
FIgUra 1. . o e e e e PAGL 3T
10 2O PP = (o I o)
FIQUIra 20 e e e e e e e PG AT
FIQUIa 22, . e e e e e e e e PG 49
10 2 PP = (o L)
10 2 PP < (o Y A
FIgUIa 25, e e e e e PAQL DL

Capitulo 1

1. INTRODUCCION

En un cajero automético se produce un incidente. Una persona se lleva el
dinero mientras se realiza el proceso de carga del dispensador, aprovechando un fallo
en el protocolo de seguridad de la entidad bancaria. Cuando el delincuente llega a su
casa la Policia ya le estaba esperando. Es un caso veridico que muestra la utilidad y
eficiencia de los sistemas de video vigilancia.

Cada dia vivimos en un mundo més globalizado, donde las personas pueden
moverse de una punta a otra del planeta en un mismo dia. Esto ha hecho que la video
vigilancia cobre un mayor protagonismo, permitiendo compartir casi instantaneamente
la informacion de un sospechoso a lo largo de todo el mundo.

Como consecuencia de la cantidad creciente de camaras, el nimero de
dispositivos fisicos necesarios para gestionarlas ha aumentado.

Este proyecto nace del deseo de reducir este nimero aprovechando del mayor
rendimiento de las arquitecturas de 64 bits sobre las actuales de 32 bits. Reutilizando
el software ya desarrollado y mejorando en lo posible su rendimiento aprovechando
las caracteristicas de paralelizaciébn y vectorizacion que ofrecen los nuevos
procesadores. De esta manera se espera conseguir gestionar un niamero mayor de
camaras desde un mismo dispositivo.

El propésito de este proyecto es, por tanto, el estudio de la viabilidad y
conveniencia de esta migracion, incluyendo la estimacion del coste temporal de la
misma y del aumento de rendimiento esperado.

1.1. MOTIVACION

A lo largo de la carrera he estudiado asignaturas en las que se nos ha
mostrado y ensefiado como poder mejorar el rendimiento de las aplicaciones que
credbamos con cambios relacionados con las herramientas usadas, y la teoria que
habiamos aprendido sobre la arquitectura del procesador para el que estabamos
programando en ese momento. Son cambios que en muchas ocasiones no se aplican
sobre software comercial debido o al desconocimiento de las herramientas o a las
fechas de entrega, normalmente superadas, y que hacen que el software no tenga
toda la calidad que podria esperarse.

Algo tan simple como un cambio en las opciones del compilador, puede hacer
gue consigamos una mejora evidente del rendimiento de nuestra aplicacion. ¢Qué

podriamos conseguir si ademas de conocer el compilador, fuésemos capaces de
aprovechar las caracteristicas que nos ofrecen los procesadores de hoy en dia?

1.2. OBJETIVO Y ALCANCE

Uno de los objetivos es estimar el coste temporal de la migracion a 64 bits de la
aplicacion VisionSurfer. Para ello se requiere de un estudio de las arquitecturas de
64 bits y de los problemas mas comunes incurridos al migrar una aplicacion de 32 a 64
bits, ademas de la necesidad de busqueda y verificacion del correcto funcionamiento
de las librerias anteriormente usadas en 32 bits. Otro objetivo es la busqueda de
herramientas de andlisis estatico de cddigo que nos ayuden en este proceso.

Con toda esta informacion se realizara una estimacion a partir de una
aplicacion representativa de la aplicacion final. Una vez realizada la estimacion, se
procederd al andlisis de posibles mejoras a realizar sobre la aplicacion, para obtener
un mayor rendimiento. Estas mejoras consistiran en la vectorizacion y paralelizacion,
si es posible, de los algoritmos que ocupen la mayor parte del tiempo de ejecucion de
la aplicacion que, una vez optimizados, nos ofrezcan una mejor evidente.

Por ultimo se realizaran las pruebas de aceptacién y rendimiento necesarias.

1.3. METODOS Y TECNICAS

El codigo desarrollado en este proyecto sera enteramente C++. El entorno de
desarrollo ha sido Visual Studio 2008, también se han usado las librerias de
tratamiento de videos de Intel IPP (Integrated Performance Primitives) que consisten
en un conjunto de funciones optimizadas para los procesadores de Intel. Ademas se
han considerado librerias de uso gratuito como pueden ser ACE (Adaptive
Communication Environment), Cryotpp, etc.

1.4.

Nombre \Fecha de in”l Fecha de fin|

CALENDARIO DEL PROYECTO

La figura 1 muestra el diagrama de Gantt del proyecto.

|julio agustn septiembre oetubre nowiembie diciembie enern febrern marzo abil

< <
@, " 013
38

project

o Formacion 64 bits o7z Tioen2 E—

o Librerizs 64 bits B2 220812 =

O Hemamientss andlisis 230812 50942 =

o Creacion programa ejempl.. 60912 1142112 e e

0 |pcamstest 121212 3033 []

o Jlemoria

043 26040 [—
Figura 1. Planificacion del Proyecto.

Este proyecto se ha dividido en 6 fases:

1.

Estudio de la arquitectura Intel 64 bits: Busqueda y estudio de la
documentacion. Sera importante detectar los problemas mas comunes
presentes en las migraciones de 32 a 64 bits que aparecen en la literatura.
Conocer tanto las mejoras que podamos obtener con este cambio, (velocidad
de procesamiento, manejo de memoria, etc) como las posibles desventajas
(incremento del tamafio de co6digo). Realizacion de pruebas que demuestre
estos cambios. Duracién estimada: un mes, 110 horas.

Librerias 64 bits: Identificacion de las librerias usadas en la version de 32 bits
y de las correspondientes en 64 bits. Comparacién de las mismas mediante su
analisis estatico, ya que puede no ser necesario el cambio de versién, si los
cambios presentes en la nueva version de la libreria no nos aportan nada
nuevo. Dedicacion estimada: tres semanas, 75 horas.

Herramientas de andlisis: Seleccion de herramientas de analisis estatico de
cédigo, que nos ayuden en el proceso de identificacion de posibles errores en
nuestro cédigo a la hora de realizar la migracién de 64 bits. Duracién estimada:
dos semanas, 50 horas.

Creacion del programa ejemplo para las pruebas: Realizacion de los
cambios pertinentes en las IPP para su adaptacion a la libreria IPPMedia.
Programacion, verificacibn y pruebas de rendimiento del -codificador-
decodificador. Duracién estimada: tres meses, 330 horas.

Ipcamtest. Tras haber creado el programa de ejemplo para 64 bits,
procederemos a realizar la migracién de la aplicacibn [Jpcamtest. Esta
aplicacion consiste en un cliente que se conecta a un servidor de videos. Esta
aplicacion los puede comprimir, mostrar por pantalla, guardar, etc. Ademas
puede hacer esto para todo el video o solo para los keyframes. También se

realizaran las pruebas de rendimiento pertinentes para la comparaciéon entre
versiones. Duracion estimada: tres meses y dos semanas, 380 horas.

Memoria. Realizacion de la memoria del proyecto. Duracion estimada: un mes,
110 horas.

Capitulo 2

2. Formacion

Como paso previo a la migracion de una aplicacién a una arquitectura de 64
bits, este proyecto abarca la formacion necesaria para el conocimiento de las
caracteristicas que diferencian una arquitectura de 32 bits, a la que estamos mas
habituados, frente a una arquitectura de 64 bits, que pese a ser la predominante hoy
en dia en la mayoria de ordenadores, convive con aplicaciones de 32 bits. Por razones
de compatibilidad se siguen usando, provocando un gran desaprovechamiento de
estas arquitecturas mas nuevas y a priori mejores, ya que como veremos aportan una
serie de herramientas adicionales que bien aprovechadas mejoran el rendimiento.

En nuestro caso, la arquitectura en la que nos vamos a basar es la definida por
Intel, cominmente conocida como x86-64 0 x64. Es curiosos que aunque fuese AMD
la primera en crear la especificacion, no triunfara tanto como Intel que pese a llegar
algo mas tarde, 1 afio aproximadamente, tiene una cuota de mercado mayor. Ademas
Intel cuenta con su otra arquitectura de 64 bits, conocida como Itanium [A64 y que a
diferencia de x86-64, no mantiene compatibilidad con arquitecturas previas de 16 y 32
bits, pero nosotros no vamos a tratar este tema ya que esta arquitectura esta enfocada
a servidores y alto rendimiento.

Las caracteristicas que diferencian una arquitectura de 64 bits de una de 32
son:

e Los registros del procesador como rax, rbx, etc son ahora de 64 bits.

e Operaciones aritméticas y logicas de 64 bits. Todos los registros de propoésito
general (GPRs General Purpose Registers) se han extendido a 64 bits.
Ejemplos de operaciones que usan registros de 64 btis ahora son: memoria-
registro, registro-memoria, push y pop en la pila, todos los espacios
reservados ahora en esta son de 8 bytes, 64 bits y los punteros también han
pasado de 4 bytes, 32 bits a 8 bytes, 64 bits.

e Direccionamiento de 64 bits, es decir podemos tener una memoria virtual
tedrica de 2764, frente a los 232, 4GB que tenemos con las arquitecturas de
32 bits y que actualmente, debido a las memorias RAM se queda "corto"
puesto que podemos tener un ordenador relativamente barato con mas de
4GB, por lo que estariamos desaprovechando todo ese espacio de memoria.
pese a esto, en las implementaciones actuales so6lo se usan 48 bits de los 64
disponibles para direcciones de memoria virtual, lo que supone hasta 256TB,
2748, una cantidad de memoria que estd muy lejos de alcanzarse por el
momento, ademas siempre tendriamos mas bits disponibles ya que este no es
el limite maximo.

Se han afnadido ocho registros nuevos ademas de la correspondiente
actualizaciéon a 64 bits del tamafio de todos los registros anteriormente
existentes en 32 bits. Los registros afiadidos han sido: r8, r9, ri0, rili,
ri2, ri3, ri4, ri15 Esto hace que podamos tener mas variables en
registros en lugar de en la pila, con el aumento de velocidad que esto supone
al ser los registros mas rapidos en su acceso que la pila. También en pequefias
subrutinas se pueden pasar los pardmetros en registros en lugar de en la pila.

También se han incrementado los registros XMM (SSE), que son de 128-bits y
que se usan para instrucciones SIMD, de ocho a dieciséis.

Ahora las instrucciones pueden hacer referencia a datos relativos al registro
RIP (relative instruction pointer). Esto hace el codigo
independiente de su posicién, usado en librerias compartidas y en cddigo
cargado en tiempo de ejecucion, mas eficiente.

La arquitectura de 64 bits original, AMD64, adopt6 los repertorios SSE y SSE2
como el conjunto de instrucciones basicas. SSE3 fue afiadido en el afio 2005.
SSEZ2 es una alternativa al conjunto de instrucciones de x87, IEEE 80-bit
precision con la eleccion de IEEE 32-bit o 64-bit para las operaciones
matematicas en punto flotante. Esto hace que sea compatible con muchas de
las CPUs modernas. SSE y SSE2 estan disponibles solo en los procesadores
modernos de 32-bits. Esto en 64-bits no pasa, puesto que estan presentes en
todos ellos.

El bit de no ejecucion ANX bit (No-Execute bit, bit nUmero 63 de la
pagina de la tabla de entrada) permite al sistema operativo especificar que
paginas del espacio de direcciones virtuales pueden contener codigo
ejecutable y cudles no. De esta forma, intentar ejecutar cédigo de una pagina
marcada como no ejecutable producird una violacién de acceso de memoria,
parecido a si intentdsemos escribir en una pagina de sélo lectura. Esto deberia
hacer mas dificil al codigo malicioso controlar el sistema mediante ataques del
tipo buffer sin comprobar o buffer overrun. Una caracteristica parecida a
esta ha estado disponible en los procesadores x86 desde el 80286 como un
atributo de los descriptores de segmento, aunque soélo funciona en un
segmento cada vez. Debido a que el direccionamiento segmentado se ha
considerado desde hace mucho tiempo una forma obsoleta de operar, y todos
los PCs actuales se saltan este modo.

Por ultimo también se han eliminado ciertas caracteristicas de la arquitectura
x86. Esto incluye el direccionamiento segmentado, como acabamos de
comentar (aunque los segmentos FS y GS se mantienen para su uso como
punteros base extra para las estructuras del sistema operativo), el mecanismo
para el cambio de estado de una tarea (es una estructura especial que
contiene informacién de una tarea. La usa el sistema operativo para el manejo
de tareas) y el modo virtual de 8086. Estas caracteristicas permanecen sélo en
modo legado, lo que permite que en este modo se puedan ejecutar sistemas
operativos de 32 y 16 bits sin hacer modificaciones.

Para finalizar esta introduccion a las arquitecturas de 64 bits, cabe destacar los
problemas mas comunes que nos podemos encontrar a la hora de realizar una
migracion de 32 a 64 bits. Ademas de estos problemas propios del cambio de
arquitectura, existen otros problemas como pueden ser los cambios de version en las
librerias, trabajar con codigo legado, etc. Estos problemas no los vamos a comentar
por ahora, pese a que han surgido a lo largo de este proyecto y quizas hayan sido
igual 0 mas importantes que la migracién propiamente dicha.

Algunos de los problemas mas comunes a la hora de migrar un programa de una
arquitectura de 32 bits a una de 64 bits son:

e Almacenamiento de punteros en variables de tipo entero.
e Aritmética de punteros.

e Operaciones de desplazamiento.

e Alineamiento de las estructuras de datos.

e Y otros muchos.

Mas adelante veremos la explicacion de casi todos ellos y ejemplos que ilustren el
problema para un mejor entendimiento de este.

2.1. Primer contacto

Al igual gue hacemos cuando empezamos a programa en un lenguaje nuevo,
para tener una primera aproximacion a lo que puede significar el cambio de 32 a 64
bits en nuestra aplicacibn, hemos compilado el programa méas conocido: Hello
Worlden C++ tanto para 32 bits como para 64 bits.

Las opciones de compilacion usadas para generar los ficheros ensamblador de
la aplicacion Hello World han sido:
e -0d en Debug.
e -02 -0r1 en laversion Release.

Mayores parametros de optimizacibn como -Ox no han producido mejoras
respecto a la optimizacién por defecto -02

El enlazado en Windows de las librerias por defecto de C++ es dinamico, y no
puede realizarse de manera estatica. Aunque si podemos enlazar estaticamente
librerias no estandar de C++ o Windows.

El cddigo ensamblador ha sido generado con: Listing generated by
Microsoft (R) Optimizing Compiler Version 15.00.21022.08.

El examen del cédigo ensamblador para 32 y 64 bits que se encuentra en el
ANEXO 1, permite apreciar que ambos tienen 10 instrucciones para la version

7

Release, pero repartidas de forma diferente. Observamos que empleamos mas
instrucciones en la creacion y destruccion del bloque de activacion en 64 bits y menos
en las instrucciones relacionadas con la ejecucion de la légica del programa. En la
version Debug, si que obtendriamos una reduccién del tamafio de cddigo general para
la version de 64 bits.

HELLO WORLD
N° Instrucciones 32 bits 64 bits
Creacion blogue de activacion 0 1
Cuerpo 8 6
Destruccion blogue de activacion 2 3
TOTAL 10 10

Figura 2. NGmero de lineas ensamblador en 32 y 64 bits.

La Application Binary Interface (ABI) para la arquitectura x64 en
Windows, pasa los primeros cuatro argumentos en la llamada a una funcién usando
registros, y reservando espacio para estos cuatro valores en la pila también. Cualquier
argumento que no tenga un tamafio de 1, 2, 4 u 8 bytes se pasa a la funcion por
referencia.

Estos cuatro primeros argumentos se pasan usando los registros RCX, RDX,
R8 y R9, estos argumentos se alinean a la derecha en los registros, permitiendo
ignorar los bits mas significativos si es necesario. Si los argumentos son
float/double se pasan usando XMMOL, XMMIL, XMMZL y XMM3L.

El proceso que llama a la funcién es el responsable de reservar espacio para
los parametros de la funcion que es llamada, y debe siempre reservar espacio en la
pila para los cuatro registros usados para pasar los parametros, incluso si la funcién
no tiene tantos parametros.

La situacion de la pila al realizar una llamada a funcion: se muestra en la Figura

RSP —— RCX

RDX
R8
R9

Stack Parameter Area

Local Variables

Pushed Non-Volatile Regs

Pushed Non-Volatile Regs

Caller Return Address
NV-Reg saved in RCX
NV-Reg saved in RDX
NV-Reg saved in R8
NV-Reg saved in R9

Figura 3. Dibujo de la pila en 64 bits.

Observamos cdmo, pese a pasar los cuatro primeros argumentos por registro,
también se les reserva espacio en la pila. Los registros no voléatiles son guardados a lo
largo de las llamadas a funcién. Ademas no podemos usar RBP como frame
pointer, 1o que hace que pase a ser un registro de propdsito general, y ho pueda ser
usado por el Debugger para recorrer la pila de llamadas. Las funciones ademas
deben restringir el uso de las instrucciones pushy pop a la creacion y destruccion del
bloque de activacion, ya que el valor de stack pointer no cambia entre la creacion
y destruccion de éste.

2.2. Mejoras al compilar para 64 bits

Otro punto a destacar es la mejora que se puede obtener sélo al compilar el
programa para 64 bits, sin hacer nada mas.

A la hora de compilar una aplicacion en 64-bits sobre Windows, debemos saber
gué es la capa de abstraccion conocida como WoW64 (Windows 32-bit on Windows
64-bit). Se trata de un subsistema de Windows capaz de ejecutar aplicaciones de 32-
bits, incluido en todas las versiones de 64 bits de Windows. Hace transparente al
programador las diferencias entre los sistemas Windows de 32-bitsy 64-bits,
redireccionando el acceso a las librerias de 32 que en los sistemas de 64 bit se
encuentran en diferente localizacion, e interaccionando con el registro de Windows. A
alto nivel, es un conjunto de DLLs que recogen las llamadas a y desde procesos de 32
bits, y las traduce (Figura 4).

64-bit 32-bit
Process Process

|

32-bit kernel32.dll

32-bit Ntdll.dll

WoWed4.dll
WoWe64cpu.dll
Wowe4win.dll

(64-bit) WoW64 Emulation

NtOsKrnl (Kernel)

Figura 4. Modelo de disefio de WoW

Solamente después de compilar un programa en 64-bits se puede esperar una
ganancia de rendimiento del 5 al 15 por ciento, de un 5 a un 10 por ciento solo por el
mayor numero de registros en una arquitectura de 64-bits y del 1 al 5 por ciento extra
al quitar la capa intermedia WoW64. El hecho de contar con mas registros en las
arquitecturas de 64 bits, hace que el compilador pueda asignar mas variables a
registros en lugar de en la pila. Esto hace que el acceso a estas variables sea mucho
més répido. Estos porcentajes de mejora y su discusion provienen del autor Andrey
Karpov [1].

Otro aspecto que puede ser de gran interés a la hora de realizar una migracion
de 32 a 64 bits, es la posibilidad de uso de librerias de 32-bits en programas de 64-
bits. Hay casos en los que no se puede conseguir una version de 32 bits de la libreria
gue usamos, ya no tiene soporte, o puede ser que la version de 64-bits de la libreria
no funcione correctamente, o no tenga alguna caracteristica necesaria en nuestra
aplicacion, por ello podemos usar la version de 32-bits que hemos usado hasta ahora
y no perder funcionalidad ni afiadir errores.

Se pueden cargar librerias en tiempo de ejecucion dentro del espacio de
memoria del programa desde el que se cargan, ademas las librerias cargadas de esta
manera pueden necesitar cargar otras mas (aumentando en consecuencia el espacio
usado). El mayor problema que es la direccion de memoria donde puede residir una
aplicacion de 64-bits (por encima de los 4GB) o una de 32-bits (hasta 4GB) queda
resuelto. El otro problema que puede permanecer es la comunicacion de datos entre la

10

libreria de 32-bits y el programas de 64-bits, aunque parece ser que se puede acceder
tanto a objetos como a métodos de la libreria cargada de esta manera.

Para poder realizar lo mencionado anteriormente, un concepto que hay que
conocer es la carga dinamica (Dynamic Loading).

Es un mecanismo por el que un programa puede, en tiempo de ejecucion,
cargar una libreria en su memoria, recuperar las direcciones de las variables y
funciones que contiene la libreria ejecutar esas funciones o acceder a la variables y
finalmente quitarla de la memoria donde la habia cargado previamente. Esto permite al
programa arrancar en ausencia de las librerias para posteriormente cargarlas segun
las necesite.

La realizacion de un enlazado dindmico, y no estético se debe a la necesidad
de poder enlazar las correspondientes librerias de cadmaras distintas. Un enlazado
estatico crearia un ejecutable de un tamafio muy grande.

Dynamic Loading

Cometido Windows Linux
Cargar la libreria LoadLibrary() dlopen()
Obtener método/objeto GetProcAddress() disym()
Liberar memoria FreeLibrary() diclose()

Figura 5. Funciones para cargar librerias en un programa.

2.2.1. Windows

Tal y como podemos ver en la tabla anterior, hay que especificar el Flag
LOAD L IBRARY AS DATAFILE cuando se llama a LoadlL ibraryEx() -

Cuando la aplicacién ejecuta LoadLibrary() o LoadLibraryEx(), el
sistema intenta localizar la DLL. Si la encuentra, el sistema mapea el médulo de la
DLL en el espacio de direcciones virtual de la aplicacion e incrementa el numero de
referencias en uno. Si la llamada a LoadlL 1brary() o Loadl ibraryEx() especifica
una DLL cuyo cdodigo ha sido mapeado previamente la funcion simplemente devuelve
un manejador para la DLL e incrementa el nUmero de referencias en uno. Dos DLL
con el mismo nombre y extensién localizadas en lugares distintos no se consideran las
misma DLL.

El sistema llama al punto de entrada del a funcion dentro del contexto del hilo
que llamo6 a LoadLibrary() o LoadlLibraryEx(). El punto de entrada de la

11

funcién no se llama si la DLL ya habia sido cargada previamente y no se habia
invocado la funcion FreeLibrary() .

Si el sistema no puede encontrar la DLL, o si el punto de entrada devuelve
false, LoadlLibrary() o LoadlL ibraryEx() devolveran NULL.

Si LoadLibrary() o LoadlLibraryEx() tienen éxito, devolvera un
manejador del modulo de la DLL. El proceso puede usar este manejador para
identificar la DLL y llamar a los siguientes procesos: GetProcAddress(),
FreelLibrary() o FreelLibraryAndExitThread() .

El enlazado dindmico en tiempo de ejecucion permite al proceso continuar
aunque la DLL no esté disponible. El proceso puede ofrecer alternativas al usuario
para encontrarla. Puede intentar usar otra, notificar un error o pedirle al usuario la
direccion donde se encuentra. También puede causar problemas si la DLL usa la
funcion DLLMain() para inicializar cada uno de los hilos del proceso, ya que el punto
de entrada no es llamado por lo hilos existentes antes de ser llamado por
LoadlL rbrary() o LoadLibraryEx() -

El funcionamiento es muy parecido al de Linux, se carga la libreria
con LoadLibrary() o LoadLibraryEx(), a continuacién con
GetProcAddress () se obtiene el método u objeto que vamos a usar, y por ultimo
para liberar la memoria cuando no necesitamos mas la libreria
usamos FreelLibrary(). Necesitamos incluir la cabecera <windows.h> y la
libreria Kernel32.dlI1.

2.2.2. Linux

El funcionamiento en Linux es muy parecido al de Windows y es el siguiente:
primero se carga la libreria que queremos con dfopen(), ésta nos devuelve un
puntero que junto al nombre de la funcién o el objeto de la libreria lo podemos cargar
mediante dIsym() para usarlo posteriormente. Por Ultimo cuando terminamos de usar
la libreria la borramos de memoria con dfclose(). Necesitamos incluir la cabecera
<dIfcn.h> y las librerias 1ibdl.so o Iibdl.dylIib dependiendo del sistema en
el que nos encontremos.

2.3. Otras formas de mejorar el rendimiento

Otras formas de mejorar el rendimiento de nuestra aplicacion son:

e Uso de ptrdiff _t, size t y tipos derivados de ellos que permiten
optimizar el cédigo hasta un 30% segun varios benchmarks, pese a que los
compiladores de hoy en dia generan cdédigo optimizado, alojando variables de
tamarnio inferior a 64 bits en registros de 64-bits.

e Declarar funciones como "static" cuando no se usan fuera del fichero en el que
estan definidas, puesto que permite al compilador hacer #nlining. Mediante
la técnica de Fnlining, el compilador sustituye la llamada a la funcion por su

12

cbdigo, incrustandolo en el lugar donde se realiza la llamada a la funcién. De
esta manera se evita la sobrecarga que acarrea la realizacion de una llamada a
funcion, creacién y destruccion del espacio reservado en pila, etc.

e Cambiar el orden de las operaciones légicas, poniendo primero las mas
propensas a cumplirse o no, para de esta manera ponerlas al comienzo y
evitarnos unas cuantas comprobaciones.

e Si en un switch no son valores consecutivos, es mejor cambiarlos por 77-
elsif, ya que de esta manera el codigo generado se ejecuta mas rapido,
puesto que los switch pueden ser tablas de comparacion muy costosas de
evaluar.

e /Tavor: INTEL64 esta disponible sélo en el compilador de x64 y optimiza el
cédigo generado para los procesadores que soportan Intel64, usando
caracteristicas propias de estos procesadores, los cuales suelen tener mejor
rendimiento. El codigo resultante puede ejecutarse en cualquier plataforma
x64. (por defecto viene /favor:blend, que es optimizacion tanto para Intel
como para AMD).

2.4. Estimacion en coste de la migracion

Para hacer una estimacion a priori del coste de la migracion del cédigo de 32 a
64 bits, podemos seguir los siguientes pasos:

1. Usar un analizador estatico como puede ser PVS-Studio para el proyecto,
obteniendo todos los avisos generados por este.

2. Un programador instruido en el tema de 64 bits, analiza todos los avisos
(n_tot) generados por el analizador durante una jornada y decide si el error
es relevante o no (falsa alarma). Si lo es, lo corrige (n_err).

3. El total de mensajes producidos por el analizador se divide por el nimero de
mensajes que el programador ha solucionado en un dia (n_tot/n_err).

4. Por ultimo el resultado es el numero de personas/dia que se necesitan para
llevar a cabo la migracion de la aplicacién a 64 bits. (fot = n_tot/n _err =
personas/dia)

13

2.5. Guia de buenas practicas

En los siguientes puntos se exponen ejemplos y practicas para la escritura de
cbdigo portable, sea cual sea la arquitectura sobre la que trabajemos:

e Ya que los enteros y punteros tienen el mismo tamafo en ILP32, se usan
indistintamente. Los punteros se convierten a tipos enteros o sin signo para
aritmética de direcciones. Ademas podemos convertir
un entero a fong o unsigned Iongya que también tienen el mismo tamafo.
Podriamos hacer esto entre fongy punteros en LP64 ya que mantienen el
mismo tamario.

La mejor opcién consiste en usar uintptr _t, ya que hace que el cédigo no se
tenga que cambiar si por ejemplo dejasemos de usar LP64 y ademéas queda mas claro
nuestra intencion. Para usarlos necesitamos incluir <finttypes. h>.

E char *p;

! p = (char *) ((int)p & PAGEOFFSET);

| % cc ..

E warning: conversion of pointer loses bits

E char *p;
: p = (char *) ((uintptr_t)p & PAGEOFFSET);

e Usar tipos de datos portables, es decir, si cambiamos de plataforma, no
tengamos que cambiar de nuevo los tipos de datos y éstos se mantengan.
Algunos de estos tipos son: size t, ssize t, ptrdiff t, uintptr t,
etc

e Tener cuidado con las estructuras de datos compuestas por varios de éstos.
Debido al alineamiento de los datos a 8 bytes en maquinas de 64 bits,
podemos calcular mal el tamafio de una estructura.

14

struct MyPointersArray

n E
! DWORD m_nj; ;
! PVOID m_arr[1];

| D |
' object;

malloc(FIELD OFFSET(struct MyPointersArray, m_arr) +
5 * sizeof(PVOID));

Al ocupar DWORD 4 bytes, tenemos libres los 4 restantes hasta completar los
8 que ocupa PVOID en 64 bits, para ello necesitamos usar FIELD_OFFSET o también
podemos usar offsetof() -

e En general, usar tipos capaces de almacenar el tamafio de un puntero en 64
bits (0 sea 8 bytes). Estos tipos son: ptrdiff t, size t, intptr t,
uintptr_t, ssize t, int _ptr, DWORD PTR, etc. Con esto ademas nos
aseguramos que sea la arquitectura que sea podemos direccionar toda la
memoria permitida y no vamos a obtener ningun error de acceso a memoria.
Ademas en las condiciones de los bucles nos evitamos el error que puede
surgir de comparar un dato de 32 bits con uno de 64 bits haciendo de esta
manera que el bucle sea infinito.

LA Figura 6 muestra la tabla con el tamafio de los tipos de datos y su tamafio
en las diferentes implementaciones:

15

Twpe name Type size Type size Description

(32-bit (B4-bit
system) system)

ptrdiff_t 32 o] Signed integer type which appears
after subtraction of two pointers.
This type is used to Keep memory
sizes. Sometimes it is used as the
result of function returning size or -1
if an errar oCours.

size_t 32 ot Unsigned integer type. Data of this
bype is returned by the sizeof()
operator. This type is used to keep
size or number of ohjects.

intptr_t, uintptr_t, 32 Gt Integer types capable to keep

SIZE T, S5IZE T, pointer value.

INT_PTR,

DWORD_PTR, etc

tirne_t 32 G4 Armount of time in seconds.

ILF32 LPE4 LLPB ILPE4

char 8 8 8 g

short 16 18 16 16

int 32 32 32 54

long 32 64 32 Bl

long long ot B4 ot B4

size_t 32 64 G 54

pointer 32 B4 B B4

Figura 6. Tamafio de tipos basicos en distintas Sistemas Operativos de 64 bits.

16

http://www.sisifo.this/wiki/index.php/Archivo:Tabla_tipo_datos_1.png�
http://www.sisifo.this/wiki/index.php/Archivo:Tabla_tipo_datos_2.png�

2.5.1. Ejemplos

A continuacién se muestran ejemplos de codigo propio, en el que se hubiera
evitado realizar cambios al migrar a 64 bits si se hubieran adoptado las buenas
practicas anteriores.

e Enlaclase SharedBuffer().

! Vi

E Funciéon que nos devuelve el tamafio en BYTES del buffer
! @return int: el tamafo en bytes de buffer

4

E int size bytes() const

A

: return (buff_data_->size_ * sizeof(_T));

.

Habra que cambiar el tipo que devuelve la funcidn a size t, ya que si no
estamos perdiendo los 32 bits mas significativos.

o Clase ImageData() -

E bmfh_bfSize = (width*height*bits_per_pixel/8) +
' sizeof(BITMAPINFOHEADER) + sizeof(BITMAPFILEHEADER) + 1024;

Estamos extendiendo los valores de width, heighty bits per pixel que
son #ntlos dos primeros y unsigned char el ltimo.

E if ((pitch == (width*(bits_per_pixel>>3))) &&
' (origin==IMAGE_ORIGIN_BL))
I fwrite(buffer.buffer(), 1, buffer.size(Q),);

Aqui, como tercer argumento de la funcion fwrite() pasamos el resultado del
método size() de la clase buffer, que es del tipoentero. En la definicién
de fwrite() el tercer argumento es del tipo size t, asi si tuvieramos un tamafo
mayor que MAX_INT perderiamos informacién. Por esto se recomienda usar size_t
para datos que representen tamafos.

17

o Clase Avifile().

for (unsigned 1 = 0;

i
(Cchar®)wP)[i] = b[i];

Aqui el error estd en usar i como indice del vector wf. i es del tipo unsigned,
por lo gue no podriamos direccionar el maximo de memoria posible con él y por tanto
no podriamos acceder a todos los elementos. Si bien es verdad que si no va a ocupar
mas del limite no es un error, pero hay que estar totalmente seguro de ello. Aqui lo
deseable hubiese sido que i fuera del tipo vintptr t. Ademas en algunos bucles el
definir el indice como un entero o cualquier tipo que no ocupe 64 bits puede hacer que

aparezcan bucles infinitos.

e Clase dec_enc().-

El siguiente ejemplo puede o no ser un error, puesto que depende de la
definicion del tipo de dato al que le aplicamos la funcion sizeof(), ya que puede
haber paddingy por tanto darnos un tamario diferente al real.

< sz && 1 < sizeof(WAVEFORMATEX);

i++)

typedef struct tagBITMAPFILEHEADER {

WORD
DWORD
WORD
WORD
DWORD

bfType;
bfSize;
bfReservedl;
bfReserved?;
bfOffBits;

} BITMAPFILEHEADER, FAR *LPBITMAPFILEHEADER, *PBITMAPFILEHEADER;

typedef struct tagBITMAPINFOHEADER{

DWORD
LONG
LONG
WORD
WORD
DWORD
DWORD
LONG
LONG
DWORD
DWORD

biSize;

biWidth;
biHeight;
biPlanes;
biBitCount;
biCompression;
biSizelmage;
biXPelsPerMeter;
biYPelsPerMeter;
biClrUsed;
biClrimportant;

} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;

unsigned long header_size = sizeof(BITMAPFILEHEADER) +

sizeof(BITMAPINFOHEADER) ;

e IPP (JPEG)

Este es un claro ejemplo de error en aritmética de punteros, en la cual hay que
usar siempre tipos del tamafio de la arquitectura: size t, ptrdiff_t,
uintptr _t, etc Aunque no deberia dar errores puesto que ese usa para obtener los
argumentos de la linea de comandos, y ésta no va a ser mayor que 4GB.

Tanto curr como 'pos' son punteros (8 bytes) y la longitud m_[Iength es un
entero. Para que estuviera totalmente bien escrito, m_JIength deberia ser del tipo
ptrdiff _t, que es un entero con signo pero que tiene el tamafio de la arquitectura
en la que estamos en cada momento.

2.6. Diferentes analizadores estaticos

Andlisis estatico de cddigo es el proceso de deteccidn de errores y defectos en
el cédigo fuente del software. Puede realizarse de forma manual o automética.

La revision manual de cédigo es uno de los métodos mas antiguos y seguros
en la deteccién de errores. Se trata de dar recomendaciones en como mejorar el
codigo fuente, revelando errores en el presente o posibles errores en el futuro.
Ademads la funcién del cddigo tiene que ser clara simplemente leyendo el texto y los
comentarios, sino hay que mejorarlo. Este método suele funcionar bien porque es méas
facil encontrar errores en el cédigo de los demas que en el de uno mismo.

La Unica desventaja es el alto precio de este método: se necesita juntar a
varios programadores cada cierto tiempo para revisar el c6digo mas nuevo que se va
creando o el codigo con los cambios sugeridos aplicados, ademas no pueden hacer
esto muy a menudo puesto que su atencién disminuiria.

El andlisis estéatico de codigo automatico permite revisar grandes cantidades de
cbédigo con menos recursos humanos. No realiza modificaciones automaticas, pero
proporciona recomendaciones oportunas para que el programador lo haga, y el ratio
uso/precio hace de esta solucion una de las mas usadas en muchas empresas.

Las tareas que un analizador estatico de cddigo resuelve (o al menos intenta resolver)
se pueden dividir en tres categorias:

» Deteccion de errores en programas.

* Recomendaciones en el formato del texto, se puede adaptar al estandar que
tenga cada empresas: indexacién, uso de espacios o tabuladores, etc.

* Medidas relacionadas con el cédigo, nos permiten obtener un valor numérico
representativo sobre nuestra propia escala de valores para la propiedad que
gueramos medir.

19

Hay también otras maneras de usar los analizadores estéaticos de cédigo. Por
ejemplo puede usarse para ensefiar a los nuevos desarrolladores las normas de
escritura de cédigo de la empresa.

Como cualquier otra metodologia de analisis estatico tiene sus puntos fuerte y
sus puntos débiles. Sabemos que no hay un método ideal de testeo de software.
Métodos diferentes dan resultados diferentes sobre el mismo cdédigo, solo la
combinacion de varios hace posible que podamos alcanzar la mayor calidad en
nuestro software.

La principal ventaja del analizador de cddigo estatico es que permite reducir el
precio de eliminar defectos en el software de manera notable. Cuanto antes
detectemos los errores menor sera el precio que nos costara corregirlos. De acuerdo
con el libro Code Complete de McConnell un error en la etapa de testeo es diez
veces mas caro de corregir que si lo detectamos en la fase de escritura.

Time Detected

Time
Introduced

Requirements

Architecture

Construction

System Test

Post-Release

Requirements 1 3 5-10 10 10-100
Architecture - 1 10 15 25-100
Construction - I - 1 I 10 I 10-25

e

analysis

Figura 7. Media del coste de correccion de errores dependiendo del momento de su deteccion.®

Las herramientas de analisis estéatico de codigo permiten detectar rapidamente
un montéon de errores en la fase de escritura de cddigo, lo que reduce
significativamente el coste de todo el proyecto.

Otras ventajas de los analizadores estaticos de codigo son:

* Podemos analizar todo el cédigo que queramos, incluso aquellos trozos de
codigo que no se ejecutan casi nunca y que puede costarnos ver los errores alli
presentes mas que en las zonas mas comunes, excepciones y logs por
ejemplo.

* No dependen del compilador que se use ni de donde se ejecutara el programa.
Permite encontrar errores que de otra manera serian dificiles de descubrir,
evitando que de repente aparezca un error y resulte estar en todas las
versiones desde hace varios afos, con el coste que eso conlleva de arreglar.

» Posibilidad de detectar facil y rapidamente los tipicos errores de copiar y pegar
muy comunes en largos trozos de codigo muy parecido. Ademas aunque los
errores son muy faciles de corregir, se puede perder mucho tiempo para
descubrir errores triviales del estilo de strcmp (A, A).

! McCONNEL, S., Code Complete. A practical handbook of software construction, Microsoft Press, 2004.

20

* aungque no lo parezca en estos errores se pierde mucho tiempo hasta que se
detectan.

Las desventajas de los analizadores estaticos de cddigo son:

* No suelen diagnosticar en profundidad fugas de memoria y errores de
concurrencia. Para analizar esto se recurre a herramientas de analisis dinamico
(Valgrind, Intel Studio XE, etc).

» Advierte sobre errores en fragmentos de codigo que pueden resultar raros y
gue solo el programador puede entender si es un error de verdad o una falsa
alarma. Ademas de este tipo de falsas alarmas pueden darse otras, por lo que
a veces se afiade un tiempo extra en la revision de estos avisos.

Los errores detectados con este tipo de analizadores de codigo son muy
diversos. Algunos se centran mas en un tipo o &rea concretos y otros soportan
estdndares como por ejemplo: MISRA-C:1998, MISRA-C:2004, Sutter-Alexandrescu
Rules, Meyers-Klaus Rules, etc.

A menudo aparecen nuevas reglas de diagnostico y estandares, y otras se
quedan obsoletas, por eso no tiene sentido comparar los analizadores estaticos de
codigo en ese sentido. La mejor manera de compararlos es aplicarlos a los mismos
proyectos y ver cuantos errores reales detecta cada uno, para asi saber cuél es el mas
conveniente.

Los usuarios quieren comparar los diferentes analizadores estaticos de codigo,
es algo totalmente comprensible. No es facil comparar diferentes analizadores
estaticos de codigo. El problema reside en establecer criterios de comparacion
adecuados.

Asi por ejemplo, comparar el nUmero de errores que deberian ser detectados y
el numero de mensajes generados puede parecer una medida muy razonable. Sin
embargo no resulta adecuada en nuestro caso, como vamos a explicar a continuacion.

Primero empecemos con los parametros que no tiene sentido que comparemos
entre analizadores. Por ejemplo, el nimero de avisos que es capaz de dar al analizar
un archivo o varios. Podemos pensar que cuantos mas avisos mejor sera el
analizador, pero normalmente esto no es asi, puesto que el usuario, sélo hace uso de
una parte del sistema por lo que no va a tener que tratar con todos los tipos de
errores. Por ejemplo los avisos relacionados con librerias y compiladores, no le van a
aportar nada relevante, o incluso llegar a ser un estorbo.

Consideremos por analogia una persona que entra en una tienda para comprar
un ordenador, en esta tienda hay una amplia variedad de productos, pero esta
persona no los necesita, estad bien que pueda comprar en la misma tienda una
television o una videoconsola, pero esto no hace que el ordenador que vaya a comprar
sea mejor.

El nimero de avisos no esta relacionado con el numero de errores que el
analizador puede detectar en un proyecto concreto. Un analizador que tenga en
cuenta 200 tipos de avisos enfocados todos ellos a aplicaciones desarrolladas para
Windows, puede encontrar muchos mas errores en un proyecto con Visual Studio que
un analizador multi-plataforma que tenga en cuenta 1500 tipos distintos de avisos.

21

En definitiva, el nimero de avisos no debe ser relevante a la hora de comparar
varios analizadores estaticos de cédigo.

Tampoco seria correcto comparar el nUmero de avisos relevantes para un
sistema en concreto, debido a que:

e Puede ser que un tipo de aviso esté implementado en una regla en un
analizador y en otra regla en otro analizador. Entonces uno nos presenta mas
avisos por pantalla, y decimos que es mejor que el otro, cuando el otro nos
esta avisando de los mismos posibles errores pero de una manera mas
compacta.

e El mismo diagnéstico puede tener mas “calidad” en un analizador que en otro.
Para definir calidad vamos a poner un ejemplo. La mayoria de analizadores
tienen en cuenta los llamados numeros magicos (valores constantes
codificados en el cédigo fuente). Son potencialmente peligrosos en la
migracion a 64 bits, ya que los tamafios de datos y rangos de valores cambian.
Puede que un analizador puede tenga en cuenta solamente los que son
peligrosos desde el punto de vista de la migracion a 64 bits (4, 8, 32 etc) y que
otro tenga en cuenta todos los nimeros magicos (1, 2, 3 etc).

Otra caracteristica que podemos estar interesados en medir es la velocidad o
nuamero de lineas procesadas por segundo. Sin embargo no tiene sentido, puesto que
en Ultima instancia el que va a hacer los cambios y va a tener que leerse todos los
avisos es el encargado de revisar la salida del analizador, y no hay relacién entre la
velocidad del analizador y la velocidad a la que puede realizar los cambios una
persona. Normalmente hay un parametro que olvidamos al comparar analizadores,
que es la usabilidad del propio analizador por la persona o personas que van a tener
que trabajar con él.

Aqui lo importante es que la usabilidad de una herramienta como es un
analizador de cdédigo influye mucho en la préctica real del uso por parte del
programador.

He analizado el proyecto de las IPPMedia, una interfaz propia para el uso de
las librerias de Intel IPP (Integrated Performance Primitives), con Visual Studio,
Cppcheck y PVS-Studio. Se han detectado algunos aspectos relacionados con el
manejo de Visual Studio que viene integrado en el IDE y Cppcheck, y no esta
relacionados con la calidad o al velocidad del analisis en si, sino con aspectos de
usabilidad que se analizan a cotinuacion.

o Preservacion de los mensajes generados.- Estas herramientas no permiten
guardar una lista con los mensajes generados para examinarlos mas tarde. Es facil
en un proyecto de este tamafio obtener miles de avisos cuyo analisis requiere
varios dias. Al no poderse guardar es preciso cada vez volver a analizar todo el
proyecto, con la pérdida de tiempo que ello conlleva, ademas de tener que
recordar el dltimo aviso corregido. PVS-Studio si que permite guardar los
resultados y cargarlos cada vez que se quiere continuar leyendo los avisos
generados para ir corrigiéndolos.

e Procesado de mensajes duplicados.- Aparecen normalmente en los archivos de
cabecera (.h). Por ejemplo el analizador detecta un posible problema en una
cabecera que la incluyen 15 archivos (.cpp) En lugar de dar el aviso cada vez que

22

se encuentra con la inclusion del archivo de cabecera, PVS-Studio da el error una
vez en la cabecera ya que cuando se corrige ahi ya no lo va a dar en los ficheros
gue lo incluyen. El siguiente mensaje se dio mas de cinco veces mientras se
analizaba la IPPMedia:

d:\ippmedia x64_7.1\examples\consola.h(92) :
warning C6054: HANDLE “std output”™ might not be initialized

Debido a que cada vez que se incluye el archivo de cabecera se escribe este
error, la salida del analizador pude parecer muy grande y desordenada haciendo que
haya que revisar mas mensajes de los necesarios.

o Seleccién de los ficheros a analizar.- Visual Studio y Cppchek analizan
ficheros de plug-ins como pueden ser los que se encuentran en rutas como:

C:\Archivos de programa\Microsoft Visual Studio
9.0\VC\include. Esto no tiene sentido, puesto que nadie va a editar los ficheros
del sistema. PVS-Studio no “pierde” el tiempo analizando este tipo de ficheros. Un
ejemplo es:

c:\archivos de programa\microsoft

sdks\windows\vé6. Oa\include\wsZtcpip.-h(729) :

warning C6386: Buffer overrun: accessing “argument 17,

the writable size is "1*4" bytes,

but "4294967272° bytes might be written:

Lines: 703, 704, 705, 707, 713, 714, 715, 720,

721, 722, 724, 727, 728, 729

Visual Studio y Cppcheck no permiten excluir ficheros del andlisis en funcién de
un patrén como puede ser: * test.cpp o c:\librerias\, mientras que con
PVS-Studio podemos hacer esto.

e Gestion de la lista de avisos.- Podemos deshabilitar ciertos avisos en el
analizador de cédigo, pero a diferentes niveles segun nuestros requerimientos. En
algunos analizadores debemos repetir la ejecucién en cada caso. Con PVS-Studio
a diferencia de Cppcheck podemos manejar estas opciones una vez concluido el
andlisis diciéndole que tipo de mensajes queremos que nos muestre y cuéles no.
De esta manera podemos centrarnos en los que mas nos interesan 0 son Mas
criticos para nuestra aplicacion, sin necesidad de volver a realizar todo el analisis
con el tiempo que eso conlleva.

e Filtrado de los avisos que se generan en la salida por texto.- Por ejemplo
podriamos querer ocultar los relacionados con funciones comunes como
printf() o scanf() que comunmente dan generan avisos por no usar su
version segura o parecido.

o Falsas alarmas.- Podemos marcar en Visual Studio con #Zpragma warning para
deshabilitar las falsas alarmas, pero con PVS-Studio podemos marcar un mensaje
como falsa alarma y de esta manera no volver a ser mostrado sin volver a lanzar el
analizador. Esta funcion es importante en PVS-Studio porque para mi y al menos

23

en los proyectos en los que lo he usado, se generan muchos avisos y una gran
parte son falsas alarmas.

Podemos concluir que la comparacion entre analizadores estéticos es dificil, y
que no hay una respuesta clara a que herramienta es mejor en general. Podriamos
decir cual es mejor para proyectos en concreto pero no en general.

Un ejemplo que ilustra lo expuesto, tomado de los casos surgidos en los
analisis que he efectuado, es el siguiente: el analizador indicaba que estaba usando
un tipo de dato que no tenia el tamafio de la memoria del sistema (8 bytes) para
indexar un vector. En este caso lo que hay que hacer al migrar a 64 bits es mirar si la
estructura se espera que contenga mas de INT_MAX elementos o no, Si es que no se
deja como esta porque al migrar posiblemente cueste mucho tiempo cambiar el tipo de
dato para nada. Si la respuesta es que si va a contener mas de INT_MAX elementos
hay que cambiar el tipo de dato a size_t, intptr_t, que tienen el tamafio maximo
de la arquitectura donde se estén ejecutando (si es en 32 bits ocupan 32 y si es en 64
ocupan 64 bits, esto es algo que esté definido en el lenguaje y que el compilador se
encarga de cumplirlo). Tuve la idea de probar si de verdad llegaba hasta INT_MAX o
no. Al ejecutar el cédigo para hacer esta prueba el vector, se llenaba mas alla de
INT_MAX elementos. El cédigo era el siguiente:

int indice = 0;

size t tamanyo = ...;

for (size t 1 = 0; I I= tamanyo; I++)
arrayfindice++] = BYTE(I);

Aunque por la condicién del bucle puede perfectamente llegar a mas de
INT_MAX elementos, al acceder con #Fndice deberia de darnos un error puesto que
es del tipo entero que ocupa 32 bits. Depurando y mirando el cédigo ensamblador se
observa que el compilador habia usado registros de 64 bits para almacenar la variable
de tipo entero, puesto que en las maquina de 64 bits hay mas registros y es la forma
mas rapida de acceder a los datos.

mov byte ptr [rcx+rax],cl
add rex, 1

cmp rcx, rbx

Jne wmarn+40h (120001080h)

Debido a esta optimizacién del compilador, este fragmento de cédigo comun en
muchas de aplicaciones es incorrecto.

Decidi pues cambiar el cédigo fuente para ver si el compilador no era capaz de
optimizarlo usando registros de 64 bits y efectivamente, ahora no podia contener mas
de INT_MAX elementos como cabia esperar.

int indice = 0;
for (size t i = 0; i I= tamanyo; i++)

7
24

arrayfindice] = BYTE(indice);

++indice;
}
movsxd rcx, réd
mov byte ptr [rcx+rbx],r8b
add réd, 1
sub rax,1
Jne wmairn+40h (140001040h)

Ahora como era de esperar el registro usado no es de 64 bits (rcx) sino que es
de 32 bits (r8a).

25

Capitulo 3

Aplicacion Examples

En este capitulo se va a explicar la creacion de la aplicacion Examples. Esta
aplicacion es una version actualizada y completamente creada desde cero de una
aplicacion ya existente que realiza esta tarea para arquitecturas de 64 bits.

Examples consiste en un cédec de video para los formatos H.264 y MPEG-4
que utiliza la libreria de las IPP para realizar esta funcion. Permite decodificar/codificar
varios archivos de video a la vez, creando un hilo por cada uno para su ejecucion.
Descomprime el archivo de entrada para devolver el mismo video comprimido.

Los parametros de la aplicacion son:

e -i: nombre(s) de los fichero(s) de entrada

e -m: nombre(s) de los fichero(s) descomprimidos, salida del decodery entrada
del encoder.

e -0: nombre(s) de los fichero(s) de salida comrpimidos.

e --REF: nombre del fichero de referencia para calcular PSNR (Peak Signal-
to-Noise Ratio).

e -t numero de hilos, debe coincidir con el nimero de ficheros de entrada.

e -r: resolucion de los archivos de entrada (ancho x alto).

o -f: formato de color del archivo de salida (gray yviZ2 nviZ2 yuy2 uyvy
yuv420 yuv422 yuv444 rgb24 rgb32 bgr24 bgr32 bgr565 bgr555
bgr444).

e -b: brtdepth del archivo de salida.

e -n: limite de frames a procesar.

e -d: hacer o no deinterlineado.

¢ -k: no mantener el ratio de aspecto si cambiamos el tamafio.

e --RGB: guardar cada frame en un archivo . bmp

e --AVI: crear un archivo . avi con las imagenes descomprimidas.

e -p: archivo de parametros

e -C: tipo de codificador de video (mpeg4 y h264).

e -R:resolucién del archivo de salida (ancho x alto).

e -B: bitrate (bits/second). Por defecto 2000000.

e -F: framerate (frames/Second). Por defecto 30.

e -h: ayuda de la aplicacion.

e --ipp_cpu: optimizacion del codigo de las IPP usado (SSE, SSEZ2, SSE3,
SSSE3, SSE41, SSE42, AES, AVX, AVX2).

e --ipp_threads: niumero de hilos internos para la ejecucion de las IPP, por si
usamos la version con hilos de ésta.

26

El diagrama de flujo del descompresor se muestra en la Figura 9, y la del
descompresor en la Figura 10.

SAVE_AWVI

Creamos el fichero Avi

w| Obtenemos datos del Splitter |
(Fichero de entrada) o~

l

Decodificamos el frame

h 4

SAVE_ANVI

NO |
Afadimos el frame al Avi

SANVE_RGE24

A

NO =1l
Guardamos el frame en BMP

AcCtualizacién de variables

A

END_OF_STREAM
NOT_ENOUGH_DATA
1OK

FIrN

Y

Figura 8. Diagrama de flujo del descompresor.

27

La légica del compresor la podemos entender con este diagrama de flujo:

Iriciahear VideoEncoder

Leer archiva par

|——

SC_COMPRESSOR_CODEC

Creamos la magen

SAVE_AVI_ENCODED_FRAMES

SAVE_AVI_ENCODED_FRAMES

|

Iniciakizar AV

!

SC_COMPRESSOR CODEC

—>

wicializamas o campeesar

Comprimimas L imagon

|

SAVE_AVI_ENCODED_FRAMES

abrimos fichero de salida

Obtenemos aguente frame

SAVE_AVI_ENCODED FRAMES

Afiadimos la imagen al video

hd

EX

escribimos en el ichero de salida

Adadimes ol frame al vdeo

Figura 9. Diagrama de flujo del compresor.

28

Capitulo 4

4. Migracion de ScatiRTPVideoClient a 64 bits

Tras haber completado las fases anteriores, ahora nos vamos a centrar en la
migracién completa de una aplicacion comercial de 32 a 64 bits, objetivo principal del
proyecto. La aplicacion elegida ha sido ScatiRTPVideoClient. Esta aplicacién se
encarga de recibir videos de un servidor, para mostrarlos por pantalla, a la vez que se
pueden grabar en disco, comprimir y todo ello teniendo en cuenta sélo los keyframes o
la secuencia completa de video. Un keyframe es una imagen a partir de la cual se
puede estimar el movimiento realizado hasta la siguiente, sin necesidad de tener toda
la informacioén. En la aplicacion se puede definir el intervalo de tiempo entre keyframes
para obtener una mayor calidad (disminuyéndolo) o para obtener mayor rendimiento
(aumentandolo). Estas caracteristicas son opuestas, por lo que si queremos una de
ellas tenemos que perder en la otra.

4.1. FUNCIONAMIENTO CLIENTE - SERVIDOR

El servidor, que no hemos migrado a 64 bits, funciona de la siguiente manera:

1. Iniciamos la aplicacion:

r —
® ScatiRTPVideoServer (Version 1.1.12011.0) @
N —
Servidor RTSP RTP —Botdn-para-iniciarel servidor, esto permite gue un
diente se conecte parr recibir datos del servidor Botdn para cambiar la configuraciondel —————— |

i | i servidor: ruta de datos a servir, puertos, tip Confurzcén_ }
de conexidn, memoria maxima utilizada, etc

Sesiones RTSP RTP
Nimero de sesiones activas: 0 [FPS: 0.0, bitrate; 0.0 Kbps]

Id I Direccién IP ‘ Filename Estado sesidn Estado video Tipo de conevidn J Céidec ‘ Resolucidn ‘ Frs ‘ Bitrate Tiempa

Aqui se muestra el estado de
las conexiones abiertas,
bitrate, fps, tipo de conexion,
estado, etc.

Figura 10. Ventana de inicio de ScatiRTPVideoServer

Esta es la apariencia del servidor sin iniciar, como se pude ver en la imagen
podemos iniciar el servicio presionando en el botén “Iniciar* arriba a la izquierda, o
podemos configurar las opciones con el botdn "Configuracion" que se encuentra arriba
a la derecha.

29

2. Iniciamos el servicio:

=
fu\ ScatiRTPVideoServer (Versidn 1.1.12011.0)

| -Servidor RTSP RTP

J Finalizar Estado: STARTED

e

Caonfiguracién

[~ Sesiones RTSP RTP, Resumen de la informacidn més relevante de las

flimero de sesiones activas: & [FPS: 201.6, bitrate: 11876.3Kbps 1 conexiones.

[d | Direcciori i T | Estada sesién Estado video [Tipo de conexién [cédec [Resolucién FPS [sitrate [Tiempa
0 172.16.1.91 typ WVI_FILE&filename=video_4CIF_mpeg4.... PLAYING oK TCP MPEG-4 704 x 575 247 1413.5Kbps 1Zs
3 172.16.1.91 type=AVI_FILE&flename=video_4CIF_mpeg4.... PLAYING oK TCP MPEG-4 704 x 578 247 1413.5Kbps 12s
5 172.16.1.91 type=AVI_FILE&filename=video_4CIF_mpeg4.... PLAYING OK TCP MPEG-4 704 x 576 25.7 1556.3 Kbps 12s
4 172,16.1.91 type=AVI_FILE&filename=video_4CIF_mpeg4.... PLAYING QK TCP MPEG-4 704x 570 247 1412, 1Kbps 12s
6 172.16.1.91 type=AVI_FILE&flename=video_4CIF_mpeg4.... PLAYING oK TCP MPEG-4 704 x 575 57 1556.3 Kbps 1Zs
2 172.16.1.91 type=AVI_FILE&flename=video_4CIF_mpeg4.... PLAYING oK TCP MPEG-4 704 x 578 247 1412, 1 Kbps 12s
1 172.16.1.91 type=AVI_FILE&flename=video_4CIF_mpeg4.... PLAYING OK TCcP MPEG-4 704x 576 25.7 1556.3 Kbps 12s
7 172.16.1.81 type=AVI_FILE&filename=video_4CIF_mpeg4.... PLAYING QK TCP MPEG-4 704x 570 257 1556,3 Kbps 12s

Cuadro de texto con toda la informacién
de las distintas conexiones.

Figura 11. Ventana de estado de conexiones de ScatiRTPVideoServer

Aqui podemos observar como se ha deshabilitado la opcion de iniciar y se ha
habilitado la opcién de finalizar. Ademas se muestran todas las conexiones activas,
con la informacién correspondiente asociada: ID, direccién IP, tipo y nombre del
archivo que esta siendo servido, estado de la sesién, estado del video, tipo de la
conexion, cédec de video, resolucién, FPS a los que se esta sirviendo, bitratey el

tiempo de la conexién.

Opcionalmente, podemos cambiar las opciones:

Configuracion

—Parametros generales -

f Tipo de autenticacion Usuario Contrasenia
p1cesT | | admin scat
Directorio ficheros AVI

| C:'\ideos), _J

Limite de memaria utiizada

2043 MB ¥ Reutilizar servidores de video

—~Parametros RTSP -

554 128 a0 segundos

—Parametros RTP

Puertos LUDP Tamario maximo de payload de paquetes RTP
9000 10000 1400 bytes

Aceptar Cancelar

Puerto RTSP Mumero maximo de sesiones RTSP RTP Timeout de inactividad de sesiones RTSP RTP

Figura 12. Ventana de configuracion de ScatiRTPVideoServer

30

Las opciones mas destacadas son: usuario y contrasefia, ruta donde se
encuentran los archivos, maximo de memoria utilizable por el programa, reutilizacion
de servidores de video? , puertos para las conexiones y timeout de conexion.

Vamos a describir ahora el funcionamiento de la aplicacion sobre la que hemos
realizado la migracion, SCATIRTPVideoClient.

? Esto hace gue cuando hay muchas conexiones y falla alguna no se creen nuevas,
sino que se utilicen las previamente creadas

31

(@ scatiRTPVideaClient (Vers

Afiadir /Eliminar cimaras Cuadroconlaconfiguracidnnecesariaparasfiadiruna
Id Marca cdmara. i Puerto remoto Puerto local Afiadic
E [cusTom_Frename =l 27.0 .0 .1 5554 0
Login Password Cadena de conexidn Eliminiar
Iadmin 1 “““ | ftype=AVI_FILE&filename=video_5MP.avi T80 il e
Cémara seleccionada
d Estado
|,1 |Ningunn Conectar I Desconectar I Reiniciar
Resoluddn Fps Intervalo keys Paquetes perdidos KB/s {kbps)
|]uﬂ 0]nju |IJ.D (0.0)
Informacién
i personalizada de cada
camara dependiendo del
modelo.
= = 5 Segundos entre avis Min. frames por avi 5
Seleccionar cdmara Cargar camaras I Guardar cdmaras i I Mo descomprimir
I~ Guardaravis |0 100 :
E [¥ Descomprimir solo keys
Camaras Logger
d Cémara Estado]
Log de la actividad
producida por las
[l camaras.
Conectar todas Desconectar todas | Eliminar todas | Borrar log J Ventana video
<

Figura 13. Ventana de inicio de ScatiRTPVideoClient

La Figura 13 muestra la ventana de nuestra aplicacion. Podemos observar las
diferentes partes en las que esta dividida. En la parte superior se encuentran los
campos necesarios para afiadir una camara, para conectarnos a ella posteriormente,
en el centro se muestran las caracteristicas de la cAmara seleccionada. Por ultimo la
parte inferior esta divida en tres zonas. A la izquierda tenemos el cuadro donde se
muestran todas las camaras conectadas, junto a las opciones que nos permiten
afadir, conectar/desconectar y eliminar las cAmaras. En el centro hay una ventana de
log, donde se registran los sucesos ocurridos asociados a cada una de las camaras
gue estemos manejando en cada momento, y por Ultimo, a la derecha se encuentra la
ventana de video donde se muestra el video recibido de la camara. Ademas hay otras
opciones para el tratamiento de las imagenes recibidas de las camaras, como
grabacion a disco, descomprimir 0 no, solo keyframes, etc.

A continuacion cargamos 8 cAmaras para hacer una prueba, cada una de estas
camaras nos manda un video (Figura 14).

32

 Afadir fEliminar cAmaras
d Marca P Puerto remoto Puerto local =
Afiadir
E [cusToM_FILENAME ~] 72,16 . 1 .91 554 0
Login Password Cadena de conexidn Eliminar
[admin [| ftype=AVI_FlLERflename=video_4CIF_mpeg4.avi T b ki cimlistiss
—Cémara seleccionada
d Estado
i =L i Minguno Conectar | Desconectar i Reinidar
f Resolucidn Fps Intervalo keys Paguetes perdidos KB/s (kbps)
| |u.u 0 Iu,ru lu‘u (0.0)
{
5 = = Segundos entre avis Min. frames por avi =
Seleccionar cdmara | Cargar camaras I Guardar cdmaras _ ™ No descomprimir
G0 :d ¥ Descomprimir solo keys
Camaras Logger e ¥
Id | Camara | Estado l [2013/04/04 11:55:02] Cémara conid: "1 aﬁadida
1 CUSTOM_FILENAME (172 16.1.91) Desconectada %}?ﬁg:ﬂ,‘gj ﬁ ;g:gfj E:m:: o afiadida
il |2 CUSTOM_FILENAME (172, 16.1.91) Desconectada (3013/04/04 11+35107] Camara con
3 CUSTOM_FILENAME (172.16.1.91) Desconectada £3013/04/04 11:35:07] Camara con
4 CUSTOM_FILENAME (172.16.1.91) Desconectada [2013/04/04 11:55:02) Camara con
5 CUSTOM_FILENAME (172, 16.1.91) Desconectada [2013/04/04 11:55:02] Camara con
(3] CUSTOM_FILENAME (172.16.1.91) Desconectada [2013/04/04 11:55:02] Cmara con id: &' afiadida
7 CUSTOM_FILENAME (172, 16.1.91) Desconectada
I 8 CUSTOM_FILENAME (172.16.1.91) Desconectada
Conectar todas Desconectar todas | Eliminar todas | Borrar log I Ventana video

Figura 14. Ventana de vista de cAmaras ScatiRTPVideoClient

Vemos como aparecen cada una de las camaras que conectamos a nuestra
aplicacién, ademas en la ventana de log se nos informa de que han sido afiadidas
estas ocho camaras.

El siguiente paso es conectarlas, ya que sélo las hemos afiadido en el paso
anterior (Figura 15).

33

~ Afiadir/Eliminar cdmaras
i Marca P Puerto remoto Puerto local F
|4 [cusTomM_FEnave ~| 172 . 16 . 1 .91 554) —l
Login Password Cadena de conexion Eiminar
[[admn = [Frype =1 FILEafiename ~video_aCIF_mpegd.av it achidor contdes
~Cémara seleccionada
d Estado
[+ |nguno Cnnedari Desconectar i Reiniciar
| Resoluddn Fps Intervalo keys Paguetes perdidos KBfs (kbps)
0.0 0 |o,to |0.0 (0.0
i
- - = Sequndos entre avis Min, frames par avi
Seleccionar cdmara Cargar cémaras | Guardar cmaras ™ Mo descomprimir
I Guardar avis {0 |1'OD ¥ Descomprimir solo keys
Camaras Logger pr ¥
1d | Camara [Estado | [[2013/04/04 11:55:59] Abriendo conexidn: camara 'S =
[2013/04/04 11:55:58] Abriende conexién: camara 6’
1 CUSTOM_FILENAME (172.16.1.91) Conectada 010407 oo At oot Sra
(| % gﬂ%mi&amg (gﬁ:'i‘g? g“”E“:gE [2013/04/04 11:55:55] Abriendo conexién: camara '8
f (172.16.1.91) onectada [2013/04/04 11:55:55] Conexién abierta correctamente: cimara T
] CUSTOM_FILENAME (172.15.1.91) Conectada [2013/04/04 11:55:55] Conexidn abierta correctamente: cAmara 'S’
5 CUSTOM_FILENAME (172.16.1.91) Conectada [2013/04/04 11 Gimara 6
5 CUSTOM_FILENAME (172.16.1.91) Conectada [2013/04/04 13 : cémara '8’
7 CUSTOM_FILENAME (172.16.1.91) Conectada [2013/04/04 11; cémara '3 E
|HE CUSTOM_FILENAME (172.16.1.91) Conectada [2013/04/04 11 cémara ‘2 3
[2013/04/04 11 cémara ‘4
[2013/04/04 11:56:00] Conexién abierta correctamente: cmara'7 -
Coneclar todas | Desconectar todas | Elminar todas | Borrar log | Ventana video

Figura 15. Ventana de conexion de cdAmaras ScatiRTPVideoClient

Una vez conectadas, podemos visualizar cualquiera de las ocho camaras. La
Figura 16 muestra, un ejemplo.

[~ Afiadir/Eliminar cmaras
Id Marca P Puerto remoto Puerto local Afad
|1 [cusTOM_FILENAME - 72. 16 . 1 .91 554)
Login Password Cadena de conexién Eliminar
|admn == | ftype=AVI_FILEAfiename~video_4CIF_mpegd.avi I o achickas contivks
~ Cémara seleccionada
d Estado
[[conectaca Conectar | Gesconectar | Reinicar
| Resoluddn Fps Intervalo keys Paquetes perdidos KBfs {(kbps)
|704x 576 |23‘7 F7) I 0f0 | 150.1 {1201.0)
i
- . - Sequndos entre avis Min, frames por avi
Seleccionar camara l Cargar cdmaras | Guardar camaras | ™ No descomprimir

I Guardaravis |0 i 100

¥ Descomprimir solo keys

Camaras

59] Abriendo conexion: cAmara '5' o

CUSTOM _FILENAME (172.15.1.91)

i |2 CUSTOM_FILENAME (172.15.1.91) Conectada
3 CUSTOM_FILENAME (172.16.1.91) Conectada
4 CUSTOM_FILENAME (172.15.1.91) Conectada
5 CUSTOM_FILENAME (172,16, 1.91) Conectada :55:
5 CUSTOM_FILENAME (172.15.1.91) Conectada [2013/04f04 11:56:00] Conexién abierta correctamente: cimara ‘8"
4 CUSTOM_FILENAME (172.16.1.91) Conectada [2013/04/04 11:56:00] Conexién abierta correctamente: cimara '3’ E
I 8 CUSTOM_FILENAME (172.16.1.91) Conectada 00] Conexidn abierta correctamente: cimara '2' T
00] Conexidn abierts correctamente: cimara '4'
[2013/04/04 11:56:00] Conexidn abierta correctamente: cimara '7 L.
Conectar todas I Desconectar todas I Eliminar todas I Borrar log | Ventana video

Figura 16. Ventana de visualizacion de imagen ScatiRTPVideoClient

34

Observamos como, en este caso, la informacion asociada a una camara
situada en el centro de la aplicacion, nos muestra informacion relacionada con el video
recibido. En este caso no hay mas opciones, puesto que para probar, los videos los
sirve el servidor que hemos introducido anteriormente y no una camara real.

Ahora solo faltaria desconectar todas las cdmaras y eliminar las conexiones
para poder cerrar la aplicacion (Figura 17 y 18).

—Afiadir [Eliminar camaras — !
d Marca P Puerto remoto Puerto local Afadir]
|3 |cusTom_FLENAME =] 7z .16 . 1 .91 554 [o
Login Password Cadena de conexidn Eliminar
1 admin | “““ l,ftypa:A\fIfFILE&ﬁlaname =videa_4CIF_mpeg4.avi [N Schihas ot
[~ Cémara selecdonada
d Estado
] 4, 1 Minguno Conectar] Desconectar] Reiniciar
Resolucion Fps Intervalo keys Paguetes perdidos KBfs (kbps)
J]n.n []n,rn In.n (0.0)
i
|
5 3 5 = Segundos entre avis Min, frames por avi
Selecdonar camara Cargar camaras J Guardar cimaras ™ No descomprimir
I Guardaravis |0 i 100
z ™ Descomprimir solo keys
Camaras Logger
1d Camara] Estado] [2013/04/04 11:58:50] Cerrando conexién: camara 'S’ -
[2013/04/04 11:58:50] Cerrando conexion: camara '6'
1 CUSTOM_FILENAME (172,15.1.91) Desconectada [2013/04/04 11:58:50] Cerrando conexién: cdmara ‘7
i Eﬂggm{ii:img {i ;; 12 ig? gesconec‘;ga [2013/04,i04 11:58:50] Cerrando conexién: cdmara '8
- (172.16.1.81) e [2013/04/04 11:58:50] Conexion cerrada correctamente: camara '4'
4 CUSTOM_FILENAME (172,16.1.51) Desconectada [2013/04/04 11:58:50] Conexidn cerrada correctamente: camara ‘2
5 CUSTOM_FILENAME {172.16.1.91) Desconectada [2013/04/04 11:53:50] Conexidn cerrada correctamente: cémara '8
6 CUSTOM_FILENAME (172, 16.1.91) Desconectada [2013/04/04 11:58:50] Conexidn cerrada correctaments: cémara 's'
7 CUSTOM_FILENAME (172.16.1.91) Desconectada [2013/04/04 11:58:50] Conexidn cerrada correctamente: camara '3 =
LRE CUSTOM_FILENAME (172.16.1.91) Desconectada [2013/04/04 11:58:50] Conexidn cerrada correctamente: camara '1' E
[2013/04/04 11:58:50] Conexién cerrada correctamente: cdmara ‘7 3
[2013/04,i04 11:58:50] Conexidn cerrada correctamente: camara 'S’ =
Conectar todas I Desconectar todas Eliminar todas I Barrar log J Ventana video

Figura 17. Ventana de desconexion de caAmaras ScatiRTPVideoClient

35

~ Afiadir /Eliminar cdmaras

1d Marca bzl Puerto remoto Puerto local ARadic I
I 3 [cusTom_FiLEnavE i 72, 16 . 1 .51 554 0
Login Password Cadena de conexidn Eiiminiar I
ladmin I s | ftype=AV]_FILE&flename =video_4CIF_mpeg4.avi ™ No actualizar controles
~Camara selecconada
1d Estado
I it | Ninguno Conectar i Desconectar I Reinidar
I Resoluddn Fps Intervalo keys Paguetes perdidos KE/s (kbps)
| [0 0 [or0 |00 @)
I
T E = = Segundos entre avis Min. frames por avi
Seleccionar camara Cargar camaras I Guardar camaras ™ Mo descomprimir
[Guardar avis lU I 100
= ™ Descomprimir solo keys
Camaras Logger
id | camara | Estado | |[2013/04/04 11:59:22] Camara con id: '3 eliminada -
[2013/04/04 11:59:22] Conexidn cerrada correctamente: camara '
[2013/04/04 1 27] Cémara con id: '4 eliminada
i [2013/04/04 11:59:27] Conexidn cerrada correctamente: cdmara '5'
[2013/04/04 11:59:22] Camara con id: 'S’ eliminada
[2013/04/04 11:59:22] Conexidn cerrada correctamente: camara '6'
[2013/04/04 11:59:22] Camara con id: '6' eliminada
[2013/04/04 11:59:27] Conexidn cerrada correctamente: camara '7'
[2013/04/04 11:59:22] Camara con id: ‘7' eliminada
I [2013/04/04 11:59:22] Conexidn cerrada correctamente: camara '8' —
[2013/04/04 11:59:22) Camara con id: '8’ eliminada C
[2013/04/04 11:59:22] Camaras eliminadas e
Conectar todas | Desconectar todas | Eliminar todas] Borrar log I Ventana video

Figura 18. Ventana de eliminacion de cAmaras ScatiRTPVideoClient

Podemos comprobar que la aplicacion estd completamente migrada a 64 bits
desde el administrador de tareas de Windows, donde a diferencia de otras
aplicaciones para 32 bits, ésta carece de los caracteres *32 al final del nombre (Figura

19).

36

ﬁf; Administrador de tareas de Windows
Archive Opciones Ver Ayuda
| Aplicaciones | Procesos |Servicios I Rendimiento | Fundciones de red I Usuarios|
-

Mombre de imagen Mombre ... CPU Memoria ... Descripddn -~
c_studio_xe_2013 updat... joseang... 00 2.228KB Intel(R) C++ Studio ¥E 2013 ...|
chrome.exe *32 joseang... 00 3.648 KB Google Chrome
chrome.exe *32 joseang... 00 27.645 KB Google Chrome
chrome.exe *32 joseang... 00 25.552KB Google Chrome
chrome.exe *32 joseang... 00 67.632KB Google Chrome
conhost.exe joseang... 00 1.220 KB Hostde ventana de consola |z
CSrss, eXe ile} 1,804 KB
dwm.exe joseang... 05 32,732KB Administrador de ventanas del..|
EpmNews.exe *32 joseang... 00 488 KB EaselS Partition Master Home.. |
explorer.exe joseang... 01 38.096 KB Explorador de Windows
fesifpga.aoc.exe *32 joseang... 00 3430 KB Intel® Software Manager
hkcmd.exe joseang... 00 464 KB hkcmnd Module
igfwpers.exe joseang... 00 433 KB persistence Module
igfxtray.exe joseang... 00 308KB igfxTray Module
jusched.exe *32 joseang... 00 204KB Java(TM) Update Scheduler
ScatRTPVideoClient.exe joseang... 00 2.376KB ScatiRTPVideoClient 2.0.0.0
Setup.exe *32 joseang... 00 16,596 KB Intel(R) Software Setup Assist..
sidebar. exe joseang... 03 19.648 KB Gadgets de escritorio de Wind., -
4 m | »
I '&'Mostrar procesos de todos los usuarios

Procesos: 62 Uso de CPU: 49% Memoria fisica: 69%

k> y

Figura 19. Ventana de recursos del sistema Windows 7.

4.2. Estimacion de la migracion

A partir del coste temporal que supone la migracion de esta aplicacion, analizado a
continuacion, podemos estimar el coste de la migracibn a 64 bits de la aplicacién
VisionSurfer.

4.2.1. ScatiRTPVideoClient

e Migracion librerias (minimo 1 dia para cada libreria: ultima version y compilar)
(total: 136h):
0 Codec de video IPP: 2 semanas (14 dias - 112h).
0 ACE: 1 dia (falta compilar con opciones de compilador) (8h)
o Cryptopp: 1 dia (8h).
0 AviFile: 1 dia (8h).

e Formacion 64 bits (warnings, tipos de datos, instalacion herramientas): 3 dias
(24h)

e Compilacion 64 bits (opciones compilador, directorios, etc.): 2 dias (16h)
e Migracion codigo 64 bits (warnings) (total: 28h)
e Corregir warnings Visual Studio C++: 1 dia (8h)

e Ejecutar PVS-Studio y corregir warnings: 2,5 dias (20h)

e Pruebas ejecucion 32 y 64bits: 2 dias (16h)

37

¢ Problemas no planificados (p.e. avifile): 2 dias (16h)
e Documentacién (cambios librerias, warnings, compilacion...): 3 dias (24h)

Total: 260h (32,5 dias) (6 semanas y media).

4.2.2. ScatiVision

Migracion librerias (minimo 1 dia para cada libreria: Ultima version y compilar)
(total: 280h):

o [IJL: (estan 'obsoletas’, ahora se utilizan ejemplos de IPP como en H.264
y MPEG-4): 2 semanas y media (100h) (riesgo)

o SIP: (funciones eliminadas de IPP, buscar alternativas, etc.): 2 semanas
y media (100h) (riesgo).

o Elresto de librerias (estdn en una tabla en el estudio) tienen versiéon de
64 bits y no es necesario (a priori realizar cambios en el cédigo fuente):
2 semanas (80h)

e Formacion 64 bits (warnings, tipos de datos, instalacion herramientas): 3 dias
(24h) (por persona) (suponemos 2 personas: 48h)

e Compilacién 64 bits (opciones compilador, directorios, etc.): 5 dias (40h)

e Migracion codigo 64 bits (warnings) (multiplicamos por 10 - segun las lineas de
c6digo) (total: 280h)

e Corregir warnings Visual Studio C++: 10 dias (80h)

e Ejecutar PVSStudio y corregir warnings: 25 dias (200h)

e Pruebas ejecucion 32 y 64bits: 5 dias (40h)

¢ Problemas no planificados (p.e. avifile): 10 dias (120h) (riesgo)

¢ Documentacién (cambios librerias, warnings, compilacion...): 10 dias (80h)

Total: 888h (111 dias) (22 semanas y 1 dia)

4.3. Cambios librerias para 64 bits

A continuacioén se detallan los cambios realizados en las librerias para su
correcto funcionamiento en 64 bits.

IPPMedia:
. Se ha cambiado de version de IPP de 6.1.3.047 a 7.1.1.119.
. Se han afiadido los cambios realizados en SCATI a los ejemplos de las IPP de

la nueva version:

38

ACE:

Forzado de keyframes en compresores H.264 y MPEG-4.

Afadido limite de bitrate en modo de calidad constante en compresor

H.264.

Cambios de formato de color revisados.

Reestructuracion de librerias resultantes de IPPMedia:

En lugar de tener una sola libreria 'IPPMedia.lib’, ahora se tienen mudltiples

librerias de cada uno de los médulos de los ejemplos (p.e. 'h264 enc.lib',

'h264_dec.lib', etc). Esto es debido a que el script que viene con ellas permite

hacer esto mas facilmente que juntar todas las librerias en una sola.

En cada aplicacion que utilice las librerias IPP, hay que utilizar la funcion

'InitPreferredCpu()’ para que se utlicen las optimizaciones de la CPU

correspondiente. De esta manera el codigo de las funciones optimizadas de las

IPP cambia dependiendo de la arquitectura.

No se han incluido las MFC (Microsoft Foundation Classes), libreria que

envuelve parte del API de Windows en C++, en las librerias de los ejemplos de

las IPP.

Utilizacion de las librerias de IPPMedia en el proyecto de ejemplos tanto en

32bits como en 64bit:

. Es necesario afiadir las librerias de los ejemplos utilizadas
(utilizando 'pragma’, tal y como se hacia hasta ahora con la libreria
IPPMedia).

#pragma comment (lib, "vm_plus.lib™)

. Necesario afadir las cabeceras de las IPP necesarias en los
ficheros que las utilizan.

#include "umc_app_utils.h”

. Es necesario afiadir las siguientes librerias para el enlazado:
shell32.lib, ole32.lib, oleaut32.lib, uuid.lib, advapi32.lib, winmm.lib pdh.lib,
SetupAPL.lib.

Afadida captura de excepciones en los ejemplos de las IPP (en las
propiedades de los proyectos de ejemplos 'Enable C++ Exceptions: Yes With
SEH Exceptions (/EHa)"). De esta forma se capturan excepciones producidas
en los ejemplos, que de otra forma no se podrian capturar y harian que el
programa que utiliza estos ejemplos se cerrara, sin poder recuperar el sitio en
el que ha tenido lugar el error.

Se ha cambiado de version de ACE de 5.7.1.1 a6.1.0. El cambio se ha

realizado para trabajar con la Gltima version de estas librerias.

Se han compilado tanto en 32 bits como en 64 bits sin tener que realizar

ninguna modificacion:

39

. Inicialmente no se han modificado las directivas de compilacion. Se van
a realizar las pruebas iniciales; de esta forma de comprueba si funcionan las
librerias con los cambios minimos necesarios.

. No se utilizan las directivas ACE_HAS_MFC,
ACE_LEGACY_MODE ni _USE_32BIT_TIME_T. Esta ultima no tiene
sentido en 64-bits.

Cryptopp:

. Se ha cambiado de version de CryptoPP de 5.6.0 a5.6.1. El cambio se ha
realizado para trabajar con la Ultima version de estas librerias.

. Se han compilado tanto en 32 bits como en 64 bits:
. Se han modificado las propiedades del proyecto de las librerias

Cryptopp de “Multi-threaded” a “Multi-threaded DLL* (tanto en
Debug como en Release).

Auvifile:

. Se han compilado estas librerias tanto en 32 bits como en 64 bits sin tener que
realizar ninguna modificacion.
= Pese a no tener que realizar ninguna modificacién, han aparecido varios
warnings relacionados con el cambio de tamafio en la arquitectura de 64 bits.

warning C4267: "initializing®™ : conversion from F"size t*
to "int", possible loss of data

warning C4244: "+=" : conversion from "iInt64_t" to
"uint_t", possible loss of data

warning C4244: “return® : conversion from “time t" to
“uint_t", possible loss of data

warning C4244: "= : conversion from F“LRESULT" to
"unsigned long", possible loss of data

Una vez realizados los cambios oportunos en las librerias, se han adaptado las
librerias propias de 32-bits a los cambios producidos en las nuevas versiones de las
librerias de terceros usadas.

. Adaptacién a nueva version de IPP:
. Cambios en las siguientes clases:
. IPP_DecompressorCodec: modificaciones para adaptarse a los
cambios de los ejemplos de las nuevas IPP.
. SC_CompresorCodeclPP: modificaciones para adaptarse a los

cambios de los ejemplos de las nuevas IPP. Se ha detectado una fuga de
memoria en el compresor H.264 de las IPP utilizando la herramienta de
Intel: Studio XE.

40

. ImageProcess: modificaciones en las funciones de
redimensionado; las funciones utilizadas hasta ahora ya no existen
(estaban deprecated hace varias versiones de las IPP. Se han
modificado por las funciones.

. Adaptacién a nuevas librerias de ACE:
. No se utilizan versiones especiales de ACE con MFC; se ha cambiado
el fichero svc. conf para eliminar mfc.
. No se utiliza la directiva de precompilacion _USE _32BIT_TIME T.
. Cambios en las propiedades del proyecto
. En configuracién Debug ha sido necesario afiadir la siguiente libreria
como ignorada: LIBCMTD.
. Se ha cambiado la directiva de compilacion de _ WIN32 _a __ WINDOWS
para distinguir entre sistemas operativos Windows y otros.
. Se ha detectado un problema en la escritura de ficheros AVI con la libreria

AviFile. Es un error muy extrafio ya que se produce solo en Release en 32 bits;
parece que hay algun tipo de incompatibilidad con esta libreria y con la utilizacién
de las funciones _open, closey write, se han cambiado por las funciones
fopen, fclosey fwrite.

. Se ha corregido un problema porque no se llegaba a utilizar la CPU al 100%
con varias descompresiones simultaneas, y es que el programa sélo realizaba una
descompresion simultdneamente. Se ha detectado utilizando la herramienta de
Intel: Studio XE.

4.4. Solucion warnings migracion a 64 bits

Una vez completado este proceso, se ha compilado para 64-bits con éxito sin
realizar ningun cambio, salvo la aparicion de warnings propios de la migracion, como
la conversion entre tipos de datos de tamafios diferentes.

. Se han corregido los warnings detectados en la compilacion anterior afiadiendo
las conversiones necesarias a entero. Con estos cambios se han eliminado todos
los warnings. Lo ideal seria utilizar los tipos de datos correspondientes siempre
que fuera posible (evitar el uso de Inty utilizar size t (0 ssizet t) cuando
corresponda.

. Se modifica el fichero de ACE: OS_NS_unistd.inl para evitar un warning similar
a los anteriores en la llamada a la funcion swab.

Por ultimo, se ha usado la herramienta de analisis estatico de codigo PVS-

Studio, para obtener un informe detallado de todos los posibles warnings relacionados
con la migracion.

41

Muchos de los warnings obtenidos en esta seccidn estan relacionados con la
conversion de memsize a Int, por lo que no haria falta cambiarlos.

. Se han ignorado los siguientes warnings tras ver que no son imprescindibles:

V101, V102, V103, V104, V106, V108, V110, V112, V113, V117, V119, V121,
V220, V302

Hay muchos warnings en el cédigo de ACE, pero al ser una libreria que no
depende de nosotros no podemos entrar a cambiar nada, puesto que lo mas
seguro es que estropeariamos algo.

. Hay varios avisos también en el cédigo de los ejemplos de las IPP.
. Otros warnings también en: ScatiTime, ImageData, SharedBuffer.

Se ha observado también algin warning relacionado con la no inclusién de la
directiva de precompilacién de ACE -> _USE 32BIT_TIME T.

En SharedBuffer: ¢ Devolvemos size_t o hacemos un cast a int? V110.

int size_bytes() const

{

return (buff_data_->size * sizeof(_T));

Aparece el aviso V111 en las macros de ACE (habria que intentar evitar este warning).

. Avisos en las funciones de log
de 1nit_encoder de SC_CompresorCodeclIPP\N204.

Warning GA (General Analysis)

. Ignorados: V524, V547 Comprobaciones que son siempre verdaderas o
falsas, V550 No parece dar problemas, V595 No comprobacién de NULL al utilizar
punteros.

Otros Warnings

. Modificado SC_Base64, la funcién iba més alla del limite superior del vector,
aunque en ejecucibn no se habia registrado ningan fallo. En el
fichero PtzCommand . cpp se puede producir underflow del buffer, debido a que
el tamafio que se usa en la funcidbn memcpy es un entero y por lo tanto puede ser
negativo, habria que usar un dato del tipo unsigned. V512.

. Se ha producido por una indexacion incorrecta en un if al que sélo le sigue una
instruccién y que por tanto no tenia llave, V628.

42

Modificado ComprStats para utlizar puntero a char en lugar
de std: :string\V510.
= Se han corregido varios cambios de tipo incorrectos en clases de
Ipcamstest gui.\/576, V601.

Eliminadas algunas variables declaradas pero no utilizados: V808 Variables
declaradas pero no usadas, V807 Se usaba varias veces el mismo acceso a una
clase y se ha creado un objeto que lo contenga para acceder Unicamente al
principio a la clase y mejorar el rendimiento.

Algunos V803 al no utilizar el elemento anterior del rterator en el bucle es
més efectivo usar ++iterator que iterator++, algunos V802 optimizacién de
tamafio de estructuras reduciendo su tamafio en memoria y algunos V809 al usar
la funcion delete() no hace falta comprobar el puntero, por ahora no se quitan.

43

Capitulo 5

5. Pruebas de rendimiento

En este capitulo se presentan las pruebas de rendimiento realizadas con la
aplicacion SCATIRTPVideoClient, la cual se conecta a un servidor de video mediante
el protocolo RTP (Real-time Transport Protocol)y RTSP (Real Time
Streaming Protocol) y muestra las imagenes por pantalla, comprime el video
para guardarlo en disco, etc.

El objetivo de estas pruebas es conocer el limite de conexiones que podemos
tener abiertas a la vez en la aplicacion, comparando las versiones de 32 y 64 bits.
Estas pruebas se han realizado en dos ordenadores diferentes, para tener una mejor
visién de la diferencia en cada caso, no sélo por mejora del hardware, sino por la
optimizacion de la libreria de las IPP. Esta libreria es el cuello de botella de la
aplicacion, pues es la encargada de hacer el procesamiento de datos con mayor carga
de trabajo.

5.1. Examples

Las primeras pruebas se han realizado sobre la aplicacion examples
encargada de descomprimir y comprimir video.

44

Figdra 20. Rendi_miento aplicécién Exampies 64 bits.

3l T K0 T TS6ET Al bt bL WOl W 1 s WTH
f L€ 0t B0 6 A 8 89 gt YT W T dis ¥0H
GOETT GUSS QUED M6 GBI GETT T L w00 0T 8 T
CIRL 00T (9 SR GL5ETS A1 S A 1 i34 Wy W b dil #0H
B D CIET 53 FTA R Y 0%] W0 yNw 1 dWT #0H
ik AR L IR) % % 0 i W00s w1 diT ¥ACH
CRTEE Qo %0 O Sk IS I8 6l WS YN 1% WH
GETE GEET AT SIOWT GSSUS SE9E T bb W09 0k 8 10 WH
GUEE Ml ff QR /A R YR /) by Y008 0% ¥ 10 WH
iR 0T W 471 (Y ! Ll WL W% 1 19 WH
8%y 3 S TR SN WML 806 i tl 00s wNm T 1 WH

il sy sd sl sy 4 U3 elows)| 230 EUOWIYY UT (gD 30 g SelEE? UoIaNI0saY 2300
UOle1aAUO] LOIEILIPY [El0] UOISIaAUO] UOREAIDOIA] [E10L |
UOREILIPO] UORELIp022(]

45

La Figura 20 muestra los frames por segundo en descompresion y
compresion para las versiones de 32 y 64 bits de la aplicacion Examples, asi como el
porcentaje de uso de CPU y la cantidad de memoria virtual usada. Nétese que el
SpeedUp conseguido esta en torno a 1. Esto nos indica que no hay una mejoria de
rendimiento por el cambio a 64-bits. La migracion en todo caso permite manejar mas
memoaria, algo muy importante para la aplicacion, puesto que con ocho camaras de
1MPixel, ya ocupamos 1GB de memoria virtual, lo que supone la cuarta parte del
maximo accesible con 4 GB.

Otro dato a destacar, pese a que no esté relacionado con la migracion a 64
bits, es el mejor aprovechamiento de la CPU a la hora de manejar dos videos
simultdneamente debido al uso de hilos, ya que al contar con 2 CPUs, el trabajo se
distribuye mucho mejor. De aqui podemos concluir que seria ideal contar con un
nacleo por cada flujo de video a tratar, pero esto es imposible para un gran nimero de
camaras (por encima de 32), dado que un numero mayor de flujos de video que de
nacleos de procesamiento provoca una pérdida importante de rendimiento debido a
esperas de sincronizacion entre hilos.

5.2. SCATIRTPVideoClient

A continuacion se detallan las pruebas realizadas a la aplicacion
SCATIRTPVideoClient de la que se han obtenido datos separados para
descompresion y compresion, asi como para videos con un cédec H.264 y MPEG-4.
También se han tomado medidas con un numero distinto de cdmaras (4, 8, 16, 32, 64
y 100) y un tamafio de imagen diferente (4CIF, 1Mpx, 5Mpx). Para la versién de 32
bits, se han tomado las medidas de los datos limite (100 camaras, 5Mpx), que nos dan
una referencia clara del limite rendimiento para nuestra aplicacion.

46

5.2.1. H264 - MPEG-4. Compresion y Descompresion

En la figura 21, podemos observar las medidas obtenidas de la aplicacion

ScatiRTPVideoClient para la versién de 64 bits, con distintos nUmeros de camaras,

distintos tamafios de imagen (4CIF, 1Mpx y 5Mpx) y tanto para el cédec H.263 como

MPEG-4. Las medidas mas relevantes a tener en cuenta son: FPS, Bitrate, uso de

CPU y memoria.

pEE
€0z
BET
VZel
T8TT
L6TT
[
68T
0ot
e
[43
[43
13
1€
14
00t
A1)
ToT
6
96
[44
SE
6E
GoE
05€E
GEe
00t

(sopewnisa) uoisaidwod saje10] §d4 UQIsaIdwod Nd) BIBWED BUOWSA [B10] BIIOWSIAl BIBWED NdD [E10] Nd) EIBWE 3]EI}Ig [B10] 21BI}IG BIBWED Sd4 S9|B10} Sd4 SEIBWED UQN|0S3Y I3po)

8y
€9
9s
[
19
e
05
85
19
69
L5
0z
€8
59
09
¥e
11
4

&L
74
9z
GL
9L
Ir
[4}
08
6L
08
08
44
L
9z
74
oL
19
0z

T6'0L
SZTEOL'TL
SL
€L
18
5206
L2'6T
SI8'6T
5Z90%'07
S
SlE'lT
GL'gg
7L
GI8TTL
579518
cL's
s
i1
£t
AR TAN
5/896'0/T
STI8'PHI
181
S'6eT
160y
7906 LY
TI8L'8Y
s
£79'cs
5%
vELT
G/8915°/T
S/EST
C/8T'ST
cT'ee
gL'z

T60L
685F
oove
1749
8t9
T9¢
LZ6T
[4kA)
£99
PoE
61T
GeT
£l
(414
192
ot
00t
29
0ETFT
(444148
€096
L1ET
BT
86L
Te9r
£E0E
T84T
oze
844
L5
VELT
ETIT
885
{374
981
T

6
STT£5'T
£
G/8'S
LTI
gzt
g6'0
SLEY'T
G896
ST18'S
SIE's
L
160
SLEV'T
57906°
S189'
[4
ST
L6
6796167
5790
G/8'S
LTI
Al
860
g1
G895
SLE6'S
LTI
IAA
60
g1
G895
G/8'S
6
A

76
86
9%
76
6
08
6
6
56
6
&L
8z
16
76
£6
134
o
L

L6
L6
86
6
6
08
86
96
56
6
6
6t
6
9
56
76
44
14

86'25
G816
G/8T/'68T
SLEY'8SE
STo'SLL
[4311
£9'8¢
G/896.'E9
SLEP'STT
SLE'SVT
S/8'00v
SZ'00v
9’6y
G7906£08
GTTE0DST
SLEY09T
SL'66T
67091
80'2E
GLBTT6TS
SZIE'ETT
5£89°707
SLE'EY
829
[41:4
SLBTZY'TY
STTB0ET
95z
STI'TIS
61'99L
L'z
GLEVBTE
c7'so
gt
5’08t
[4:38

8685
¥oz9
TL09
CELS
G0z9
809
£88¢
£80V
iov
Pi6E
L0ZE
109t
0967
57785
€661
£957
82T
i

80LE
LBEE
979t
GLTE
GIvE
(4544
[4t34
G66E
98P
960
6B0Y
£90€
e
80T
8802
oz
T
8L

650
5790680
ST18'T

STIE'E
ger's
g0t

(494
5Z906'

GLER'L
gt
74
SLvT

T
6/896'TT

TAR 4

ST18'1C

S8BT
&

97’0
G7906£°D
SZ18L°0

579
ger's

Sy

80
GTTSTET

£79'7
YA
A
gt
187
1Y
G/8'8
G89°LT
S8BT
&

68
L5
L5
€5
L8
44
[474
0z
14
8t
00z
66
TiL
997
(474
L6E

9T
8z
£8C
66T
00t

00T
L]
[43
a1
8
14
00T
L&)
[43
a1
8
14
00T
L&)
[43
a1
8
14
00T
L&)
[43
a1
8
14
00t
L&)
[43
a1
8
14
00t
L&)
[43
a1
8
14

dINS
dINS
dINS
dINS
dINS
dINS
dINT
dINT
dINT
dINT
dINT
dINT
410%
4%
410%
4i0r
410%
dior
diNS
dINS
dINS
dINS
dINS
dING
dINT
dINT
dINT
dINT
dINT
dINT
410%
4%
410%
410¢
410%
(]

P-93dIN
F-93dIN
F-93dIN
F-03dIN
F-93dIN
F-23dIN
P-93diN
F-93dIN
F-93dIN
P-93dIN
F-03dIN
F-23dIN
P-93dIN
F-93dIN
F-93dIN
F-93dIN
F-93dIN
F-93dIN
V9T'H
VIT'H
¥9T'H
PIT°H
¥9T'H
VITH
V9T'H
VIT'H
¥9T'H
YIT°H
¥9T'H
VITH
V9T'H
VIT'H
¥9T'H
PIT°H
¥9T'H
VITH

6n 'y compresion.

Figura 21. Rendimiento H.264, MPEG-4 en descompresi

47

Frames maximos

En las Figuras 22 y 23, podemos observar los frames por segundo que es
capaz de descomprimir la aplicacién en su version de 64 bits para distinto nimero de
cdmaras y tamafios de imagen. La grafica para 32 bits es muy similar y no la
mostramos. Podemos observar que a partir de cierto limite, este valor alcanza su
maximo y se mantiene constante pese a que incrementemos el nUmero de camaras.
Esto nos indica el maximo que podemos obtener para cada tamafio de imagen. El
factor limitante principal es el tamafio de la imagen: con imagenes de 5Mpx el
programa satura con el minimo nimero de camaras.

48

1400

1200 e

" /

j=1

% 1000

[=]

3 /

§ 200 e L C| F

(=14}

% / 1MP

& 600

o

a / o

E 400

(1]

: /

200 —
0 T T T T 1
4 8 16 32 64 100
Numero de camaras
Figura 22. Fps H.264, en descompresion para la version de 64 bits.
2000
1300
1400 /
1200 / e 4 C|F
1000
/ e] MP
800
€00 / e 5 VP
~—
400
200 /
e
0 T T T T T 1
8 16 32 64 100

Figura 23. Fps MPEG-4, en descompresidn para la version de 64 bits.

49

Uso de CPU

En las Figuras 24 y 35 se muestra el uso de CPU para la versién de 64 bits.
Observamos que a partir de cierto nimero de camaras, para cada tamafio de imagen,
el porcentaje de uso de la CPU se mantiene alrededor del 90%. Esto nos indica que
cuando llegamos a este valor, el incremento del nimero de cdmaras simultdneas hace
que el rendimiento de la aplicacién se degrade. Notese que este valor nunca llegara al
100% debido a que el ordenador siempre estard ejecutando un minimo de
operaciones en el 10% restante.

50

Porcentaje de uso de CPU

100
90
80
70
60
50
40
30
20
10

,/ / / ——4CIF
/ / —1MP
/ / w5 MP

4 8 16 32 64 100
Numero de camaras

Figura 24. Uso de CPU en H.264 para la version de 64 bits.

100
90
80
70
60
50
40
30
20
10

/ / / — A CIF

/ —1MP

, /
/
A4
4
/

Figura 25. Uso de CPU en MPEG-4 para la version de 64 bits.

51

Capitulo 6

Conclusiones y trabajo futuro

La realizacién de una migracion a 64 bits esté fuertemente condicionada por la
tecnologia usada, es decir, por las caracteristicas de los componentes de software
empleados en el programa a migrar. Puede ser un proceso que se realice
simplemente compilando lo ya existente para plataformas de 64 bits, con el posterior
enlazado a sus correspondientes librerias de 64 bits, o puede ser un proceso mucho
més complejo, en el que haya que comenzar por el cambio de version de las librerias
implicadas, su correcta revision y andlisis estético asi como su compilacion para
entornos de 64 bits. Pueden surgir problemas derivados del cddigo que implique el
cambio de codigo legado, con todos los inconvenientes que esto conlleva. En este
Proyecto se ha llevado a cabo un analisis pormenorizado de todos estos aspectos,
enfocado a una aplicacion en explotacion (VisionSurfer 4.6, SCATI LABS.). La
estimacion resultante del proceso de migracion ha sido de 4 meses (Capitulo 4).

Respecto al rendimiento observado en nuestra aplicacion de 64 bits, la mejora
producida es leve, consiguiendo incluso resultados peores en ciertos casos. Esto es
debido al uso de la libreria de las IPP optimizadas tanto para 32 como para 64 bits, y
que soportan aproximadamente un 90% del tiempo de ejecucion total. Ademas, como
era de esperar el programa generado ocupa un mayor tamafio debido al crecimiento
de los tipos de datos como punteros, y la duplicaciébn de los primeros cuatro
parametros en una invocacion a funcion.

El principal beneficio de la migracion a 64 bits que podemos resefiar es la
posibilidad de manejar cantidades de memoria superiores a 4GB (limite de los SO de
32 bits). Esto nos ha permitido poder manejar mas flujos de video de entrada en la
aplicacion, elevando el numero de camaras simultaneas hasta 300 aproximadamente,
respecto a las 64 que podiamos manejar en su version de 32 bits. Pese a que en un
principio se esperaba poder mejorar el rendimiento, la necesidad real, en funcién de
las necesidades del mercado, era poder conectar mas camaras de las permitidas
hasta este momento.

Respecto a las lineas de desarrollo seguidas a partir del resultado de este
proyecto, se ha seguido con la migracibn de otras aplicaciones implicadas en
VisionSurfer. Esta aplicaciones por el momento han presentado problemas
similares y han mostrado resultados de rendimiento parecidos, una vez mas la
posibilidad de una mayor manejo de memoria ha sido la mejora mas destacable, si
bien es verdad que en otras aplicaciones y para caso concretos se han obtenido
mejores resultados que en la version de 32 bits. Esto puede deberse a la supuesta
mejora obtenida al tener un mayor ndmero de registros,que disminuye el spill
code, y por el paso de pardmetros por registro en lugar de memoria (pila) como se
mostré en el Capitulo 2.

52

53

ANEXO 1:

CODIGO ENSAMBLADOR APLICACION HELLO
WORLD 32 Y 64 BITS

A continuacién se muestra el codigo ensamblador para las distintas versiones del
programa Hello World.

o Plataforma x86 Debug.

; COMDAT _wmain
_TEXT SEGMENT
_argc$ = 8 ; size = 4
_argvé = 12 ; size = 4
_wmain PROC 5 COMDAT
;9 o d
push ebp
mov ebp, esp
sub esp, 192 ;5 000000cOH
push ebx
push esi
push edi
lea edi, DWORD PTR [ebp-192]
mov ecx, 48 5 00000030H
mov eax, -858993460 5 ccccccccH
rep stosd
s 10 s std::cout << "Hello World!!11" << std::endl;

mov esi, esp

mov eax, DWORD PTR
___imp_?endl@std@oYAAAV?$basic _ostream@bU?$char_traits@DOstd@oo10AAV2100Z

push eax

push OFFSET 22 _C6_OPOMKFFDIMNGHe I Io?5Wor 1d?$CB23CB2$CB2$AA0

mov ecx, DWORD PTR
___imp_?cout@std@a3V?$basic_ostream@DU?$char_traits@DOstdiid10A

push ecx

call

22$26U?%$char_traits@DOstdO00std@OYAAAV?$basic_ostream@DU?$char_traits@D
OstdeOo0BAAVIORPBDRZ ; std::operator<<<std::char_traits<char> >

add esp, 8

mov ecx, eax

call DWORD PTR
___Imp_??62%basic_ostream@DU?$char_traits@DAstdioostddOQAEAAVOLBPEAAAVOIBAAVOLE
o0z0z

cmp esi, esp

call __ _RTC CheckEsp

S 11 - return 0O;

Xxor eax, eax

;12 o}
pop edi
pop esi
pop ebx
add esp, 192 5 000000cOH

cmp ebp, esp
call __ _RTC CheckEsp
mov esp, ebp

pop ebp
ret 0
__wmain ENDP

54

e Plataforma x86 Release.

5 COMDAT _wmain
_TEXT SEGMENT

_argc$ = 8 ; size = 4
_argv$ = 12 ; size = 4
__wmain PROC ;5 COMDAT

;5 10 : std: -cout << "Hello World!1!1" << std::endl;

mov eax, DWORD PTR
___imp_?endl@std@oYAAAV?$basic_ostream@DU?$char_traits@DOstdpor10AAV2100Z

mov ecx, DWORD PTR
___Imp_?cout@stdpa3V?$basic_ostream@DU?$char_traits@DOstdioo10A

push eax

push ecx

call

22$26U?%char_traits@DOstdi00stddoYAAAV?$basic _ostream@DU?$char_traits@D
OstdPOO0OAAVIONPBDEZ ; std::operator<<<std::char_traits<char> >

add esp, 4

mov ecx, eax

call DWORD PTR
___Imp_??67%basic_ostream@bU?$char_traits@DAstdoodstd@OQAEAAVOLBOP6AAAVOIGAAVOLG
o0z0z

s 11 - return 0;

xor eax, eax

;12 -}
ret 0
__wmain ENDP

e Plataforma x64 Debug.

_TEXT SEGMENT

argc$ = 48
argv$ = 56
wmain PROC
;9 o
SLN3:

mov OQWORD PTR [rsp+16], rdx

mov DWORD PTR [rsp+8], ecx

push rdi

sub rsp, 32 ;5 00000020H
mov rdi, rsp

mov rex, 8

mov eax, -858993460 ;- cccccececH
rep stosd

mov ecx, DWORD PTR [rsp+48]

7 10 - std: :cout << "Hello World!!1!" << std::-endl;

lea rax, OFFSET FLAT:$S5G20069

mov rcx, QWORD PTR
___Imp_?cout@std@o3V?$basic_ostream@DU?$char_traits@DOstdioo10A

call

22$26U2%char_traits@DOstdi00stdodOYAAEAV?$basic_ostream@DU?$char_traits@
DOStd@OBOPAEAVIOOPEBDAZ ; std::operator<<<std::char_traits<char> >

mov rax, QWORD PTR
___imp_?endl@std@OYAAEAV?$basic_ostream@DU?$char_traits@DOstdPOO1lPAEAV21060Z

mov rcx, rax

call QWORD PTR
___imp_??62%basic_ostream@bU?$char_traits@DOstdoodstd@OQEAAAEAVOLBP6AAEAVOIGAEA
Vo100262

;11 : return 0;

xor eax, eax

55

;12 2}

add rsp, 32 ; 00000020H
pop rdi
ret o

wmain ENDP

e Plataforma x64 Release.

; COMDAT wmain
_TEXT SEGMENT
argc$ = 48
argv$ = 56
wmaitn PROC 5 COMDAT
;9 o
SLN3:
sub rsp, 40 5, 00000028H
;10 : std::cout << "Hello World!1!" << std::endl;

mov rcx, QWORD PTR
___Imp_?cout@stdpa3V?$basic_ostream@DU?$char_traits@DOstdioo10A

lea rax, OFFSET FLAT:?2_C@_OPOMKFFDJIMNG@GHel 1o ?5Wor 1d?$CB2$CB2$CB2$AA0

call

22$26U?%char_trailts@DOstd@ifstdooYAAEAV?$basic_ostream@DU?$char_traits@
DOAstd@OOOCAEAVIOOPPEBDAZ ; std::operator<<<std::char_traits<char> >

mov rax, QWORD PTR
___imp_?endl@std@oYAAEAV?$basic_ostream@DU?$char_traits@DOstdPOO10AEAV2106Z

mov rcx, rax

call OQWORD PTR
___Imp_??67%basic_ostream@bU?$char_traits@DAstdoofstd@OQEAAAEAVOLBPEAAEAVOLGAEA

Vo100202

S 11 - return 0O;

xor eax, eax

;12 -}
add rsp, 40 ; 00000028H
ret 0

wmain ENDP

56

ANEXO 2:

WINDOWS 32 BITS ON WINDOWS 64 BITS

Como ya hemos dicho antes, WOW®64 es un subsistema de Windows que
permite ejecutar procesos de 32 bits en un entorno de Windows 64 bits.

Cuando se lanza una aplicacién de 32 bits, lo primero que se ejecuta es el
lanzador nativo de librerias. Este reconoce que es un proceso de 32 bits y lo trata de
una manera especial. Se configura un entorno de emulacion WOWG64 para los
procesos de 32 bits y se transfiere el control al cargador de 32 bits, en Ntdil.dll.

La capa de emulacién de WOW®64 se ejecuta entre la aplicacion de 32 bits y la
dil de 64 bits Ntdll.dll y traduce las llamadas de la aplicacion a Ntdll.dll de 32 bits. a la
Ntdll.dIl de 64 bits. Las llamadas de retorno se traducen de forma similar.

Algunas de las limitaciones de WOW64 son:

e El espacio de direcciones esta limitado a 2gB por defecto y 4GB si usamos
/LARGEADDRESSAWARE.

e Un proceso de 32 bits no puede cargar una DLL de 64 bits (excepto para
ciertas DLLs del sistema)

¢ No se pueden ejecutar procesos de 16 bits.

e EIAPIdela Virtual DOS Machine (VDM) esta desactivada.

e Otras limitaciones en arquitecturas ftanium.

La redireccion del registro permite al codigo de 32 bits acceder a los registros
apropiados en las maquinas de 64 bits. La redireccion divide el registro en nodos de
32y 64 bits.

La redireccion de archivos del sistema permite al cédigo de 32 bits usar
nombres de fichero y rutas que hacen referencia a datos o médulos de 64 bits.

Muchas veces los desarrolladores escriben en el cédigo directamente las rutas
en sus aplicaciones. Por esto para mantener la compatibilidad de las aplicaciones el
sistema de ficheros de 64 bits se llama todavia Ssytem32.

Esta redireccion esta activada por defecto en WOWG64. Para desactivarla se
puede usar la funcion Wowé64DisablelWow64FsRedirection(). Para volver a
activarla hay que usar la funcion Wow64RevertiWow64FsRedirection(). Esto s6lo
se aplica al hilo que hace la llamada a la funcién.

Si usamos DLLs que ambos clientes (32 y 64 bits) necesitan, hay que manejar
las referencias a las DLLs para asegurar que no se usa la version correcta.

Podemos usar una techologia como COM que automaticamente las une.

S7

Dejar las DLLs en una carpeta vy afadir esa ruta a la variable de entorno
PATH. Como norma general hay que nombrar las DLLs de 32 y 64 bits. Si las
nombramos igual, debemos ponerlas en un directorio distinto cada una. Para 64 bits
es: C:\Windows\System32\DII.dIl y C:\Windows\Syswow64\DII.dIl para
32 bits.

58

ANEXO 3:

RESULTADOS DE LA COMPILACION IPP 6.1 (X64)

Esta es la salida producida por las IPP versién 6.1 al ser compiladas para 64
bits con Visual Studio 2008.

Compiling. ..

umc_mp4_parser_w.cpp

-\src\codec\mpeg4 mux\umc_mp4_parser_w.cpp(309) : warning C4267:
"=" : conversion from "size t" to "lIpp32s", possible loss of data

umc_mp4_mux_atoms.cpp
-\src\codec\mpeg4 mux\umc_mp4_mux_atoms.cpp(738) : warning C4267:

=" : conversion from "size_ t" to "lpp32s”, possible loss of data
-\src\codec\mpeg4 mux\umc_mp4_mux_atoms.cpp(742) : warning C4244:
=" : conversion from " int64" to "lpp32s”, possible loss of data
-\src\codec\mpeg4 mux\umc_mp4_mux_atoms.cpp(799) : warning C4267:
"=" : conversion from "size t" to "lIpp32u”, possible loss of data
-\src\codec\mpeg4 mux\umc_mp4_mux_atoms.cpp(837) : warning C4244:
" __int64" to "lpp32s”, possible loss of data

=" : conversion from

umc_video_resizing.cpp
-\src\codec\color_space_converter\umc_video_resizing.cpp(8l) :
warning C4267: "argument® : conversion from "size t* to "int",
possible loss of data
-\src\codec\color_space_converter\umc_video_resizing.cpp(8l) :
warning C4267: "argument® : conversion from "size t* to "int",
possible loss of data
-\src\codec\color_space_converter\umc_video_resizing.cpp(97) :
warning C4267: "argument® : conversion from "size t* to "int",
possible loss of data

Podemos ver en las sentencias subrayadas en Amarillo como el warning es
todo el rato el mismo, la conversion de un tipo de 64-bits como pueden ser size t o
___Int64 atipos de 32-bits como Ipp32s o int, produce una pérdida de datos ya que el
tamafio de destino es menor que el de origen. Para ellos habrd que cambiar los tipos
de 32 bits para que sean del tamafio de la arquitectura. De esta forma evitaremos
estos problemas que pueden hacer que la aplicacion falle por completo.

El mayor problema reside en lo tedioso que puede resultar el cambio de los
tipos implicados. Esto es debido a que el cambio de un tipo de dato, puede hacer que
aparezcan nuevos problemas en ficheros que hasta ahora parecian correctos, por lo
que no podemos hacernos una idea exacta del tiempo que puede llevarnos, ya que se

59

pueden ir generando nuevos errores conforme avanzamos en el proceso de cambio de
los tipos para que todo funcione correctamente.

60

ANEXO 4:

MEJORAS POR EL USO DE LA LIBRERIA IPP

Ademas de las funciones que se describen en el proyecto pertenecientes a las
IPP, estas ofrecen también una reescritura de las funciones del sistema mas comunes.
Debido a la optimizacion que realiza Intel sobre todas las funciones incluidas en su
libreria IPP, podemos esperar que estas funciones también estén optimizadas y por
tanto, ofrezcan mejor rendimiento que las que estamos acostumbrados a usar
normalmente. Las funciones del sistema optimizadas por Intel son:

e Funciones para el manejo de | hilos: create(), wart(),
set priority(), close(), ..

¢ Funciones para el manejo de sockets: select(), next(), create(),
accept(), write(), close(), ..

e Funciones para el manejo de seméaforos y mutex, muy parecidas a las
funciones usadas en los hilos.

e Funciones para el uso de archivos: fseek(), ftell(), Tfopen(),
fclose(), fread(), fwrite(), Tfgets(), Tfouts(), TFscanf(),
forintf(), ..

Tras analizar el comportamiento de nuestra aplicacion de prueba, hemos visto
claramente que la operacion de escribir a disco los videos generados y la operacion
de escritura de cada frame en un archivo de imagen bnmp, representan la mayoria del
tiempo que usa la aplicacién en su ejecucion. Por tanto si fuésemos capaces de
optimizar la operacion de escritura en fichero, podriamos obtener una mejora global en
el rendimiento de la aplicacién que fuese sustancial.

Para ello hemos probado a cambiar la funcién con la que escribimos que es:
fwrite(), por su equivalente en la libreria de las IPP vm_File fwrite() y el
resultado ha sido el siguiente.

61

1400000000

1200000000

1000000000

800000000

600000000

400000000

200000000

(i

I
o i
4 10 B 22 2B 34 40 46 52 58 B4 70 7B B2 88 54 100 106 112 118 124 130 136 142 148 154 160 166 172 173 184 190 196 202 208 214
1T 7 13 18 25 31 37 43 48 65 BT 67 73 79 B4 91 97 103 109 115 121 127 133 139 145 151 167 163 169 176 181 187 193 199 2056 211

Como se puede observar en azul tenemos el nimero de clocks de la CPU
para la llamada fwrite() para cada imagen y en rojo tenemos el numero medio que
usaremos para comparar con la version de las IPP. En la version que hemos usado la
funcion de las IPP vm_fFfile fwrite() que a priori esta optimizada, efectivamente
comprobamos que esto es asi, podemos apreciar en el color amarillo que refleja lo
mismo que el azul pero para esta funcion y en la media (en color verde) que es
sustancialmente menor. El SpeedUp conseguido con este cambio tan pequefio es de
1,6. Dado que esta operacion se realiza por cada frame del archivo de video que
estamos decodificando, esto supone un ahorro de tiempo considerable a tener muy en
cuenta, y que se puede traducir en la posibilidad de tratar algin video més
simultaneamente.

62

ANEXO 5

WARNINGS PVS-STUDIO

A continuacion se detallan los diferentes tipos de avisos producidos por la
herramienta de andlisis estatico de cédigo PVS-Studio.

Para un mayor entendimiento de cada error, se pude acceder a esta URL,
cambiando Code por el cédigo de cada aviso. http://www.viva64.com/en/ Code

e V101: El analizador ha detectado un error potencial debido a una conversiéon
implicita en una operacion de asignacion. Esto puede resultar en un error al
calcular la expresién de la asignacion.

size t a;
unsigned b;

a = b; // Viol

e V102: El analizador ha encontrado un posible error en aritmética de punteros.
El error puede ser causado por un overflow al determinar el valor de la
expresion.

short al6, bl6, cl6;

char *pointer;

pointer += al6 * bl6 * cl6;

e V103: EI analizador ha encontrado un posible error relacionado con la
conversion implicita de un tipo del tamafio de la memoria a uno de 32-bits. El
error consiste en la pérdida de los 32 bits més significativos.

size_t Width, Height, FrameCount;

unsigned BufferSizeForWrite = Width * Height * FrameCount *
sizeof(RGBStruct);

e V104: El analizador ha encontrado un posible error dentro de una operacion
aritmética relacionado con la conversion implicita a un tipo del tamafio de la
memoria.

size t n;

unsigned 1;

// Infinite loop (n > UINT_MAX).
for (i =0; 1 '=n; ++i) { ... }

63

V106: El analizador ha encontrado un posible error con una conversion
implicita de un argumento de la funcién a un tipo del tamafio de la memoria.

CArray<int, int> myArray;

int invalidindex = O;

INT_PTR validlndex = 0O;

while (validlndex !'= myArray.GetSize()) {
myArray.SetAt(invalidlndex, 123);
++invalidindex;

++validIndex;

V108: El analizador ha encontrado un posible error en la indexacion de un
vector, debido al uso de un tipo de tamafo inferior al de la memoria,
provocando que quizas no se pudiese indexar entero.

extern char *longString;

extern bool *isAlnum;

unsigned 1 = 0;
while (*longString) {
isAlnum[i] = isalnum(*longString++);

++i;

V110: El analizador ha encontrado un posible error relacionado con la
conversion implicita del valor devuelto. El error provoca que se pierdan los 32
bits mas significativos del valor devuelto de 64 bits.

extern char *begin, *end;
unsigned GetSize() {

return end - begin;

V111l: El analizador ha encontrado un posible error relacionado con la
transferencia de uno de los argumentos del tipo de tamafio de memoria en la
funcién con un numero variable de argumentos. Esto puede provocar que la
funcibn tome como parametro algo que no lo es, es decir, coja el final o
principio de un argumento como el siguiente debido al cambio de tamafio.

64

const char *invalidFormat = "%u";
size_t value = SIZE_MAX;

printf(invalidrFormat, value);

V112: El analizador ha encontrado el uso de un nimero mégico. El posible
error puede ser que se use como el tamafio asumido para arquitecturas de 32
bits, y provoque un error debido al cambio de tamafio en arquitecturas de 64
bits.

size_t ArraySize = N * 4;

size t *Array = (size_t *)malloc(ArraySize);

V113: El analizador ha encontrado un posible error relacionado con la
conversion implicita de un tipo del tamafio de memoria a un tipo doublé o
viceversa. El posible error consiste en no poder guardar la totalidad del valor en
un tipo double.

SIZE T size = SIZE MAX;

double tmp = size;

size = tmp; // x86: size == SIZE_MAX
// x64: size 1= SIZE_MAX

V117: El analizador ha encontrado un posible error relacionado con el uso de
un tipo del tamafio de memoria en una unién. Esto provoca que no se pueda
almacenar todo el dato, ya que el espacio del tipo sin signo es menor que el de
un puntero.

union PtrNumUnion {
char *m _p;
unsigned m_n;

¥ u;

u.m_p = str;

u.m_n += delta;

V119: El analizador ha detectado una expresion aritmética no segura que
contiene varias operaciones si1zeof(). Estas expresiones pueden devolver
valores incorrectos debido a que no tienen en cuenta el alineamiento en
estructuras para 64 bits.

65

struct MyBigStruct {
unsigned m_numberOfPointers;
void *m_Pointers[1];
};
size_t n2 = 1000;
void *p;
p = malloc(sizeof(unsigned) + n2 * sizeof(void *));
V121: El analizador ha detectado un error potencial relacionado con la llamada
al operador new. Un valor que no es del tipo del tamafio de la memoria se le

pasa a este operador como argumento. El operador new coge el valor size_ty
pasa un tipo de 32-btis puede provocar un overflow.

93

unsigned a
unsigned b = 1024;
unsigned c = 1024;
unsigned d = 1024;
char *ptr = new char[a*b*c*d]; //V121

V204: Este aviso informa sobre una conversion explicita de un tipo de 32 bits a
uno de 64 bits.

int n;

float *ptr;

ptr = (float *)(n);

V220: Este aviso nos informa sobre una secuencia extrafia de conversiones.
Un tipo de 64 bits es convertido a 32 bits para posteriormente volver a
convertirlo a 64 bits. Esto produce una pérdida de los bits mas significativos.

char *pl;
char *p2;

ptrdiff_t n;

n = int(pl - p2);

V302: El analizador ha detectado un error potencial al trabajar con clases que
contiene el operador []. Si el operador es una tipo de 32 bits, esto puede ser un
error ya que no podriamos indexarlo entero.

66

hwDn e

class MyArray {

std: :vector<float> m _arr;

float &operator[](int 1) //V302

{
DoSomething();

return m_arr[i];

ks
T A;
int x = 2000;
int y = 2000;
int z = 2000;

Alx *y * z] = 33;

V510: En funciones con un nimero variable de argumentos, sélo tipos de datos
bésicos pueden pasarse como argumentos. Estos datos planos son:

Todos los tipos aritméticos por defecto (incluyendo wchar_ty bool);
Tipos definidos como ernum.
Punteros.
Estructuras de tipos de datos planos o uniones que cumplan lo siguiente:
a. No contener constructores, destructores o asignaciones.
No tengan clases base.
No contengan funciones virtuales.
No contengan miembros privados o protegidos que no sean estaticos.
No contengan miembros no estaticos de tipos de datos no basicos y
punteros.

®ooo

wchar_t buf[100];
std::wstring ws(L12345");
swprintf(buf, L"%s™, ws);

V512: El analizador ha encontrado un error potencial relacionado con el
llenado, copia o comparacién de un buffer de memoria. Este error puede
causar tanto overflowcomo underflow del buffer.

#define CONT_MAP_MAX 50
int _1ContMap[CONT_MAP_MAX];
memset(_iContMap, -1, CONT_MAP_MAX);

67

V524: Este aviso es generado cuando el analizador detecta dos funciones
implementadas de la misma manera. Esto no es un error, pero seria deseable
gue no ocurriese.

class Point

{

float GetX() { return m_x; }
float GetY() { return m_x; }

¥

V547: El analizador ha detectado un error potencial: una condicién es siempre
verdadera o falsa. Esto no siempre es un error, pero es conveniente revisar la
l6gica del programa para comprobarlo.

LRESULT CALLBACK GridProc(HWND hWnd,
UINT message, WPARAM wParam, LPARAM IParam)

it (wParam<O0)

{
BGHS[SelfIndex]-rows = O;
by
else
{
BGHS[SelfIndex] -rows = MAX_ROWS;
by

V550: El analizador ha detectado un error potencial en una operacion de
comparacion == o !=, usada con numero en coma flotante. Estas
comparaciones pueden provocar errores. Es preferible usar una expresion del
tipo (A-B) > Epsilon.

68

double a 0.5;
if (a == 0.5) //0K

X++3

double b = sin(M_PI / 6.0);
if (b == 0.5) //ERROR

X++3

V576: El analizador ha detectado un error potencial con las funciones
(printf(), sprint(), etc.)

int A = 10;
double B = 20.0;
printf("'%i %i\n", A, B);

V595: El analizador ha detectado un error potencial que puede causar la
pérdida de la referencia de un puntero igual a NULL.

buf = Foo(Q);
pos = buf->pos;

it ('buf) return -1;

V601: El analizador ha detectado una conversién implicita rara. Este tipo de
conversion puede ser una sefial de codigo mal escrito.

std::string str;

bool bstr;

str = true;

V628: El analizador ha detectado un error potencial. Dos if seguidos pueden
indicar que uno de ellos deberia comentarse, sino la logica del programa
podria verse alterada.

if('hwndTasEdit)
//hwndTaskEdit = getTask()
if(hwndTasEdit)

{

69

V803: El analizador ha detectado una construccion que puede ser optimizada.
Un iterador que se cambia con la operacion posfija, ya que no se usa el
elemento anterior, se puede usar la operacion infija que es mas efectiva.

std: :vector<size t>::const iterator Iit;
for (it = a.begin(); 1t = a.end(); 1t+t+)
{.-- 1}

V807: el analizador ha detectado un cddigo que puede ser optimizado. El
codigo contiene mensajes homogéneos para accede al mismo objeto.

Some->getFoo()->doltl();
Some->getFoo()->dolt2();
Some->getFoo()->dolt3();

Vv808: El analizador ha detectado codigo que puede se simplificado. Una
funcion que contiene variables locales que no se usan en ningun sitio.

void Foo()

{
int A[100];
string B[100];
DoSomething(A);

Vv808: El analizador ha detectado codigo que puede se simplificado. Una
funcion que contiene variables locales que no se usan en ningun sitio.

if (pointer !'= 0)

delete pointer;

70

ANEXO 6:

TABLA LIBRERIAS APLICACION VISONSURFER

Tabla con las librerias usadas, su version y disponibilidad para 32/64 bits y
Windows/Linux:

.) Version Versidon mas
Libreria .
actual reciente
ACE 5.7.1.1(5.7.1) 6.1.0 X X
X
Cryptopp 5.6.0 5.6.1 X .
(libcryptopp)
ZLib 1.2.3 1.2.7 X X
Xercesc 3.0.1 3.1.1 X X
IPP 6.1.3.047 7.1.1 X X
Boost 1.40.0 1.52.0 X X
avifile 1.0.0.7 1.0.0.7 X X
IPPMedia 2.2.0 ??? (IPP 7.1) X X
ijl 2.0 2.0 X
SDL 1.2.14 1.2.15 X X
SQlLite 3.6.23 3.7.15.2 X X
MysQL 3:23(5.1 5.5.29 X X
v Ubuntu) o

71

ANEXO 7:

HERRAMIENTAS DE ANALISIS DE INTEL

Intel Composer XE

Con la libreria de las IPP (Integrated Performance Primitives)
contenidas en la suite Composer XE (Windows y Linux), vienen una herramientas
para el andlisis de codigo que son: Advisor XE, Inspector XE y VTune
Amplifier XE. Estas herramientas durante su instalacion quedan integradas en
Visual Studio en Windows, pero también se pueden usar por separado en ambos
sistemas. Sirven para los lenguajes C++, C#y Fortran, en nuestro caso hos
centraremos en C++ que es el que usamos.

Para todas las herramientas es recomendable hacer el analisis para la version
Debug ya que nos permitird acceder a mas informacion sobre los problemas que nos
indique, salvo que se diga que es mejor en Release.

VTune Amplifier XE

Esta herramienta hay que ejecutarla con permisos de administrador del sistema
para poder realizar todos los andlisis que ofrece. Estos analisis nos dan datos de muy
bajo nivel, como pueden ser los puntos que mas tiempo estdn en ejecucion,
sincronizacién y concurrencia entre hilos. Estas son comunes a todas las arquitecturas,
pero también ofrece otras medidas especificas de cada arquitectura como pueden ser:
acceso a la memoria, ancho de banda de memoria y numero de ciclos.

Intel VTune Amplifier XE 2013

& Choose Analysis Type

A} 'lh '& é‘ Cycles and uOps - Intel Core 2 Processor Family Copy

[Algorithm Analysis

O ser

= X Identify where micro-operation flow issues affect the performance of your application. This analysis type uses
g Lightweight Hotspots hardware event-based sampling collection. Press F1 for more details.
-4 Hotspots
- f Concurrency [~ Collect stacks @ Stact Causer]
- & Lodks and Waits
g5 Details =
[Intel Core ZProcesst.Jr Analysis (@ :] Project Properties
- & General Exploration
- f& Memory Access
-4 Bandwidth
- Ji Bandwidth Breakdown

-4 Cydes and uOps

#-F Mehalem | Westmere Analysis
{5 Sandy Bridge [Tvy Bridge [Has
-5 Intel Atom Processor Analysis
#]-{ Knights Comner Platform Analys
-\ Power Analysis

| Custom Analysis

- Command Line...

72

Si sobre un ejemplo que contiene un deadlock ejecutamos el analisis de
Locks and Waits, obtenemos el siguiente resultado:

B Locks and Waits - Locks and Waits # @ Intel VTune Amplifier XE 2013
5 - 3 = i - g {
¥ Analysis Target Analysis Type | | Z2 Collection Log| | il Summary % Top-down Tree| BB Tasks and Frames
Grouping: ISync Object { Function [Call Stack j I\"a'aih'ng Call Stack j
Viewing < 1of 1 [selected stack
Sync Object / Function / Cal Wait Tme by Utlization ¥ Bl wait | spin . e o EEsl EaL
Stack oo | T Object Creation Module and Function P
OIde @Poor OOk @Ideal @ Over 100.0% (23.470s of 23.470s)
FMultiple Objects 23.470s [1 1 0s [Unknown]! [Unknown] LaLoLul
FMutex 0xd53ee2cd 22,460 [] 1 0s Deadlock.exe! " dynamic initializer for 'hDeadloddMutex1" Deadlock.exe!wmain +0x82 - deadlock.cpp: 76
FIMutex 05582551 22.468s [] 1 0s Deadlock.exe! “dynamic initializer for 'hDeadlockMutex2" || Deadlock.exe! _tmainCRTStartup+0x10e - crtex...
[#5leep 1.939s (@ 2 0z [Unknown]! [Unknown] Deadiodk.exelpre_c_init+0xe0 - ortexe.:293
[5tream 0x9f70d2eb 0.001s 4 0s MSVCR30.dlllrealloc
[Critical Section 0xafb&cfaa 0.000s 1 0s MSVCRS0.dlirand_s
Selected 1 row(s): 23,4708 1 0z [Unknown]! [Unknown|
‘. K 4
" y y " y ' ' Thread
lollel teTlel 55 10s 155 20s rea
L 1 I 1 1 .
WmEnCRTStErtp (0x560 | 8 Rurring
- |ObliviousFunction (0xb38) | I waits
g BlindFunction {(x88c) |] s
=
= Thread (0x964) L Thread Concurrency
[Mk Concurrency
Thread Concurrency
1 Fla

No filters are applied. Any Process ~ W Any Thread ~ W Any Module M Utilization: EYSEEFE)

Call Stack Mode: (8N il w syl i Inline Mode: (IGTs) =l Functions only A

Otra de las medidas que podemos obtener con esta herramienta son los
Hotspots, o sitios donde mas tiempo estd el programa ejecutdndose, para un
ejemplo que renderiza y muestra una imagen este analisis nos ha dado el siguiente
resultado:

73

B Hotspots - Hotspots by CPU Usage 4 @

& Analysis Target

Analysis Type | | il Summary ﬁ LT BT »% Top-down Tree| | B Tasks and Frames

Intel VTune Amplifier XE 2013

Grouping: IFun(hUn J Call Stack j ICF‘U Function/CPU Stack - CPU Time ;I
. CPU Time by Utilization w ki3 Overhead . e e)
Function f Call Stack Time Module Function {F
OIde @Poor OOk @ Ideal @ Owver ‘ 56.9% (0.256s of 0.450s)
#render_one_pixel 450,217ms Oms 3_tachyon_omp.exe render_one_pixel rrrr
FlInternalWndProc 415.585ms (I B Oms | 3_tachyon_omp.exe | InternalWndProc{struct HWND__ =unf] 3_tachyon_omp.exelrender_one_pixel - tachy...
Evideo: :next_frame 157.305ms (DI 148.433ms 3_tachyon_omp.exe video::next_frame(void) 3_tachyon_omp.exe!draw_taskSompSparallel @...
Fvideo::main_loop 108.520ms (DI 88.835ms | 3_tachyon_omp.exe video::main_loop(void) libiompSmd.dll!__kmp_invoke_microtask+0x64 ...
FNtDelayExecution 57.915ms N Oms | ntdll.dll NtDelayExecution libiomp5md.dll! __kmp_invoke_task_func+0x64 ...
[__kmp_end_split_barrier 42.798ms I Oms | libiomp5md.dil __kmp_end_split_barrier libiomp5md.dll!__kmp_launch_thread +0xcé - [...
[l sphere_intersect 41.154ms Il Oms | 3_tachyon_omp.exe sphere_intersect libiomp5md.dll!__kmp_launch_worker +03x196 -...
Bl __kmp_x85_pause 29,866ms [0ms | libiomp5md. dil __kmp_x86_pause kernel32. dl!BaseThreadInitThunk +0x 11 - [Un...
Hintersect_objects 25.511ms 0Oms | 3_tachyon_omp.exe |intersect_objects(struct ray *) ntdll. iR HnitialzeExceptionChain +0x62 - [U...
[rt_slesp 22.456ms @ Oms 3 _tachyon_omp.exe | rt_sieep(int) nitdll. dl'RtlInitialzeExceptionChain +0x35 - [U...
[Outside any known module] 17.606ms @ Oms ' [Unknown] [Outside any known module]
[FWaitForSingleObject 15.203ms [15.203ms kernel32.dll WaitForSingleChject
F1sNLSDefinedString 15.051ms Il 0ms | KERMELBASE.dll IsNLSDefinedString
FRtLeaveCriticalSection 14.517ms @ 14.517ms ntdll.dll RilLeaveCriticalSection
[sphere_normal 13.320ms @ 0Oms 3_tachyon_omp.exe sphere_normal
[Fcamray 12,956ms @l 0ms | 3_tachyon_omp.exe |camray(struct scenedef =,int,int)
Hloop_once 9.333ms || Oms | 3_tachyon_omp.exe |loop_once
[#draw_tasksompsparalel @1 5.732ms |l Oms | 3_tachyon_omp.exe draw_taskSompsSparallel@idi
FMsgWaitForMultipleObjects! 1.747ms Oms USER32.dll MsgWaitForMultipleObjectsEx
FHreset_tex_table 0.0549ms Oms 3_tachyon_omp.exe | reset_tex_table
Selected 1 row(s): 450.217ms Oms
4 3K HI
PO is = a 55 65 7s 8s 5 0s s 15 B 1w Thread
IOMP Worker Thread #1 - =
WinMainCRTStar tup (0x1 Mk CPU Time
thread_video (0xdb&) CPU Usage
(GdipCreateSolidFill (0x13a uk CPU Time
=
-
CPU Usage
4 F
No filters are applied. Any Process |l Any Thread |l Any Module - Any Utilization -

Only user functions

on

Functions only

Observamos que en la funcion mas costosa es render_one_pixel(),
puesto que se ejecuta para cada pixel de la imagen. Esta seria la funcién que
deberiamos mejorar si queremos obtener una mejora sustancial en el rendimiento de
nuestro programa, ya que al ser la que més tiempo lleva, una pequefia mejora aqui
seria mas efectiva que una gran mejora en otra funcién que no use tanto tiempo.

Por otro lado observamos que la funcion next_frame() tiene un tiempo de
sobrecarga casi igual al total del tiempo que tarda en realizarse, esto es debido a que
se accede desde todos los hilos y no hemos protegido la variable que hay en la
funcién (g_updates) con un mutex, por lo que aparecen problemas de sincronizacion

con esta variable llevdndonos a una sobrecarga de tiempo grande.

El resto de tipos de analisis diferentes que ofrece quizas no nos interesen tanto a nivel
general, ya que dan informacién muy detallada de por ejemplo: accesos a memoria,
tiempo de accesos a memoria, ciclos de CPU, etc.

74

Inspector XE

Esta es otra de las herramientas que tenemos a nuestra disposicién. En esta
herramienta basicamente se pueden hacer dos tipos de analisis, de fugas y otros
problemas de memoria y problemas con los hilos como pueden ser condiciones de
carreray deadlocks.

Hemos realizado el andlisis de problemas de memoria con el ejemplo anterior
del programa que renderiza y muestra una imagen, estos son los resultados que nos
ha dado:

@ Locate Memory Problems Intel Inspector XE 2013

€ Target Analysis Type || Bt Collection Log

IDa Type Sources Modules
FHP1 @ GDI resource leak winvideo.h 3_tachyon_omp.e... R Mew
Fp2 Fiis Memory not deallocated api.cpp; util.cpp; video.c ... 3_tachyon_omp.e... 10200 Fe Mew

Severity
Error 1item(s)
Warning 1item(s)
Type

GDI resource leak 1item(s)
Memory not deallocated 1item(s)

Source
api.cpp 1item(s)
util.cpp 1item(s)
video.cpp 1item(s)
winvideo.h 1item(s)
Module

41l

Description Source Function Module Object Size
Allocation site video.cpp:76 window_title_stri ... 3_tachyon_omp.e... 8192
T4 char *name; 3_tachyon_omp.exe!window_title_string -
75 3_tachyon omp.exe!main init_parts - wi
& name = (char *) malloe (B132); 3_tachyon_omp.exe!main - videc.cpp:187

77 3_tachyon_ cmp.exe!WinMain - videc.h:154
78 if(strrchrlargv[0], "\\')) strcpy (mame, strrchr(a||3_tachyon omp.exe!_tmainCRTStartup — cI

Vemos que el problema aqui es que reservamos espacio para la variable name,
pero nunca lo liberamos, la solucién seria hacer un dealloc() de la memoria
asignada a name justo antes de salir del programa para liberar la memoria.

75

El otro tipo de analisis que podemos hacer con esta herramienta es el
relacionado con los hilos y sus posibles problemas como pueden ser las condiciones
de carrera por algun recurso o los deadlocks. Estos son los resultados del analisis
para el mismo ejemplo:

@ Locate Deadlocks and Data Races Intel Inspector XE 2013

; Analysis Type|| B Collection Log

Modules State Severity
FP1 @ Datarace tachyon_omp.cpp; winvideo ... 3_tachyon_omp.e... FNew Error 1item(s)

Type
Data race 1item(s)

1of11 [Al

Description Source Function Module

Write winvideo.h:193 loop_once 3_tachyon_omp.exe

131 ff screen update notify 3_tachyon omp.exe!loop once - winwvideo.
132
153 g_updates = 0;

134 ifig_wideo->updating) { g_skips += updates-1;
135 else g_skips += updates;

if(int updates = g_updates) { 3_tachycn_omp.exs!main_loop — winvideo.

W winvideo.h: 266 next_frame 3_tachyon_omp.exe

//ADVISOR COMMENT: Alternatively, the lock can be ||2_tachyon_cmp.exelnext_frame — winvided|

1

rite
28
265 //RNNOTATE_LOCE_RCQUIRE(Q); 3_tachyon_omp.exe!draw_tasksomp$parallel
266 g_updates++; // fast but inaccurate counter - race
267 /£ /RANNOTATE T.OCE_RELERSE(Q);
288 if{!threaded) while({lcop_cnce(this));
HINT: Synchronization allocation site winvideo.h:215 loop_once 3_tachyon_omp.exe
213 { 3_tachyon omp.exe!loop once - winwvideo.
214 TranslateMessage (smsg) ;
215 DispatchMessage (emsg) ;
216 1
217 return true; // try again

El resultado es que tenemos un problema con el recurso g updates. Este
error es el que hemos visto anteriormente con la sobrecarga de la funcion
next_frame(), que por dentro usa este recurso. La solucion es usar un mutex para
acceder a la variable, de esta manera los procesos se organizan para acceder cada
uno a su tiempo y no se produce tanta sobrecarga en esperar.

Advisor XE

Esta es la tercera y ultima herramienta. Esta herramienta se usa basicamente
para detectar partes del codigo que se pueden paralelizar aprovechando los recursos
que nos ofrecen los procesadores modernos con cada vez mas capacidad de
procesamiento en paralelo.

El proceso a seguir es compilar al aplicacion que queremos analizar en
Release, y con las siguientes opciones en el proyecto activadas:

e C++ — General — Debug Information Format: Program Database (/Zi)

e C++ — Optimization — Optimization: Maximize speed (/O2) | Inline Function
Expansion: Only __inline (/Ob1) | Enable Intrinsic Functions: No

e (C++ — Code Generation — Runtime Library: Multi-threaded DLL (/MD)

e Linker — Debugging — Generate Debug Info: Yes (/DEBUG)

76

El proceso de andlisis tiene cinco fases bien diferenciadas.

La primera consiste en recoger informacion sobre el programa para poder ver
que partes del cdédigo son buenas candidatas para paralelizar. El resultado de este
andlisis para el ejemplo de la imagen es:

| Where should I add parallelism? Intel Advisor XE 2013
Summary £, Annotation Report i Suitability Report # Correctness Report
Function Call Sites and Loops Total Time %% Total Time Self Time Top Loops ‘ Source Location l;
ElTotal 100,0%. (. | 19,8778s Os
Elpre_c_init 100,0%: I 19,3778s Os atexe.c:293
=R tInitializeExceptionChain 95,9%; DI | 19,0633s Os
[=lBaseThreadInitThunk 95,9% I 19,0633s Os
[Hthread_video 95,9%; DI | 19,0633s Os winvideo.h: 185
Htachyon_video::on_process 95,9%; DI | 19,0633 Os video.cpp: 153
[Ert_renderscene 95,9%; DI | 19,0633s Os api.cpp: 118
[Hrenderscene 95,8%; DI | 19,0477 Os render.cpp:87
[Hltrace_region 95,8%; DI | 19,0477 Os trace_rest.cpp:117
[Fltrace_shm 95,5%, (I 15,0477s Os trace_rest.cpp:104 -
Ethread_trace 95,8%; DI | 19,0477 Os tachyon_serial.cpp: 196
[=1 3 parallel_thread [loop] 95,8%; I 19,0477s Os [a tachyon_serial.cpp: 158
=10 parallel_thread [loop] 94,3%: I | 13,7542 Os o tachyon_serial.cpp: 167
[Slparallel_thread 94, 3%, (I 15,7547 Os tachyon_serial.cpp: 168
[Elrender_one_pixel 93,8%; DI | 18,6431 Os tachyon_serial.cpp: 101
[Eltrace 31,4% DI 15,1714s Oz trace_rest.cpp:71
[Flshader 45,2% O 83,9764 s shade.cpp: 166
=1 (5 shader [loop] 35,9%: 7,1449s Oz o shade.cpp: 104
[Elshader 34,9%: I 6,9458s Os shade.cpp: 132
=1 (5 intersect_objects [loop] 34,9%: 00 6,9458s Os e intersect.cpp: 107
Hintersect_objects 34,9%: I 6,9358s Os intersect.cpp: 108
7 grid_intersect [loop] 33,7% B 6,6058s Os e grid.cpp:550
[Hgrid_intersect 0,5%| 0,0912s 0,09125 grid.cpp:526 LI
<| | i3 1] »

En la pestafia del analisis se nos muestra los bucles mas importantes y el
tiempo de cada uno, asi como la linea de cddigo donde se encuentra cada uno. Con
esto podemos ir a cada bucle y poner unas instrucciones especiales que requieren
incluir - #include <advisor-annotate.h>y que se encuentra en la carpeta
donde se instala el programa en el directorio rnclude.

Las anotaciones que podemos hacer para el parallel _thread() son:

static void parallel _thread (void)

ANNOTATE _SITE BEGIN(CallIRows) ;
for (int y = starty; y < stopy; y++)

ANNOTATE _TASK BEGIN(eachRow) ;
/7 Instrucciones
ANNOTATE TASK END(eachRow) ;

4
ANNOTATE_SITE_END(al IRows) ;
}

Para hacer estas anotaciones, seleccionamos el bucle y hacemos click derecho
— Intel Advisor XE 2013 — Annotate Site, y para las instrucciones Annotate Task y les
damos un nombre a cada uno. Hariamos lo mismo para los demas bucles.

La segunda fase es ver las anotaciones que hemos hecho en la fase 1y

77

asegurarnos que estan todas correctas y que hemos incluido la cabecera necesaria
para que el programa las detecte y podamos asi avanzar a la siguiente fase.

| |ist of detected annotations and their source locations O Intel Advisor XE 2013
Summary -, Survey Report 6 Annotation Report i Suitability Report # Correciness Report
Annotation Source Location Annotation Label
B tachyon_annotated.cpp:155 allRows
[#Site End tachyon_annotated.cpp:191 alRows
[FHTask tachyon_annotated.cpp: 158 eachRow
[#Task End tachyon_annotated.cpp: 189 eachRow

[FHiIntel Advisor XE annotations definition file tachyon_annotated.cpp:62 advisor-annotate.h

En nuestro caso solo hemos hecho anotaciones en el bucle

parallel _thread(), los demés los hemos dejado pero podriamos haberlos incluido
también.

La tercera fase nos dice, ayudandose en las anotaciones que hemos hecho,
gue podriamos interpretar como intenciones de paralelizacion que tenemos, la

ganancia que obtendriamos por hacer lo que pone en las anotaciones para diversos
numeros de nucleos, métodos de sincronizacion, etc.

| What are the performance implications of the annotated sites? B Intel Advisor XE 2013

Summary - Survey Report & Annotation Report '*El Suitability Report RSl e 0= 0y 8

Maximum Program TargetCPU Count: |8 ¥| Threading Model: IInheI TBB vl
Gain For All Sites: = - - — -
Annotation Label | Source Location | Maximum Site Gain | Maximum Total G ... | Average Instance T... | Total Time
allRows tachyon_annota... 7,87x 2,349 19,0402 19,0402s
2,34X yon_: i 1 ! il
Scalability of Maximum Site Gain Changes I will make to this site to improve performance
32x Type = Benefit i Checked oss if Uncheckes

[] reduce Site Overhead

16 Q [] Reduce Task Overhead
§ Ax @) [] Reduce Lock Qverhead No
E [] Reduce Lock Contention Mo
fj‘ b ¢ [] Enable Task Chunking Mo
T2 0
(]
@
2 4 8 15 32
Target CPU Count
Annotation Annotation Label | Source Location Mumber of Instances Maximum Instance Time Average Instance Time Minimum Instance Time Total Time
Selected Site | alRows tachyon_annotated.cpp: 155 | 1 19,0402s 19,0402s 19,0402 19,0402s
Task eachRow tachyon_annotated.cpp: 158 512 0,0998s 0,0367s 0,0028s 18,7313s

Este es un ejemplo muy paralelizable, y podemos observar que para 8 nucleos
paralelizando el bucle que hemos anotado en la fase anterior, podriamos llegar a
obtener una ganancia de 7,87 o sea de casi 8 veces mas rapido. Llegando a ser de
29,22 para 32 ndcleos, lo que nos indica que en este caso aprovechariamos todos los
nucleos que pudiésemos tener disponibles para ejecutar nuestra aplicacion.

La cuarta fase también hay que hacerla en Debug, y nos informa si los cambios

78

introducidos por la anotaciones que hemos hecho nos llevarian a problemas
relacionados con compartir datos entre procesos.

| pid the annotated tasks expose data sha

g problems?

Intel Advisor XE 2013

Annotation Report “] 5 LIS % Correctness Report
D & | Type Site Mame Sources Modules State Severity
Pl @ Parallel site information allRows tachyon_snnatated.cpp « Mot a problem Error 2 items
S tachyon annotated. cop; Remark 1item
P3 @ Memory reuse allRows tachyon_annotated. cpp 2_tachyon_annotated.exe
P4 @ Memory reuse allRows tachyon_annotated.cpp 2_tachyon_annotated.exe | Pk Mew Type) _
PS5 @ Memory reuse alRows tachyon_annotated.cpp 2_tachyon_annotated.exe | P Mew paraiel <it=information Litem
= = = Data communication 1item
Memary reuse 3 items
Site Name
D Description | Source Function Module | state allRows 5 items
%2 Parallel site tachyon_annotated.cpp: 155 parallel_thread 2_tachyon_annotated.exe P New Source
el=s g tachyon_annotated.cpp 5 items
1=e winvideo.h 1item
155 ANNOTATE_SITE_BEGIN(allRows);
156 for (int y = starty; ¥ < stopy; ¥+l HModule
157 1 2_tachyon_annotated.exe 5 items
X3 Read winvideo.h:266 next_frame 2_tachyon_annotated.exe P New State
121 f/RDVISOR C ENT: ARlternatively, the lock can be put around the call to next frame() in tacyhon_ *. New 4items
ZE5 ANNCT ACQUIRE (0) ; Not a problem litem
286 pdates++ # fast but inaccurate counter — race condition is actually OF for algorithm. . .
zZ87 ANNOTATE K_RELEAS ¥ i
zZeB !threaded) whilel once (this))
x4 write winvideo.h:266 next_frame 2_tachyon_annotated.exe Pk New
264 ENT: Alternatively, the lock can be put arcund the call toc next_Zrame() in tacyhon_*.-
285 ACQUIRE (O) ;
266 inaccurate counter — race condition is actually OE for algorithm. _
287 1
ze8 once (this))

| Did the annotated tasks expose data sharing problems? B

Intel Advisor XE 2013

Summary -, Survey Report £ Annotation Report i Suitability Report @ Correctness Report
D | an |Type |Sihe Mame |Sources |Modules State Severity
F1 @ Parallel site information | allRows tachyon_annotated.cpp 2_tachyon_annotated.exe | " Mot a problem Error 4items
P2 & Data communication allRows tachyon_annotated. cpp; winvideo.h 2_tachyon_annotated.exe B New Remark 1item
P3 @ Memory reuse allRows tachyon_annotated.cpp 2_tachyon_annotated.exe P New
P4 & Memoary reuse allRows tachyon_annotated.cpp 2_tachyon_annotated.exe B New Type - . .
P5 & Memoary reuse allRows tachyon_annotated.cpp 2_tachyon_annotated.exe | B New pasAdl sit= nifurmation Litem
= = = Data communication litem
Memary reuse 3 items
Site Name
D |Descri|:|ﬁon |Souroe Function Module State allRows 5 items
E1X5 Parallel site tachyon_annotated.cpp: 155 parallel_thread 2_tachyon_annotated.exe P New FrrTs
1‘?3 1 tachyon_annotated.cpp 5 items
s winvideo.h 1item
155 ANNOTATE SITE_BEGIN(allRows);
158 for (int y = starty; ¥y < stopy; y+t) Module
157 { 2_tachyon_annotated.exe 5items
Exs write tachyon_annotated.cpp: 163 parallel_thread 2_tachyon_annotated.exe P New State
18l ADVISOR COMMENT: Don't forget to remove its declaration from the global scope at the top of t New 4items
162 /fstorage m s age; Not & problem 1item
163 m storage.serial = 1;
1584 m_storage.mboxsize = sizeof (unsigned int)* (max objectid() + 20);
185 m storage.local mbox = (unsigned int *) malloc(m storage.mboxsize);
[E1¥11 Read tachyon_annotated.q:up:gs render_one_pixel 2_tachyon_annotated.exe P New
=147 primary.flags = RT_RAY REGULAR;
97
38 serialt+;
99 primary.serial = serial;
100 primary.mbox = local mbox;
%12 write tadwon_annotated.cpp:gs render_one_pixel 2_tachyon_annotated.exe B New
S primary.flags = RT_RAY REGULAR;
a7
a8 serialt+;
99 primary.serial = serial;
100 primary.mbox = local mbox;

Vuelve a indicarnos el problema con la variable g updates que ya hemos
visto antes y luego nos dice también que hay problemas con la variable global
m_storage, que es usada en el bucle parallel_thread() y que cuando se
paraleliza cada ejecucién accede a la misma variable sin restricciones, la solucion es
declarar esa variable local al bucle ya que no la usamos fuera y de esta manera ya no
ocurre este problema.

79

La quinta y ultima fase consiste en sustituir las anotaciones por codigo que de
verdad se ejecute en paralelo, mutex que realmente hagan el acceso exclusivo a las
variables, etc. Esto es un proceso que debemos hacer por nuestra cuenta y en el que
el programa no puede ayudarnos. Lo que si que tenemos son unos enlaces a distintos

métodos para hacer este cambio y enlaces a cada uno de los tipos para aprender a
usarlos si no sabemos.

La documentacién se encuentra en:
Composer XE _2013/documentation/en/tutorials/Cc++/index. htm

80

ANEXO 8:

TABLAS PRUEBAS RENDIMIENTO
SCATIRTPVIDEOCLIENT

H264
Sin activar ninguna opcién del cliente de video.
32/64 bits PC Cddec Resolucion Camaras FPStotales FPScamara Bitrate total Bitrate cimara CPU total CPU camara Memoria total Memoria cdmara

64 Celeron E34002.60GHz H.264 4CIF 4 59,86 14,965 4349 108,725 90 22,5 8 19,5
64 Celeron E34002.60GHz H.264 ACIF 8 63,05 7,88125 4582 57,275 93 11,625 146 18,25
64 Celeron £34002.60GHz H.264 4CIF 16 61,94 3,87125 456,7 28,54375 95 5,9375 281 17,5625
64 Celeron £3400 2.60GHz H.264 1MP 4 18,19 4,5475 895,1 223,775 92 23 204 51
64 Celeron E3400 2.60GHz H.264 1MP 8 12,53 1,56625 656,6 82,075 94 11,75 387 48,375
64 Celeron £3400 2.60GHz H.264 5MP 4 6,06 1,515 748 187 86 215 708 177
64 Celeron £34002.60GHz H.264 5mP 8 6,2 0,775 904,1 113,0125 90 11,25 1340 167,5
32 Celeron E34002.60GHz H.264 4CIF 4 58,55 14,6375 4277 106,925 93 23,25 76 19
32 Celeron E34002.60GHz H.264 4CIF 8 59,01 7,37625 431,4 53,925 93 11,625 144 18
32 Celeron £34002.60GHz H.264 4CIF 16 60,12 3,7575 431,7 26,98125 96 6 278 17,375
2 Celeron E34002.60GHz H.264 1MP 4 18,39 4,5975 918,6 229,65 95 23,75 198 49,5
32 Celeron E3400 2.60GHz H.264 1MP 8 18,26 2,2825 898,9 112,3625 95 11,875 384 48
32 Celeron £3400 2.60GHz H.264 5MmP 4 5,57 1,3925 741,8 185,45 94 235 708 177
2 Celeron E34002.60GHz H.264 ~ 5MP 8 576 0,72 749,9 93,7375 %8 12,25 1405 175,625

Descomprimiendo solo los keyframes.

64 Celeron E34002.60GHz H.264 4CIF 4 99,42 24,855 719 179,75 8 2 75 18,75
64 Celeron E34002.60GHz H.264 4CIF 8 199,83 2497875 1455 181,875 16 2 141 17,625
64 Celeron E34002.60GHz H.264 4CIF 16 400,89 25055625 2923 182,6875 35 2,1875 275 17,1875
64 Celeron E34002.60GHz H.264 4CIF 32 8002 2500625 5839,7 182,490625 70 2,1875 541 16,90625
64 Celeron £34002.60GHz H.264 4CIF 64 932,63 145723438 6622,6 103,478125 74 1,15625 1070 16,71875
64 Celeron £34002.60GHz H.264 1MP 4 99,69 24,9225 4906,5 1226,625 53 13,25 196 49

64 Celeron E34002.60GHz H.264 1MP 8 161 20,125 7885,9 985,7375 82 10,25 382 47,75
64 Celeron E34002.60GHz H.264 1MP 16 153 9,5625 7522,1 470,13125 82 5,125 751 46,9375
64 Celeron E34002.60GHz H.264 1MP 2 153,4 4,79375 75388 235,5875 88 2,75 1478 46,1875
64 Celeron E34002.60GHz H.264 SMP 4 50,08 12,52 6442,9 1610,725 86 215 710 171,5
64 Celeron £34002.60GHz H.264 5MP 8 50,71 6,33875 6537,5 817,1875 90 11,25 1400 175
32 Celeron £34002.60GHz H.264 4CIF 4 99,79 24,9475 7263 181,575 8 2 74 185
2 Celeron £34002.60GHz H.264 4CIF 8 198,99 2487375 14488 181,1 19 2,375 142 17,75
2 Celeron E34002.60GHz H.264 4CIF 16 398,72 24,92 2885,5 180,34375 36 2,25 275 17,1875
2 Celeron E34002.60GHz H.264 4CIF 2 799,35 249796875 5833,1 182,284375 75 2,34375 542 16,9375
2 Celeron E34002.60GHz H.264 4CIF 64 883,33 1 13,8020313 64149 100,2328125 86 1,34375 1071 16,734375
2 Celeron E34002.60GHz H.264 1MP 4 99,57 24,8925 4900,6 1225,15 50 12,5 192 8

2 Celeron E34002.60GHz H.264 1MP 8 10829 1353625 5311,7 663,9625 60 75 378 47,25
32 Celeron £34002.60GHz H.264 1MP 16 140,76 8,7975 6931,2 4332 76 475 747 46,6875
2 Celeron £34002.60GHz H.264 5MP 4 99,96 24,99 4922,9 1230,725 50 125 79 198,75
2 Celeron E34002.60GHz H.264 SMP 8 65,23 8,15375 85274 1065,925 80 10 1410 176,25

81

Sin opciones seleccionada en el cliente

Comparacion FPS versibn de 64-bits
practicamente iguales.

(arriba.) y 32-bits

FPS Total FPS Total
70 70
60— = 60 - —
50 50
W0 ———iCIF 40 —-—dCIF
o —1MP 14 —t |MP
[T e 30 SMP
20 o\’ Ve
10 10
0 0
4 8 4 8

N? Camaras

Solo teniendo en cuenta los keyframes.

N Camaras

(abajo) son

Resultan casi idénticos los resultados entre las versiones de 32-bits (abajo) y
64-bits (arriba) pero son valores muy superiores a los anteriores como cabria esperar.

FPS Total FPS Tatal
1030 1000
ano 00
&00 800
700 ToG
600 ——iF 600 -
E 500 ——iMp @ 500 s P
00 mP " a0 P
300 300
200 200
100 100 &
o 1)
4 2 4 8
HE Camane N* Camanae
Sin activar ninguna opcion del cliente de video.
32/64hits PC Cddec Resolucion Camaras FPStotales FPScimara Bitrate total Bitrate cimara CPUtotal CPU camara Memoria total Memoria camara
64 CeleronE34002.60GHz MPEG4 4CIF 4 98,62 24,655 6285 157,15 53 13,25 3 8,25
64 CeleronE34002.60GH: MPEG4 4CIF 8 154,52 19315 99,3 1246 88 1 61 7,625
64 CeleronE34002.60GHz MPEG4 4CIF 16 15549 971815 9353 5845625 90 5,625 m 6,9375
64 CeleronE34002.60GHz MPEGA 4CIF 2 15902 4%%75 9826 30,70625 3 2,90625 208 6,5
64 CeleronE34002.60GHz MPEG4 4CIF 64 Wi 230815 12014 18,771875 90 1,40625 406 6,34375
64 CeleronE34002.60GH: MPEG4 IMP 4 84 12,1075 783 194,575 87 2,75 8 205
64 CeleronE34002.60GHz MPEG4 IMP 8 54,48 6,81 860 1075 88 1 152 19
64 CeleronE34002.60GH: MPEG4 5MP 4 123 3,075 13217 330,425 9% 235 290 725
64 CeleronE34002.60GHz MPEG4 5MP 8 13,06 1,635 14382 179,775 % 1 575 71,875
32 CeleronE34002.60GH: MPEG4 4CIF 4 9893 24,7325 6355 158,875 60 15 51 12,75
32 CeleronE34002.60GHz MPEG4 4CIF 8 15513 193915 10122 126,525 90 11,25 7 9,625
32 CeleronE34002.60GH: MPEG4 4CIF 16 149,62 9,35125 10109 63,18125 90 5,625 130 8,125
32 CeleronE34002.60GHz MPEG4 4CIF 2 156,84 490125 952,5 29,765625 9% 2,9375 235 7,34375
32 CeleronE34002.60GH: MPEG4 IMP 4 49,28 123 7915 197,875 89 225 3 325
32 CeleronE34002.60GHz MPEG4 IMP 8 51,61 6,45125 8148 101,85 9 11375 167 20,875
32 CeleronE34002.60GH: MPEG4 5mp 4 12,53 3135 13799 344,975 9% B75 307 76,75

82

Descomprimiendo solo los keyframes.

64 CeleronE34002.60GH: MPEG4 4CIF 4 99,69 24,9225 649,6 1624 4 1 2 8

64 CeleronE34002.60GH: MPEG4 4CIF 8 197,98 24,7475 12472 1559 7 0,875 57 7,125
64 CeleronE34002.60GH: MPEG4 4CIF 16 399,83 24989375 2562,6 160,1625 15 09375 108 6,75
64 CeleronE34002.60GH: MPEG4 4CIF k) 80681 252128125 51853 162,040625 3 1,03125 27 6,46875
64 CeleronE34002.60GHz MPEG4 4CIF 64 1617,11 252673438 105044 164,13125 63 0,984375 401 6,265625
64 CeleronE34002.60GHz MPEG4 4CIF 100 160054 16,0054 103474 103,474 70 07 622 6,22
64 CeleronE34002.60GHz MPEG4 mP 4 99,25 24,8125 15929 398,225 15 375 83 20,75
64 CeleronE34002.60GH: MPEG4 MP 8 199,57 2494625 31959 399,4875 2 4 151 18,875
64 CeleronE34002.60GH: MPEG4 mpP 16 39821 24888125 63817 398,85625 62 3,875 292 1825
64 CeleronE34002.60GH: MPEG4 MP 32 51612 1612875 82859 = 258934375 75 2,34375 573 17,90625
64 CeleronE34002.60GH: MPEG4 MP 64 455,28 711375 73274 114,490625 88 1375 1019 15,921875
64 CeleronE34002.60GHz MPEG4 5MP 4 2822 6,055 3435,5 858,875 83 20,75 294 735
64 CeleronE34002.60GHz MPEG4 5MP 8 24,26 3,0325 3436,5 429,5625 89 11,125 575 71,875
64 Celeron E34002.60GHz MPEG4 5MP 16 80,9 5,05625 87754 543,4625 91 5,6875 1135 70,9375
32 CeleronE34002.60GHz MPEG4 4CIF 4 99,81 24,9525 629,5 157,375 3 075 8 12

32 CeleronE34002.60GH: MPEG4 4CIF 8 199,63 2495375 12928 1616 9 1,125 75 9375
32 CeleronE34002.60GH: MPEG4 4CIF 16 401,39 25086875 2595,5 162,21875 19 1,1875 128 8

32 CeleronE34002.60GH: MPEG4 4CIF R 7%,4 24,8875 51895 = 162,171875 40 125 32 7,25
32 CeleronE34002.60GHz MPEG4 4CIF 64 1612,84 25200625 105012 164,08125 68 1,0625 437 6,828125
32 CeleronE34002.60GHz MPEG4 4CIF 100 153731 153731 9873,5 98,735 79 079 665 6,65
32 CeleronE34002.60GHz MPEG4 mpP 4 99,68 24,92 1597,5 399,375 17 4,25 92 3

32 CeleronE34002.60GHz MPEG4 M 8 202,07 2525875 32471 405,8875 31 3,875 165 20,625
32 CeleronE34002.60GH: MPEG4 MP 16 39858 2491125 63847 399,04375 64 4 307 19,1875
32 CeleronE34002.60GH: MPEG4 MP 32 487,61 152378125 7882 246,3125 80 2,5 590 18,4375
32 CeleronE34002.60GH: MPEG4 vpP 64 51043 797546875 81173 126,8328125 85 1,328125 1149 17,953125
32 CeleronE34002.60GHz MPEG4 SMP 4 77,29 19,3225 83394 2084,85 8 20,5 306 76,5
32 CeleronE34002.60GHz MPEG4 5MP 8 76 95 8168,1 1021,0125 81 10,125 574 75
32 CeleronE34002.60GHz MPEG4 5MP 16 79,67 4979375 86215 538,84375 91 5,6875 122 70,125

Los resultados son mejores que para H264 como era de esperar, puesto que el
cédec h264 ofrece un tamafio menor al comprimir, lo que hace que se necesiten mas
recursos a la hora de realizar la compresion.

Sin opciones seleccionada en el cliente
Comparacion FPS version de 64-bits (arriba.) y 32-bits (abajo) son

practicamente iguales.

FPS Total FPS Total

- ——i I
mp g 1MP
i+

bGP ——SMP

FPS

WFCamarae N*Camarae

Soélo teniendo en cuenta los keyframes.

Resultan casi idénticos los resultados entre las versiones de 32-bits (abajo) y
64-bits (arriba) pero son valores muy superiores a los anteriores como cabria esperar.

83

FPS Total

1000 —-—iCIF
MP
w——SMP

84

FPS Total

N Camans

-G
AMP
—iCIF

BIBLIOGRAFIA

[1] Microsoft, Best Practices for WOW64.

[2] Bill Graham y Edwin Verplanke, Optimizing Intel Multi-core Embedded Platforms,
Intel Corporation.

[3] Agner Fog, Optimizing software in C++. An optimization guide for Windows, Linux
and Mac platforms, Copenhagen University College of Engineering.

[4] Intel Integrated Performance Primitives for Windows OS, Intel Software
Development Products.

[5] Intel Integrated Performance Primitivesreference manual, Volume 2: Image and
Video Processing, Intel Software Development Products.

[6] Quick-Reference Guide to Optimization with Intel Compilers version 10.x, Intel
Software Development Products.

[7] ™ http://software.intel.com/en-us/articles. Web site que contiene articulos
relacionados con las arquitecturas de Intel™.

[8] " http://blogs.msdn.com. Blog de Microsoft que contiene explicaciones sobre las
distintas opciones disponibles en Visual Studio 2008 C++".

[9] " http://msdn.microsoft.com/en-us/library. Web site con articulos relacionados con
la compilacion y opciones de las herramientas de desarrollo de Microsoft".

[10] ™ http://www.codemachine.com/article_x64deepdive.html. Articulo sobre los
problemas més comunes a la hora de realizar una migracién a 64 bits".

[11] ™ http://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/. Articulo
que describe la estructura y uso de la pila en arquitecturas de 64 bits".

[12] " http://mark.masmcode.com/. Articulo con consejos a la hora de optimizar codigo
ensamblador, Mark Larson".

[13] ™ http://graphics.stanford.edu/~seander/bithacks.html. Trucos para mejorar el
rendimiento en operaciones con bits, Sean Eron Anderson, Stanford University".

[14] " http://www.gamedev.net/page/resources/_/technical/general-programming/100-
bugs-in-open-source-cc-projects-r2886. 100 ejemplos de problemas a la hora de migrar
un aplicacion de 32 a 64 bits en cddigo abierto, Andrey Karpov".

[15] " http://www.tantalon.com/pete/cppopt/final.htm. Web site que describe posibles
optimizaciones, Pete Isensee".

[16] " http://www.viva64.com/. Web site donde se puede obtener el analizador estatico
utilizado para el analisis de cddigo, ademas contiene muchos articulos relacionados con
el tema, Evgeniy Ryzhkov y Andrey Karpov"

85

	portada
	memoria
	2.1. Primer contacto
	Al igual que hacemos cuando empezamos a programa en un lenguaje nuevo, para tener una primera aproximación a lo que puede significar el cambio de 32 a 64 bits en nuestra aplicación, hemos compilado el programa más conocido: Hello World en C++ tanto p...
	El enlazado en Windows de las librerías por defecto de C++ es dinámico, y no puede realizarse de manera estática. Aunque si podemos enlazar estáticamente librerías no estándar de C++ o Windows.
	El código ensamblador ha sido generado con: Listing generated by Microsoft (R) Optimizing Compiler Version 15.00.21022.08 .
	2.2. Mejoras al compilar para 64 bits
	2.2.1. Windows
	Tal y como podemos ver en la tabla anterior, hay que especificar el Flag LOAD_LIBRARY_AS_DATAFILE cuando se llama a LoadLibraryEx().
	2.2.2. Linux
	2.3. Otras formas de mejorar el rendimiento
	2.4. Estimación en coste de la migración
	2.5. Guía de buenas prácticas
	2.5.1. Ejemplos
	Warning GA (General Analysis)
	Otros Warnings

