

Proyecto Fin de Carrera

Migración y optimización de la aplicación
VisionSurfer sobre plataforma Intel® 64 bits

Autor:

José Ángel Gariburo Cortés

Director:

Óscar Puyal Latorre

Ponente:

José Luis Briz Velasco

Escuela de Arquitectura e Ingeniería
2013

Agradecimientos

Son muchas las personas que han hecho posible que yo haya llegado hasta

aquí. Nombrarlas a todas sería muy difícil, así que me resignaré a nombrar a algunas
de las más destacables.

Gracias a mis padres, ellos siempre han estado ahí y siempre lo estarán por
muy difícil que sea la empresa en la que me aventure. Ellos me han hecho ser mejor
persona día a día.

Gracias al resto de mi familia porque siempre me han dado todo su apoyo y
cariño.

Gracias a mis amigos por aguantarme todos estos años, con lo bueno y con lo
malo, sin ellos esto tampoco habría sido posible.

Gracias a todos los profesores que tanto me han enseñado durante todos estos
años de estudio, enseñándome a mirar con otros ojos al mundo.

Gracias a toda la gente de SCATI LABS. que me ha ayudado en todo lo posible
durante este período.

Gracias a los amigos que hice durante mi estancia en Dinamarca por darme
otro punto de vista sobre la vida.

Migración y optimización de la
aplicación VisionSurfer sobre

plataforma Intel® 64 bits
RESUMEN

En este Proyecto de Fin de Carrera se ha realizado un estudio sobre la

viabilidad y conveniencia de la migración de la aplicación comercial de manejo de
vídeo VisionSurfer de su actual plataforma de 32 bits (IA32) a una de 64 (Intel®
64).

Esta aplicación, gracias a su sistema "Cluster" de almacenamiento, permite al
usuario grabar la información en todos los discos duros repartidos entre los servidores
y así garantizar la disponibilidad del video grabado ante fallos de discos duros e
incluso de un servidor completo.

Por otro lado dispone de un sistema inteligente gracias a la virtualización,
denominado Failover que, detecta la caída de aplicaciones de alguno de los equipos y
se pone en marcha automáticamente en otro servidor para garantizar la continuidad de
servicio.

En primer lugar se ha estudiado la arquitectura conocida como Intel® 64 y los
posibles problemas surgidos al migrar desde IA32. Se han comprobado la
disponibilidad y correcto funcionamiento en 64 bits de las librerías usadas en 32 bits, y
se han buscado y comparado herramientas de análisis estático de código que nos
puedan ayudar en esta tarea.

Con los resultados obtenidos se ha hecho una primera estimación del coste
temporal aproximado de la migración total de la aplicación. Y se ha desarrollado una
aplicación de ejemplo que sirva para entender y ejemplificar la aplicación objetivo.
Debido a la extensión y complejidad de la aplicación VisionSurfer, finalmente se ha
procedido a la migración de una aplicación crucial dentro de esta llamada
SCATIRTPVideoClient.

A continuación se han evaluado las posibilidades de mejora del rendimiento en
la aplicación. Para ello se han buscado cuellos de botella, causados por el uso
intensivo de memoria, detección de posibles fugas de memoria y posibilidad de
vectorización.

Por último se han realizado pruebas de aceptación y evaluación del
rendimiento.

Índice
Capítulo 1. Introducción.………………………………………...…………...Pág. 1

1.1 Motivación.………………………………………….……………...Pág. 1
1.2 Objetivo y alcance…………………………………………………Pág. 2
1.3 Métodos y técnicas……………………………..…………………Pág. 2
1.4 Calendario del proyecto……………………………..……………Pág. 3

Capítulo 2. Formación……………………………………..…………….…...Pág. 5

 2.1 Primer Contacto…………………………………...………………Pág. 7
 2.2 Mejoras al compilar para 64 bits………………………….……..Pág. 9
 2.2.1 Windows………………………………………………………..Pág. 11
 2.2.2 Linux………………………………………………….…………Pág. 12
 2.3 Otras formas de mejorar el rendimiento……………………....Pág. 12
 2.4 Estimación en coste de la migración……………………...…..Pág. 13
 2.5 Guía de buenas prácticas………………………………………Pág. 14
 2.5.1 Ejemplos………………………………………………………..Pág. 17
 2.6 Diferentes analizadores estáticos…………………………..…Pág. 19

Capítulo 3. Aplicación Examples……………………….…………….…...Pág. 26

Capítulo 4. Migración de SCATIRTPVideoClient a 64 bits...……….....Pág. 29

 4.1 Funcionamiento Cliente-Servidor……………………………...Pág. 29
 4.2 Estimación de la migración……..………………………………Pág. 37
 4.2.1 SCATIRTPVideoClient…………………………..…………...Pág. 37
 4.2.2 ScatiVision……………………………………………...……...Pág. 38
 4.3 Cambios librerías para 64 bits...................................……….Pág. 38
 4.4 Solución warnings migración a 64 bits……........…………….Pág. 41

Capítulo 5. Pruebas de rendimiento...Pág.44

 5.1 Examples……………………...………………………………….Pág. 44
 5.2 ScatiRTPVideoClient…………………………...……………….Pág. 46
 5.2.1 H.264 - MPEG-4 Compresión y Descompresión….......…..Pág. 47

Capítulo 6. Conclusiones y trabajo futuro……………………….……...Pág. 50

Anexo 1. Código ensamblador aplicación Hello World 32 y 64 bits...Pág. 52

Anexo 2. Windows 32 bits on Windows 64 bits……..………………….Pág. 55

Anexo 3. Resultados de la compilación IPP 6.1 (x64)…………………Pág. 57

Anexo 4. Mejoras por el uso de la librería IPP………….........…………Pág. 59

Anexo 5. Warnings PVS-Studio………….……………………….………..Pág. 61

Anexo 6. Tabla librerías aplicación VisionSurfer……………………....Pág. 69

Anexo 7. Herramientas de análisis de Intel……..…………...………….Pág. 70

Anexo 8. Tablas pruebas rendimiento SCATIRTPVideoClient.……...Pág. 79

Bibliografía…………………………………………………………………….Pág. 83

Índice de figuras
Figura 1………………………………………..…………………………....Pág. 3

Figura 2……………………………………………………………………..Pág. 8

Figura 3……………………………………………………………………..Pág. 9

Figura 4……………………………………………………………………Pág. 10

Figura 5……………………………………………………..……………..Pág. 11

Figura 6………………………………………………………..…………..Pág. 16

Figura 7…………………………………………………………..………..Pág. 20

Figura 8……………………………………………………………...…….Pág. 27

Figura 9………………………………………………………………..…..Pág. 28

Figura 10…………………………………………………………………..Pág. 29

Figura 11…………………………………………………………………..Pág. 30

Figura 12…………………………………………………………………..Pág. 30

Figura 13…………………………………………………………………..Pág. 32

Figura 14…………………………………………………………………..Pág. 33

Figura 15…………………………………………………………………..Pág. 34

Figura 16…………………………………………………………………..Pág. 34

Figura 17…………………………………………………………………..Pág. 35

Figura 18…………………………………………………………………..Pág. 36

Figura 19…………………………………………………………………..Pág. 37

Figura 20…………………………………………………………………..Pág. 45

Figura 21…………………………………………………………………..Pág. 47

Figura 22…………………………………………………………………..Pág. 49

Figura 23…………………………………………………………………..Pág. 49

Figura 24…………………………………………………………………..Pág. 51

Figura 25…………………………………………………………………..Pág. 51

Capítulo 1

1. INTRODUCCIÓN

 En un cajero automático se produce un incidente. Una persona se lleva el
dinero mientras se realiza el proceso de carga del dispensador, aprovechando un fallo
en el protocolo de seguridad de la entidad bancaria. Cuando el delincuente llega a su
casa la Policía ya le estaba esperando. Es un caso verídico que muestra la utilidad y
eficiencia de los sistemas de video vigilancia.

 Cada día vivimos en un mundo más globalizado, donde las personas pueden
moverse de una punta a otra del planeta en un mismo día. Esto ha hecho que la video
vigilancia cobre un mayor protagonismo, permitiendo compartir casi instantáneamente
la información de un sospechoso a lo largo de todo el mundo.

 Como consecuencia de la cantidad creciente de cámaras, el número de
dispositivos físicos necesarios para gestionarlas ha aumentado.

 Este proyecto nace del deseo de reducir este número aprovechando del mayor
rendimiento de las arquitecturas de 64 bits sobre las actuales de 32 bits. Reutilizando
el software ya desarrollado y mejorando en lo posible su rendimiento aprovechando
las características de paralelización y vectorización que ofrecen los nuevos
procesadores. De esta manera se espera conseguir gestionar un número mayor de
cámaras desde un mismo dispositivo.

 El propósito de este proyecto es, por tanto, el estudio de la viabilidad y
conveniencia de esta migración, incluyendo la estimación del coste temporal de la
misma y del aumento de rendimiento esperado.

1.1. MOTIVACIÓN

 A lo largo de la carrera he estudiado asignaturas en las que se nos ha
mostrado y enseñado como poder mejorar el rendimiento de las aplicaciones que
creábamos con cambios relacionados con las herramientas usadas, y la teoría que
habíamos aprendido sobre la arquitectura del procesador para el que estábamos
programando en ese momento. Son cambios que en muchas ocasiones no se aplican
sobre software comercial debido o al desconocimiento de las herramientas o a las
fechas de entrega, normalmente superadas, y que hacen que el software no tenga
toda la calidad que podría esperarse.

 Algo tan simple como un cambio en las opciones del compilador, puede hacer
que consigamos una mejora evidente del rendimiento de nuestra aplicación. ¿Qué

1

podríamos conseguir si además de conocer el compilador, fuésemos capaces de
aprovechar las características que nos ofrecen los procesadores de hoy en día?

1.2. OBJETIVO Y ALCANCE

 Uno de los objetivos es estimar el coste temporal de la migración a 64 bits de la
aplicación VisionSurfer. Para ello se requiere de un estudio de las arquitecturas de
64 bits y de los problemas más comunes incurridos al migrar una aplicación de 32 a 64
bits, además de la necesidad de búsqueda y verificación del correcto funcionamiento
de las librerías anteriormente usadas en 32 bits. Otro objetivo es la búsqueda de
herramientas de análisis estático de código que nos ayuden en este proceso.

 Con toda esta información se realizará una estimación a partir de una
aplicación representativa de la aplicación final. Una vez realizada la estimación, se
procederá al análisis de posibles mejoras a realizar sobre la aplicación, para obtener
un mayor rendimiento. Estas mejoras consistirán en la vectorización y paralelización,
si es posible, de los algoritmos que ocupen la mayor parte del tiempo de ejecución de
la aplicación que, una vez optimizados, nos ofrezcan una mejor evidente.

 Por último se realizarán las pruebas de aceptación y rendimiento necesarias.

1.3. MÉTODOS Y TÉCNICAS

 El código desarrollado en este proyecto será enteramente C++. El entorno de
desarrollo ha sido Visual Studio 2008, también se han usado las librerías de
tratamiento de vídeos de Intel IPP (Integrated Performance Primitives) que consisten
en un conjunto de funciones optimizadas para los procesadores de Intel. Además se
han considerado librerías de uso gratuito como pueden ser ACE (Adaptive
Communication Environment), Cryotpp, etc.

2

1.4. CALENDARIO DEL PROYECTO

La figura 1 muestra el diagrama de Gantt del proyecto.

Figura 1. Planificación del Proyecto.

Este proyecto se ha dividido en 6 fases:

1. Estudio de la arquitectura Intel 64 bits: Búsqueda y estudio de la
documentación. Será importante detectar los problemas más comunes
presentes en las migraciones de 32 a 64 bits que aparecen en la literatura.
Conocer tanto las mejoras que podamos obtener con este cambio, (velocidad
de procesamiento, manejo de memoria, etc) como las posibles desventajas
(incremento del tamaño de código). Realización de pruebas que demuestre
estos cambios. Duración estimada: un mes, 110 horas.

2. Librerías 64 bits: Identificación de las librerías usadas en la versión de 32 bits
y de las correspondientes en 64 bits. Comparación de las mismas mediante su
análisis estático, ya que puede no ser necesario el cambio de versión, si los
cambios presentes en la nueva versión de la librería no nos aportan nada
nuevo. Dedicación estimada: tres semanas, 75 horas.

3. Herramientas de análisis: Selección de herramientas de análisis estático de
código, que nos ayuden en el proceso de identificación de posibles errores en
nuestro código a la hora de realizar la migración de 64 bits. Duración estimada:
dos semanas, 50 horas.

4. Creación del programa ejemplo para las pruebas: Realización de los
cambios pertinentes en las IPP para su adaptación a la librería IPPMedia.
Programación, verificación y pruebas de rendimiento del codificador-
decodificador. Duración estimada: tres meses, 330 horas.

5. Ipcamtest. Tras haber creado el programa de ejemplo para 64 bits,

procederemos a realizar la migración de la aplicación Ipcamtest. Esta
aplicación consiste en un cliente que se conecta a un servidor de vídeos. Esta
aplicación los puede comprimir, mostrar por pantalla, guardar, etc. Además
puede hacer esto para todo el vídeo o solo para los keyframes. También se

3

realizarán las pruebas de rendimiento pertinentes para la comparación entre
versiones. Duración estimada: tres meses y dos semanas, 380 horas.

6. Memoria. Realización de la memoria del proyecto. Duración estimada: un mes,
110 horas.

4

Capítulo 2

2. Formación

 Como paso previo a la migración de una aplicación a una arquitectura de 64
bits, este proyecto abarca la formación necesaria para el conocimiento de las
características que diferencian una arquitectura de 32 bits, a la que estamos más
habituados, frente a una arquitectura de 64 bits, que pese a ser la predominante hoy
en día en la mayoría de ordenadores, convive con aplicaciones de 32 bits. Por razones
de compatibilidad se siguen usando, provocando un gran desaprovechamiento de
estas arquitecturas más nuevas y a priori mejores, ya que como veremos aportan una
serie de herramientas adicionales que bien aprovechadas mejoran el rendimiento.

 En nuestro caso, la arquitectura en la que nos vamos a basar es la definida por
Intel, comúnmente conocida como x86-64 o x64. Es curiosos que aunque fuese AMD
la primera en crear la especificación, no triunfara tanto como Intel que pese a llegar
algo más tarde, 1 año aproximadamente, tiene una cuota de mercado mayor. Además
Intel cuenta con su otra arquitectura de 64 bits, conocida como Itanium IA64 y que a
diferencia de x86-64, no mantiene compatibilidad con arquitecturas previas de 16 y 32
bits, pero nosotros no vamos a tratar este tema ya que esta arquitectura está enfocada
a servidores y alto rendimiento.

 Las características que diferencian una arquitectura de 64 bits de una de 32
son:

• Los registros del procesador como rax, rbx, etc son ahora de 64 bits.

• Operaciones aritméticas y lógicas de 64 bits. Todos los registros de propósito
general (GPRs General Purpose Registers) se han extendido a 64 bits.
Ejemplos de operaciones que usan registros de 64 btis ahora son: memoria-
registro, registro-memoria, push y pop en la pila, todos los espacios
reservados ahora en esta son de 8 bytes, 64 bits y los punteros también han
pasado de 4 bytes, 32 bits a 8 bytes, 64 bits.

• Direccionamiento de 64 bits, es decir podemos tener una memoria virtual
teórica de 2^64, frente a los 2^32, 4GB que tenemos con las arquitecturas de
32 bits y que actualmente, debido a las memorias RAM se queda "corto"
puesto que podemos tener un ordenador relativamente barato con más de
4GB, por lo que estaríamos desaprovechando todo ese espacio de memoria.
pese a esto, en las implementaciones actuales sólo se usan 48 bits de los 64
disponibles para direcciones de memoria virtual, lo que supone hasta 256TB,
2^48, una cantidad de memoria que está muy lejos de alcanzarse por el
momento, además siempre tendríamos más bits disponibles ya que este no es
el límite máximo.

5

• Se han añadido ocho registros nuevos además de la correspondiente
actualización a 64 bits del tamaño de todos los registros anteriormente
existentes en 32 bits. Los registros añadidos han sido: r8, r9, r10, r11,
r12, r13, r14, r15. Esto hace que podamos tener más variables en
registros en lugar de en la pila, con el aumento de velocidad que esto supone
al ser los registros más rápidos en su acceso que la pila. También en pequeñas
subrutinas se pueden pasar los parámetros en registros en lugar de en la pila.

• También se han incrementado los registros XMM (SSE), que son de 128-bits y
que se usan para instrucciones SIMD, de ocho a dieciséis.

• Ahora las instrucciones pueden hacer referencia a datos relativos al registro
RIP (relative instruction pointer). Esto hace el código
independiente de su posición, usado en librerías compartidas y en código
cargado en tiempo de ejecución, más eficiente.

• La arquitectura de 64 bits original, AMD64, adoptó los repertorios SSE y SSE2
como el conjunto de instrucciones básicas. SSE3 fue añadido en el año 2005.
SSE2 es una alternativa al conjunto de instrucciones de x87, IEEE 80-bit
precision con la elección de IEEE 32-bit o 64-bit para las operaciones
matemáticas en punto flotante. Esto hace que sea compatible con muchas de
las CPUs modernas. SSE y SSE2 están disponibles sólo en los procesadores
modernos de 32-bits. Esto en 64-bits no pasa, puesto que están presentes en
todos ellos.

• El bit de no ejecución NX bit (No-Execute bit, bit número 63 de la
página de la tabla de entrada) permite al sistema operativo especificar que
páginas del espacio de direcciones virtuales pueden contener código
ejecutable y cuáles no. De esta forma, intentar ejecutar código de una página
marcada como no ejecutable producirá una violación de acceso de memoria,
parecido a si intentásemos escribir en una página de sólo lectura. Esto debería
hacer más difícil al código malicioso controlar el sistema mediante ataques del
tipo buffer sin comprobar o buffer overrun. Una característica parecida a
esta ha estado disponible en los procesadores x86 desde el 80286 como un
atributo de los descriptores de segmento, aunque sólo funciona en un
segmento cada vez. Debido a que el direccionamiento segmentado se ha
considerado desde hace mucho tiempo una forma obsoleta de operar, y todos
los PCs actuales se saltan este modo.

• Por último también se han eliminado ciertas características de la arquitectura
x86. Esto incluye el direccionamiento segmentado, como acabamos de
comentar (aunque los segmentos FS y GS se mantienen para su uso como
punteros base extra para las estructuras del sistema operativo), el mecanismo
para el cambio de estado de una tarea (es una estructura especial que
contiene información de una tarea. La usa el sistema operativo para el manejo
de tareas) y el modo virtual de 8086. Estas características permanecen sólo en
modo legado, lo que permite que en este modo se puedan ejecutar sistemas
operativos de 32 y 16 bits sin hacer modificaciones.

6

 Para finalizar esta introducción a las arquitecturas de 64 bits, cabe destacar los
problemas más comunes que nos podemos encontrar a la hora de realizar una
migración de 32 a 64 bits. Además de estos problemas propios del cambio de
arquitectura, existen otros problemas como pueden ser los cambios de versión en las
librerías, trabajar con código legado, etc. Estos problemas no los vamos a comentar
por ahora, pese a que han surgido a lo largo de este proyecto y quizás hayan sido
igual o más importantes que la migración propiamente dicha.

Algunos de los problemas más comunes a la hora de migrar un programa de una
arquitectura de 32 bits a una de 64 bits son:

• Almacenamiento de punteros en variables de tipo entero.

• Aritmética de punteros.

• Operaciones de desplazamiento.

• Alineamiento de las estructuras de datos.

• Y otros muchos.

Más adelante veremos la explicación de casi todos ellos y ejemplos que ilustren el
problema para un mejor entendimiento de este.

2.1. Primer contacto
 Al igual que hacemos cuando empezamos a programa en un lenguaje nuevo,
para tener una primera aproximación a lo que puede significar el cambio de 32 a 64
bits en nuestra aplicación, hemos compilado el programa más conocido: Hello
World en C++ tanto para 32 bits como para 64 bits.

 Las opciones de compilación usadas para generar los ficheros ensamblador de
la aplicación Hello World han sido:

• -Od en Debug.
• -O2 -Oi en la versión Release.

 Mayores parámetros de optimización como -Ox no han producido mejoras
respecto a la optimización por defecto -O2

 El enlazado en Windows de las librerías por defecto de C++ es dinámico, y no
puede realizarse de manera estática. Aunque si podemos enlazar estáticamente
librerías no estándar de C++ o Windows.

 El código ensamblador ha sido generado con: Listing generated by
Microsoft (R) Optimizing Compiler Version 15.00.21022.08 .

 El examen del código ensamblador para 32 y 64 bits que se encuentra en el
ANEXO 1, permite apreciar que ambos tienen 10 instrucciones para la versión

7

Release, pero repartidas de forma diferente. Observamos que empleamos más
instrucciones en la creación y destrucción del bloque de activación en 64 bits y menos
en las instrucciones relacionadas con la ejecución de la lógica del programa. En la
versión Debug, sí que obtendríamos una reducción del tamaño de código general para
la versión de 64 bits.

HELLO WORLD

Nº Instrucciones 32 bits 64 bits

Creación bloque de activación 0 1

Cuerpo 8 6

Destrucción bloque de activación 2 3

TOTAL 10 10

Figura 2. Número de líneas ensamblador en 32 y 64 bits.

 La Application Binary Interface (ABI) para la arquitectura x64 en
Windows, pasa los primeros cuatro argumentos en la llamada a una función usando
registros, y reservando espacio para estos cuatro valores en la pila también. Cualquier
argumento que no tenga un tamaño de 1, 2, 4 u 8 bytes se pasa a la función por
referencia.

 Estos cuatro primeros argumentos se pasan usando los registros RCX, RDX,
R8 y R9, estos argumentos se alinean a la derecha en los registros, permitiendo
ignorar los bits más significativos si es necesario. Si los argumentos son
float/double se pasan usando XMM0L, XMM1L, XMM2L y XMM3L.

 El proceso que llama a la función es el responsable de reservar espacio para
los parámetros de la función que es llamada, y debe siempre reservar espacio en la
pila para los cuatro registros usados para pasar los parámetros, incluso si la función
no tiene tantos parámetros.

 La situación de la pila al realizar una llamada a función: se muestra en la Figura
3.

8

Figura 3. Dibujo de la pila en 64 bits.

 Observamos cómo, pese a pasar los cuatro primeros argumentos por registro,
también se les reserva espacio en la pila. Los registros no volátiles son guardados a lo
largo de las llamadas a función. Además no podemos usar RBP como frame
pointer, lo que hace que pase a ser un registro de propósito general, y no pueda ser
usado por el Debugger para recorrer la pila de llamadas. Las funciones además
deben restringir el uso de las instrucciones push y pop a la creación y destrucción del
bloque de activación, ya que el valor de stack pointer no cambia entre la creación
y destrucción de éste.

2.2. Mejoras al compilar para 64 bits

 Otro punto a destacar es la mejora que se puede obtener sólo al compilar el
programa para 64 bits, sin hacer nada más.

 A la hora de compilar una aplicación en 64-bits sobre Windows, debemos saber
qué es la capa de abstracción conocida como WoW64 (Windows 32-bit on Windows
64-bit). Se trata de un subsistema de Windows capaz de ejecutar aplicaciones de 32-
bits, incluido en todas las versiones de 64 bits de Windows. Hace transparente al
programador las diferencias entre los sistemas Windows de 32-bitsy 64-bits,
redireccionando el acceso a las librerías de 32 que en los sistemas de 64 bit se
encuentran en diferente localización, e interaccionando con el registro de Windows. A
alto nivel, es un conjunto de DLLs que recogen las llamadas a y desde procesos de 32
bits, y las traduce (Figura 4).

9

Figura 4. Modelo de diseño de WoW

Solamente después de compilar un programa en 64-bits se puede esperar una
ganancia de rendimiento del 5 al 15 por ciento, de un 5 a un 10 por ciento solo por el
mayor número de registros en una arquitectura de 64-bits y del 1 al 5 por ciento extra
al quitar la capa intermedia WoW64. El hecho de contar con más registros en las
arquitecturas de 64 bits, hace que el compilador pueda asignar más variables a
registros en lugar de en la pila. Esto hace que el acceso a estas variables sea mucho
más rápido. Estos porcentajes de mejora y su discusión provienen del autor Andrey
Karpov [1].

 Otro aspecto que puede ser de gran interés a la hora de realizar una migración
de 32 a 64 bits, es la posibilidad de uso de librerías de 32-bits en programas de 64-
bits. Hay casos en los que no se puede conseguir una versión de 32 bits de la librería
que usamos, ya no tiene soporte, o puede ser que la versión de 64-bits de la librería
no funcione correctamente, o no tenga alguna característica necesaria en nuestra
aplicación, por ello podemos usar la versión de 32-bits que hemos usado hasta ahora
y no perder funcionalidad ni añadir errores.

 Se pueden cargar librerías en tiempo de ejecución dentro del espacio de
memoria del programa desde el que se cargan, además las librerías cargadas de esta
manera pueden necesitar cargar otras más (aumentando en consecuencia el espacio
usado). El mayor problema que es la dirección de memoria donde puede residir una
aplicación de 64-bits (por encima de los 4GB) o una de 32-bits (hasta 4GB) queda
resuelto. El otro problema que puede permanecer es la comunicación de datos entre la

10

librería de 32-bits y el programas de 64-bits, aunque parece ser que se puede acceder
tanto a objetos como a métodos de la librería cargada de esta manera.

 Para poder realizar lo mencionado anteriormente, un concepto que hay que
conocer es la carga dinámica (Dynamic Loading).

 Es un mecanismo por el que un programa puede, en tiempo de ejecución,
cargar una librería en su memoria, recuperar las direcciones de las variables y
funciones que contiene la librería ejecutar esas funciones o acceder a la variables y
finalmente quitarla de la memoria donde la había cargado previamente. Esto permite al
programa arrancar en ausencia de las librerías para posteriormente cargarlas según
las necesite.

 La realización de un enlazado dinámico, y no estático se debe a la necesidad
de poder enlazar las correspondientes librerías de cámaras distintas. Un enlazado
estático crearía un ejecutable de un tamaño muy grande.

Dynamic Loading

Cometido Windows Linux

Cargar la librería LoadLibrary() dlopen()

Obtener método/objeto GetProcAddress() dlsym()

Liberar memoria FreeLibrary() dlclose()

Figura 5. Funciones para cargar librerías en un programa.

2.2.1. Windows

 Tal y como podemos ver en la tabla anterior, hay que especificar el Flag
LOAD_LIBRARY_AS_DATAFILE cuando se llama a LoadLibraryEx().
 Cuando la aplicación ejecuta LoadLibrary() o LoadLibraryEx(), el
sistema intenta localizar la DLL. Si la encuentra, el sistema mapea el módulo de la
DLL en el espacio de direcciones virtual de la aplicación e incrementa el número de
referencias en uno. Si la llamada a LoadLibrary() o LoadLibraryEx() especifica
una DLL cuyo código ha sido mapeado previamente la función simplemente devuelve
un manejador para la DLL e incrementa el número de referencias en uno. Dos DLL
con el mismo nombre y extensión localizadas en lugares distintos no se consideran las
misma DLL.
 El sistema llama al punto de entrada del a función dentro del contexto del hilo
que llamó a LoadLibrary() o LoadLibraryEx(). El punto de entrada de la

11

función no se llama si la DLL ya había sido cargada previamente y no se había
invocado la función FreeLibrary().
 Si el sistema no puede encontrar la DLL, o si el punto de entrada devuelve
false, LoadLibrary() o LoadLibraryEx() devolverán NULL.
 Si LoadLibrary() o LoadLibraryEx() tienen éxito, devolverá un
manejador del módulo de la DLL. El proceso puede usar este manejador para
identificar la DLL y llamar a los siguientes procesos: GetProcAddress(),
FreeLibrary() o FreeLibraryAndExitThread().
 El enlazado dinámico en tiempo de ejecución permite al proceso continuar
aunque la DLL no esté disponible. El proceso puede ofrecer alternativas al usuario
para encontrarla. Puede intentar usar otra, notificar un error o pedirle al usuario la
dirección donde se encuentra. También puede causar problemas si la DLL usa la
función DLLMain() para inicializar cada uno de los hilos del proceso, ya que el punto
de entrada no es llamado por lo hilos existentes antes de ser llamado por
LoadLibrary() o LoadLibraryEx().

 El funcionamiento es muy parecido al de Linux, se carga la librería
con LoadLibrary() o LoadLibraryEx(), a continuación con
GetProcAddress() se obtiene el método u objeto que vamos a usar, y por último
para liberar la memoria cuando no necesitamos más la librería
usamos FreeLibrary(). Necesitamos incluir la cabecera <windows.h> y la
librería Kernel32.dll.

2.2.2. Linux

 El funcionamiento en Linux es muy parecido al de Windows y es el siguiente:
primero se carga la librería que queremos con dlopen(), ésta nos devuelve un
puntero que junto al nombre de la función o el objeto de la librería lo podemos cargar
mediante dlsym() para usarlo posteriormente. Por último cuando terminamos de usar
la librería la borramos de memoria con dlclose(). Necesitamos incluir la cabecera
<dlfcn.h> y las librerías libdl.so o libdl.dylib dependiendo del sistema en
el que nos encontremos.

2.3. Otras formas de mejorar el rendimiento

 Otras formas de mejorar el rendimiento de nuestra aplicación son:

• Uso de ptrdiff_t, size_t y tipos derivados de ellos que permiten
optimizar el código hasta un 30% según varios benchmarks, pese a que los
compiladores de hoy en día generan código optimizado, alojando variables de
tamaño inferior a 64 bits en registros de 64-bits.

• Declarar funciones como "static" cuando no se usan fuera del fichero en el que
están definidas, puesto que permite al compilador hacer inlining. Mediante
la técnica de inlining, el compilador sustituye la llamada a la función por su

12

código, incrustándolo en el lugar donde se realiza la llamada a la función. De
esta manera se evita la sobrecarga que acarrea la realización de una llamada a
función, creación y destrucción del espacio reservado en pila, etc.

• Cambiar el orden de las operaciones lógicas, poniendo primero las más
propensas a cumplirse o no, para de esta manera ponerlas al comienzo y
evitarnos unas cuantas comprobaciones.

• Si en un switch no son valores consecutivos, es mejor cambiarlos por if-
elsif, ya que de esta manera el código generado se ejecuta más rápido,
puesto que los switch pueden ser tablas de comparación muy costosas de
evaluar.

• /favor:INTEL64 está disponible sólo en el compilador de x64 y optimiza el
código generado para los procesadores que soportan Intel64, usando
características propias de estos procesadores, los cuales suelen tener mejor
rendimiento. El código resultante puede ejecutarse en cualquier plataforma
x64. (por defecto viene /favor:blend, que es optimización tanto para Intel
como para AMD).

2.4. Estimación en coste de la migración

 Para hacer una estimación a priori del coste de la migración del código de 32 a
64 bits, podemos seguir los siguientes pasos:

1. Usar un analizador estático como puede ser PVS-Studio para el proyecto,
obteniendo todos los avisos generados por este.

2. Un programador instruido en el tema de 64 bits, analiza todos los avisos
(n_tot) generados por el analizador durante una jornada y decide si el error
es relevante o no (falsa alarma). Si lo es, lo corrige (n_err).

3. El total de mensajes producidos por el analizador se divide por el número de
mensajes que el programador ha solucionado en un día (n_tot/n_err).

4. Por último el resultado es el número de personas/día que se necesitan para
llevar a cabo la migración de la aplicación a 64 bits. (tot = n_tot/n_err =
personas/día)

13

2.5. Guía de buenas prácticas

 En los siguientes puntos se exponen ejemplos y prácticas para la escritura de
código portable, sea cual sea la arquitectura sobre la que trabajemos:

• Ya que los enteros y punteros tienen el mismo tamaño en ILP32, se usan
indistintamente. Los punteros se convierten a tipos enteros o sin signo para
aritmética de direcciones. Además podemos convertir
un entero a long o unsigned long ya que también tienen el mismo tamaño.
Podríamos hacer esto entre long y punteros en LP64 ya que mantienen el
mismo tamaño.

La mejor opción consiste en usar uintptr_t, ya que hace que el código no se
tenga que cambiar si por ejemplo dejásemos de usar LP64 y además queda más claro
nuestra intención. Para usarlos necesitamos incluir <inttypes.h>.

 char *p;
 p = (char *) ((int)p & PAGEOFFSET);
 % cc ..
 warning: conversion of pointer loses bits

Así sería correcto:

 char *p;
 p = (char *) ((uintptr_t)p & PAGEOFFSET);

• Usar tipos de datos portables, es decir, si cambiamos de plataforma, no
tengamos que cambiar de nuevo los tipos de datos y éstos se mantengan.
Algunos de estos tipos son: size_t, ssize_t, ptrdiff_t, uintptr_t,
etc

• Tener cuidado con las estructuras de datos compuestas por varios de éstos.
Debido al alineamiento de los datos a 8 bytes en máquinas de 64 bits,
podemos calcular mal el tamaño de una estructura.

14

struct MyPointersArray
{
 DWORD m_n;
 PVOID m_arr[1];
}
object;
...
malloc(FIELD_OFFSET(struct MyPointersArray, m_arr) +
 5 * sizeof(PVOID));

Al ocupar DWORD 4 bytes, tenemos libres los 4 restantes hasta completar los
8 que ocupa PVOID en 64 bits, para ello necesitamos usar FIELD_OFFSET o también
podemos usar offsetof().

• En general, usar tipos capaces de almacenar el tamaño de un puntero en 64
bits (o sea 8 bytes). Estos tipos son: ptrdiff_t, size_t, intptr_t,
uintptr_t, ssize_t, int_ptr, DWORD_PTR, etc. Con esto además nos
aseguramos que sea la arquitectura que sea podemos direccionar toda la
memoria permitida y no vamos a obtener ningún error de acceso a memoria.
Además en las condiciones de los bucles nos evitamos el error que puede
surgir de comparar un dato de 32 bits con uno de 64 bits haciendo de esta
manera que el bucle sea infinito.

LA Figura 6 muestra la tabla con el tamaño de los tipos de datos y su tamaño
en las diferentes implementaciones:

15

Figura 6. Tamaño de tipos básicos en distintas Sistemas Operativos de 64 bits.

16

http://www.sisifo.this/wiki/index.php/Archivo:Tabla_tipo_datos_1.png�
http://www.sisifo.this/wiki/index.php/Archivo:Tabla_tipo_datos_2.png�

2.5.1. Ejemplos

A continuación se muestran ejemplos de código propio, en el que se hubiera
evitado realizar cambios al migrar a 64 bits si se hubieran adoptado las buenas
prácticas anteriores.

• En la clase SharedBuffer().

/**
 Función que nos devuelve el tamaño en BYTES del buffer
 @return int: el tamaño en bytes de buffer
*/
int size_bytes() const
{
 return (buff_data_->size_ * sizeof(_T));
}

Habrá que cambiar el tipo que devuelve la función a size_t, ya que si no
estamos perdiendo los 32 bits más significativos.

• Clase ImageData().

bmfh.bfSize = (width*height*bits_per_pixel/8) +
sizeof(BITMAPINFOHEADER) + sizeof(BITMAPFILEHEADER) + 1024;

Estamos extendiendo los valores de width, height y bits_per_pixel que
son int los dos primeros y unsigned char el último.

if ((pitch == (width*(bits_per_pixel>>3))) &&
(origin==IMAGE_ORIGIN_BL))
 fwrite(buffer.buffer(), 1, buffer.size(), f);

Aquí, como tercer argumento de la función fwrite() pasamos el resultado del
método size() de la clase buffer, que es del tipo entero. En la definición
de fwrite() el tercer argumento es del tipo size_t, así si tuviéramos un tamaño
mayor que MAX_INT perderíamos información. Por esto se recomienda usar size_t
para datos que representen tamaños.

17

• Clase Avifile().

if (wf)
{
 for (unsigned i = 0; i < sz && i < sizeof(WAVEFORMATEX); i++)
 ((char*)wf)[i] = b[i];
}

Aquí el error está en usar i como índice del vector wf. i es del tipo unsigned,
por lo que no podríamos direccionar el máximo de memoria posible con él y por tanto
no podríamos acceder a todos los elementos. Si bien es verdad que si no va a ocupar
más del límite no es un error, pero hay que estar totalmente seguro de ello. Aquí lo
deseable hubiese sido que i fuera del tipo uintptr_t. Además en algunos bucles el
definir el índice como un entero o cualquier tipo que no ocupe 64 bits puede hacer que
aparezcan bucles infinitos.

• Clase dec_enc().

 El siguiente ejemplo puede o no ser un error, puesto que depende de la
definición del tipo de dato al que le aplicamos la función sizeof(), ya que puede
haber padding y por tanto darnos un tamaño diferente al real.

typedef struct tagBITMAPFILEHEADER {
 WORD bfType;
 DWORD bfSize;
 WORD bfReserved1;
 WORD bfReserved2;
 DWORD bfOffBits;
} BITMAPFILEHEADER, FAR *LPBITMAPFILEHEADER, *PBITMAPFILEHEADER;

typedef struct tagBITMAPINFOHEADER{
 DWORD biSize;
 LONG biWidth;
 LONG biHeight;
 WORD biPlanes;
 WORD biBitCount;
 DWORD biCompression;
 DWORD biSizeImage;
 LONG biXPelsPerMeter;
 LONG biYPelsPerMeter;
 DWORD biClrUsed;
 DWORD biClrImportant;
} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;

unsigned long header_size = sizeof(BITMAPFILEHEADER) +
sizeof(BITMAPINFOHEADER);

18

• IPP (JPEG)

 Este es un claro ejemplo de error en aritmética de punteros, en la cual hay que
usar siempre tipos del tamaño de la arquitectura: size_t, ptrdiff_t,
uintptr_t, etc Aunque no debería dar errores puesto que ese usa para obtener los
argumentos de la línea de comandos, y ésta no va a ser mayor que 4GB.

key->m_length = curr - pos;

Tanto curr como 'pos' son punteros (8 bytes) y la longitud m_length es un
entero. Para que estuviera totalmente bien escrito, m_length debería ser del tipo
ptrdiff_t, que es un entero con signo pero que tiene el tamaño de la arquitectura
en la que estamos en cada momento.

2.6. Diferentes analizadores estáticos

 Análisis estático de código es el proceso de detección de errores y defectos en
el código fuente del software. Puede realizarse de forma manual o automática.

 La revisión manual de código es uno de los métodos más antiguos y seguros
en la detección de errores. Se trata de dar recomendaciones en cómo mejorar el
código fuente, revelando errores en el presente o posibles errores en el futuro.
Además la función del código tiene que ser clara simplemente leyendo el texto y los
comentarios, sino hay que mejorarlo. Este método suele funcionar bien porque es más
fácil encontrar errores en el código de los demás que en el de uno mismo.

 La única desventaja es el alto precio de este método: se necesita juntar a
varios programadores cada cierto tiempo para revisar el código más nuevo que se va
creando o el código con los cambios sugeridos aplicados, además no pueden hacer
esto muy a menudo puesto que su atención disminuiría.

 El análisis estático de código automático permite revisar grandes cantidades de
código con menos recursos humanos. No realiza modificaciones automáticas, pero
proporciona recomendaciones oportunas para que el programador lo haga, y el ratio
uso/precio hace de esta solución una de las más usadas en muchas empresas.

Las tareas que un analizador estático de código resuelve (o al menos intenta resolver)
se pueden dividir en tres categorías:

• Detección de errores en programas.

• Recomendaciones en el formato del texto, se puede adaptar al estándar que
tenga cada empresas: indexación, uso de espacios o tabuladores, etc.

• Medidas relacionadas con el código, nos permiten obtener un valor numérico
representativo sobre nuestra propia escala de valores para la propiedad que
queramos medir.

19

 Hay también otras maneras de usar los analizadores estáticos de código. Por
ejemplo puede usarse para enseñar a los nuevos desarrolladores las normas de
escritura de código de la empresa.

 Como cualquier otra metodología de análisis estático tiene sus puntos fuerte y
sus puntos débiles. Sabemos que no hay un método ideal de testeo de software.
Métodos diferentes dan resultados diferentes sobre el mismo código, sólo la
combinación de varios hace posible que podamos alcanzar la mayor calidad en
nuestro software.

 La principal ventaja del analizador de código estático es que permite reducir el
precio de eliminar defectos en el software de manera notable. Cuanto antes
detectemos los errores menor será el precio que nos costará corregirlos. De acuerdo
con el libro Code Complete de McConnell un error en la etapa de testeo es diez
veces más caro de corregir que si lo detectamos en la fase de escritura.

Figura 7. Media del coste de corrección de errores dependiendo del momento de su detección.1

 Las herramientas de análisis estático de código permiten detectar rápidamente
un montón de errores en la fase de escritura de código, lo que reduce
significativamente el coste de todo el proyecto.

Otras ventajas de los analizadores estáticos de código son:

• Podemos analizar todo el código que queramos, incluso aquellos trozos de
código que no se ejecutan casi nunca y que puede costarnos ver los errores allí
presentes más que en las zonas más comunes, excepciones y logs por
ejemplo.

• No dependen del compilador que se use ni de donde se ejecutará el programa.
Permite encontrar errores que de otra manera serían difíciles de descubrir,
evitando que de repente aparezca un error y resulte estar en todas las
versiones desde hace varios años, con el coste que eso conlleva de arreglar.

• Posibilidad de detectar fácil y rápidamente los típicos errores de copiar y pegar
muy comunes en largos trozos de código muy parecido. Además aunque los
errores son muy fáciles de corregir, se puede perder mucho tiempo para
descubrir errores triviales del estilo de strcmp(A,A).

1 McCONNEL, S., Code Complete. A practical handbook of software construction, Microsoft Press, 2004.

20

• aunque no lo parezca en estos errores se pierde mucho tiempo hasta que se
detectan.

Las desventajas de los analizadores estáticos de código son:

• No suelen diagnosticar en profundidad fugas de memoria y errores de
concurrencia. Para analizar esto se recurre a herramientas de análisis dinámico
(Valgrind, Intel Studio XE, etc).

• Advierte sobre errores en fragmentos de código que pueden resultar raros y
que sólo el programador puede entender si es un error de verdad o una falsa
alarma. Además de este tipo de falsas alarmas pueden darse otras, por lo que
a veces se añade un tiempo extra en la revisión de estos avisos.

 Los errores detectados con este tipo de analizadores de código son muy
diversos. Algunos se centran más en un tipo o área concretos y otros soportan
estándares como por ejemplo: MISRA-C:1998, MISRA-C:2004, Sutter-Alexandrescu
Rules, Meyers-Klaus Rules, etc.

 A menudo aparecen nuevas reglas de diagnóstico y estándares, y otras se
quedan obsoletas, por eso no tiene sentido comparar los analizadores estáticos de
código en ese sentido. La mejor manera de compararlos es aplicarlos a los mismos
proyectos y ver cuántos errores reales detecta cada uno, para así saber cuál es el más
conveniente.

 Los usuarios quieren comparar los diferentes analizadores estáticos de código,
es algo totalmente comprensible. No es fácil comparar diferentes analizadores
estáticos de código. El problema reside en establecer criterios de comparación
adecuados.

 Así por ejemplo, comparar el número de errores que deberían ser detectados y
el número de mensajes generados puede parecer una medida muy razonable. Sin
embargo no resulta adecuada en nuestro caso, como vamos a explicar a continuación.

 Primero empecemos con los parámetros que no tiene sentido que comparemos
entre analizadores. Por ejemplo, el número de avisos que es capaz de dar al analizar
un archivo o varios. Podemos pensar que cuantos más avisos mejor será el
analizador, pero normalmente esto no es así, puesto que el usuario, sólo hace uso de
una parte del sistema por lo que no va a tener que tratar con todos los tipos de
errores. Por ejemplo los avisos relacionados con librerías y compiladores, no le van a
aportar nada relevante, o incluso llegar a ser un estorbo.

 Consideremos por analogía una persona que entra en una tienda para comprar
un ordenador, en esta tienda hay una amplia variedad de productos, pero esta
persona no los necesita, está bien que pueda comprar en la misma tienda una
televisión o una videoconsola, pero esto no hace que el ordenador que vaya a comprar
sea mejor.

 El número de avisos no está relacionado con el número de errores que el
analizador puede detectar en un proyecto concreto. Un analizador que tenga en
cuenta 200 tipos de avisos enfocados todos ellos a aplicaciones desarrolladas para
Windows, puede encontrar muchos más errores en un proyecto con Visual Studio que
un analizador multi-plataforma que tenga en cuenta 1500 tipos distintos de avisos.

21

 En definitiva, el número de avisos no debe ser relevante a la hora de comparar
varios analizadores estáticos de código.

 Tampoco sería correcto comparar el número de avisos relevantes para un
sistema en concreto, debido a que:

• Puede ser que un tipo de aviso esté implementado en una regla en un
analizador y en otra regla en otro analizador. Entonces uno nos presenta más
avisos por pantalla, y decimos que es mejor que el otro, cuando el otro nos
está avisando de los mismos posibles errores pero de una manera más
compacta.

• El mismo diagnóstico puede tener más “calidad” en un analizador que en otro.
Para definir calidad vamos a poner un ejemplo. La mayoría de analizadores
tienen en cuenta los llamados números mágicos (valores constantes
codificados en el código fuente). Son potencialmente peligrosos en la
migración a 64 bits, ya que los tamaños de datos y rangos de valores cambian.
Puede que un analizador puede tenga en cuenta solamente los que son
peligrosos desde el punto de vista de la migración a 64 bits (4, 8, 32 etc) y que
otro tenga en cuenta todos los números mágicos (1, 2, 3 etc).

 Otra característica que podemos estar interesados en medir es la velocidad o
número de líneas procesadas por segundo. Sin embargo no tiene sentido, puesto que
en última instancia el que va a hacer los cambios y va a tener que leerse todos los
avisos es el encargado de revisar la salida del analizador, y no hay relación entre la
velocidad del analizador y la velocidad a la que puede realizar los cambios una
persona. Normalmente hay un parámetro que olvidamos al comparar analizadores,
que es la usabilidad del propio analizador por la persona o personas que van a tener
que trabajar con él.

 Aquí lo importante es que la usabilidad de una herramienta como es un
analizador de código influye mucho en la práctica real del uso por parte del
programador.

 He analizado el proyecto de las IPPMedia, una interfaz propia para el uso de
las librerías de Intel IPP (Integrated Performance Primitives), con Visual Studio,
Cppcheck y PVS-Studio. Se han detectado algunos aspectos relacionados con el
manejo de Visual Studio que viene integrado en el IDE y Cppcheck, y no está
relacionados con la calidad o al velocidad del análisis en sí, sino con aspectos de
usabilidad que se analizan a cotinuación.

• Preservación de los mensajes generados.- Estas herramientas no permiten
guardar una lista con los mensajes generados para examinarlos más tarde. Es fácil
en un proyecto de este tamaño obtener miles de avisos cuyo análisis requiere
varios días. Al no poderse guardar es preciso cada vez volver a analizar todo el
proyecto, con la pérdida de tiempo que ello conlleva, además de tener que
recordar el último aviso corregido. PVS-Studio sí que permite guardar los
resultados y cargarlos cada vez que se quiere continuar leyendo los avisos
generados para ir corrigiéndolos.

• Procesado de mensajes duplicados.- Aparecen normalmente en los archivos de
cabecera (.h). Por ejemplo el analizador detecta un posible problema en una
cabecera que la incluyen 15 archivos (.cpp) En lugar de dar el aviso cada vez que

22

se encuentra con la inclusión del archivo de cabecera, PVS-Studio da el error una
vez en la cabecera ya que cuando se corrige ahí ya no lo va a dar en los ficheros
que lo incluyen. El siguiente mensaje se dio más de cinco veces mientras se
analizaba la IPPMedia:

d:\ippmedia_x64_7.1\examples\consola.h(92):

warning C6054: HANDLE 'std_output' might not be initialized

 Debido a que cada vez que se incluye el archivo de cabecera se escribe este
error, la salida del analizador pude parecer muy grande y desordenada haciendo que
haya que revisar más mensajes de los necesarios.

• Selección de los ficheros a analizar.- Visual Studio y Cppchek analizan
ficheros de plug-ins como pueden ser los que se encuentran en rutas como:
C:\Archivos de programa\Microsoft Visual Studio
9.0\VC\include. Esto no tiene sentido, puesto que nadie va a editar los ficheros
del sistema. PVS-Studio no “pierde” el tiempo analizando este tipo de ficheros. Un
ejemplo es:

c:\archivos de programa\microsoft

sdks\windows\v6.0a\include\ws2tcpip.h(729):

warning C6386: Buffer overrun: accessing 'argument 1',

the writable size is '1*4' bytes,

but '4294967272' bytes might be written:

Lines: 703, 704, 705, 707, 713, 714, 715, 720,

721, 722, 724, 727, 728, 729

 Visual Studio y Cppcheck no permiten excluir ficheros del análisis en función de
un patrón como puede ser: *_test.cpp o c:\librerias\, mientras que con
PVS-Studio podemos hacer esto.

• Gestión de la lista de avisos.- Podemos deshabilitar ciertos avisos en el
analizador de código, pero a diferentes niveles según nuestros requerimientos. En
algunos analizadores debemos repetir la ejecución en cada caso. Con PVS-Studio
a diferencia de Cppcheck podemos manejar estas opciones una vez concluido el
análisis diciéndole que tipo de mensajes queremos que nos muestre y cuáles no.
De esta manera podemos centrarnos en los que más nos interesan o son más
críticos para nuestra aplicación, sin necesidad de volver a realizar todo el análisis
con el tiempo que eso conlleva.

• Filtrado de los avisos que se generan en la salida por texto.- Por ejemplo
podríamos querer ocultar los relacionados con funciones comunes como
printf() o scanf() que comúnmente dan generan avisos por no usar su
versión segura o parecido.

• Falsas alarmas.- Podemos marcar en Visual Studio con #pragma warning para
deshabilitar las falsas alarmas, pero con PVS-Studio podemos marcar un mensaje
como falsa alarma y de esta manera no volver a ser mostrado sin volver a lanzar el
analizador. Esta función es importante en PVS-Studio porque para mi y al menos

23

en los proyectos en los que lo he usado, se generan muchos avisos y una gran
parte son falsas alarmas.

 Podemos concluir que la comparación entre analizadores estáticos es difícil, y
que no hay una respuesta clara a que herramienta es mejor en general. Podríamos
decir cuál es mejor para proyectos en concreto pero no en general.

 Un ejemplo que ilustra lo expuesto, tomado de los casos surgidos en los
análisis que he efectuado, es el siguiente: el analizador indicaba que estaba usando
un tipo de dato que no tenía el tamaño de la memoria del sistema (8 bytes) para
indexar un vector. En este caso lo que hay que hacer al migrar a 64 bits es mirar si la
estructura se espera que contenga más de INT_MAX elementos o no, si es que no se
deja como está porque al migrar posiblemente cueste mucho tiempo cambiar el tipo de
dato para nada. Si la respuesta es que si va a contener más de INT_MAX elementos
hay que cambiar el tipo de dato a size_t, intptr_t, que tienen el tamaño máximo
de la arquitectura donde se estén ejecutando (si es en 32 bits ocupan 32 y si es en 64
ocupan 64 bits, esto es algo que está definido en el lenguaje y que el compilador se
encarga de cumplirlo). Tuve la idea de probar si de verdad llegaba hasta INT_MAX o
no. Al ejecutar el código para hacer esta prueba el vector, se llenaba más allá de
INT_MAX elementos. El código era el siguiente:

int indice = 0;

size_t tamanyo = ...;

for (size_t i = 0; i != tamanyo; i++)

 array[indice++] = BYTE(i);

 Aunque por la condición del bucle puede perfectamente llegar a más de
INT_MAX elementos, al acceder con indice debería de darnos un error puesto que
es del tipo entero que ocupa 32 bits. Depurando y mirando el código ensamblador se
observa que el compilador había usado registros de 64 bits para almacenar la variable
de tipo entero, puesto que en las máquina de 64 bits hay más registros y es la forma
más rápida de acceder a los datos.

mov byte ptr [rcx+rax],cl
add rcx,1
cmp rcx,rbx
jne wmain+40h (120001080h)

 Debido a esta optimización del compilador, este fragmento de código común en
muchas de aplicaciones es incorrecto.

 Decidí pues cambiar el código fuente para ver si el compilador no era capaz de
optimizarlo usando registros de 64 bits y efectivamente, ahora no podía contener más
de INT_MAX elementos como cabía esperar.

int indice = 0;
for (size_t i = 0; i != tamanyo; i++)
{

24

 array[indice] = BYTE(indice);
 ++indice;
}
movsxd rcx,r8d
mov byte ptr [rcx+rbx],r8b
add r8d,1
sub rax,1
jne wmain+40h (140001040h)

 Ahora como era de esperar el registro usado no es de 64 bits (rcx) sino que es
de 32 bits (r8d).

25

Capítulo 3

Aplicación Examples

 En este capítulo se va a explicar la creación de la aplicación Examples. Esta
aplicación es una versión actualizada y completamente creada desde cero de una
aplicación ya existente que realiza esta tarea para arquitecturas de 64 bits.

 Examples consiste en un códec de vídeo para los formatos H.264 y MPEG-4
que utiliza la librería de las IPP para realizar esta función. Permite decodificar/codificar
varios archivos de vídeo a la vez, creando un hilo por cada uno para su ejecución.
Descomprime el archivo de entrada para devolver el mismo vídeo comprimido.

 Los parámetros de la aplicación son:

• -i: nombre(s) de los fichero(s) de entrada
• -m: nombre(s) de los fichero(s) descomprimidos, salida del decoder y entrada

del encoder.
• -o: nombre(s) de los fichero(s) de salida comrpimidos.
• --REF: nombre del fichero de referencia para calcular PSNR (Peak Signal-

to-Noise Ratio).

• -t: número de hilos, debe coincidir con el número de ficheros de entrada.
• -r: resolución de los archivos de entrada (ancho x alto).
• -f: formato de color del archivo de salida (gray yv12 nv12 yuy2 uyvy

yuv420 yuv422 yuv444 rgb24 rgb32 bgr24 bgr32 bgr565 bgr555
bgr444).

• -b: bitdepth del archivo de salida.
• -n: límite de frames a procesar.
• -d: hacer o no deinterlineado.
• -k: no mantener el ratio de aspecto si cambiamos el tamaño.
• --RGB: guardar cada frame en un archivo .bmp
• --AVI: crear un archivo .avi con las imágenes descomprimidas.
• -p: archivo de parámetros
• -c: tipo de codificador de vídeo (mpeg4 y h264).
• -R: resolución del archivo de salida (ancho x alto).
• -B: bitrate (bits/second). Por defecto 2000000.
• -F: framerate (frames/Second). Por defecto 30.
• -h: ayuda de la aplicación.
• --ipp_cpu: optimización del código de las IPP usado (SSE, SSE2, SSE3,

SSSE3, SSE41, SSE42, AES, AVX, AVX2).
• --ipp_threads: número de hilos internos para la ejecución de las IPP, por si

usamos la versión con hilos de ésta.

26

 El diagrama de flujo del descompresor se muestra en la Figura 9, y la del
descompresor en la Figura 10.

Figura 8. Diagrama de flujo del descompresor.

27

 La lógica del compresor la podemos entender con este diagrama de flujo:

Figura 9. Diagrama de flujo del compresor.

28

Capítulo 4

4. Migración de ScatiRTPVideoClient a 64 bits

 Tras haber completado las fases anteriores, ahora nos vamos a centrar en la
migración completa de una aplicación comercial de 32 a 64 bits, objetivo principal del
proyecto. La aplicación elegida ha sido ScatiRTPVideoClient. Esta aplicación se
encarga de recibir vídeos de un servidor, para mostrarlos por pantalla, a la vez que se
pueden grabar en disco, comprimir y todo ello teniendo en cuenta sólo los keyframes o
la secuencia completa de vídeo. Un keyframe es una imagen a partir de la cual se
puede estimar el movimiento realizado hasta la siguiente, sin necesidad de tener toda
la información. En la aplicación se puede definir el intervalo de tiempo entre keyframes
para obtener una mayor calidad (disminuyéndolo) o para obtener mayor rendimiento
(aumentándolo). Estas características son opuestas, por lo que si queremos una de
ellas tenemos que perder en la otra.

4.1. FUNCIONAMIENTO CLIENTE - SERVIDOR

 El servidor, que no hemos migrado a 64 bits, funciona de la siguiente manera:

1. Iniciamos la aplicación:

Figura 10. Ventana de inicio de ScatiRTPVideoServer

 Esta es la apariencia del servidor sin iniciar, como se pude ver en la imagen
podemos iniciar el servicio presionando en el botón "Iniciar" arriba a la izquierda, o
podemos configurar las opciones con el botón "Configuración" que se encuentra arriba
a la derecha.

29

2. Iniciamos el servicio:

Figura 11. Ventana de estado de conexiones de ScatiRTPVideoServer

Aquí podemos observar cómo se ha deshabilitado la opción de iniciar y se ha

habilitado la opción de finalizar. Además se muestran todas las conexiones activas,
con la información correspondiente asociada: ID, dirección IP, tipo y nombre del
archivo que está siendo servido, estado de la sesión, estado del vídeo, tipo de la
conexión, códec de vídeo, resolución, FPS a los que se está sirviendo, bitrate y el
tiempo de la conexión.

Opcionalmente, podemos cambiar las opciones:

Figura 12. Ventana de configuración de ScatiRTPVideoServer

30

 Las opciones más destacadas son: usuario y contraseña, ruta donde se
encuentran los archivos, máximo de memoria utilizable por el programa, reutilización
de servidores de vídeo2 , puertos para las conexiones y timeout de conexión.

 Vamos a describir ahora el funcionamiento de la aplicación sobre la que hemos
realizado la migración, SCATIRTPVideoClient.

2 Esto hace que cuando hay muchas conexiones y falla alguna no se creen nuevas,
sino que se utilicen las previamente creadas

31

Figura 13. Ventana de inicio de ScatiRTPVideoClient

 La Figura 13 muestra la ventana de nuestra aplicación. Podemos observar las
diferentes partes en las que está dividida. En la parte superior se encuentran los
campos necesarios para añadir una cámara, para conectarnos a ella posteriormente,
en el centro se muestran las características de la cámara seleccionada. Por último la
parte inferior esta divida en tres zonas. A la izquierda tenemos el cuadro donde se
muestran todas las cámaras conectadas, junto a las opciones que nos permiten
añadir, conectar/desconectar y eliminar las cámaras. En el centro hay una ventana de
log, donde se registran los sucesos ocurridos asociados a cada una de las cámaras
que estemos manejando en cada momento, y por último, a la derecha se encuentra la
ventana de vídeo donde se muestra el vídeo recibido de la cámara. Además hay otras
opciones para el tratamiento de las imágenes recibidas de las cámaras, como
grabación a disco, descomprimir o no, sólo keyframes, etc.

 A continuación cargamos 8 cámaras para hacer una prueba, cada una de estas
cámaras nos manda un vídeo (Figura 14).

32

Figura 14. Ventana de vista de cámaras ScatiRTPVideoClient

Vemos como aparecen cada una de las cámaras que conectamos a nuestra
aplicación, además en la ventana de log se nos informa de que han sido añadidas
estas ocho cámaras.

El siguiente paso es conectarlas, ya que sólo las hemos añadido en el paso
anterior (Figura 15).

33

Figura 15. Ventana de conexión de cámaras ScatiRTPVideoClient

Una vez conectadas, podemos visualizar cualquiera de las ocho cámaras. La

Figura 16 muestra, un ejemplo.

Figura 16. Ventana de visualización de imagen ScatiRTPVideoClient

34

 Observamos cómo, en este caso, la información asociada a una cámara
situada en el centro de la aplicación, nos muestra información relacionada con el vídeo
recibido. En este caso no hay más opciones, puesto que para probar, los vídeos los
sirve el servidor que hemos introducido anteriormente y no una cámara real.

Ahora sólo faltaría desconectar todas las cámaras y eliminar las conexiones
para poder cerrar la aplicación (Figura 17 y 18).

Figura 17. Ventana de desconexión de cámaras ScatiRTPVideoClient

35

Figura 18. Ventana de eliminación de cámaras ScatiRTPVideoClient

 Podemos comprobar que la aplicación está completamente migrada a 64 bits
desde el administrador de tareas de Windows, donde a diferencia de otras
aplicaciones para 32 bits, ésta carece de los caracteres *32 al final del nombre (Figura
19).

36

Figura 19. Ventana de recursos del sistema Windows 7.

4.2. Estimación de la migración

 A partir del coste temporal que supone la migración de esta aplicación, analizado a
continuación, podemos estimar el coste de la migración a 64 bits de la aplicación
VisionSurfer.

4.2.1. ScatiRTPVideoClient

• Migración librerías (mínimo 1 día para cada librería: última versión y compilar)
(total: 136h):

o Codec de vídeo IPP: 2 semanas (14 días - 112h).
o ACE: 1 día (falta compilar con opciones de compilador) (8h)
o Cryptopp: 1 día (8h).
o AviFile: 1 día (8h).

• Formación 64 bits (warnings, tipos de datos, instalación herramientas): 3 días

(24h)

• Compilación 64 bits (opciones compilador, directorios, etc.): 2 días (16h)

• Migración código 64 bits (warnings) (total: 28h)
• Corregir warnings Visual Studio C++: 1 día (8h)
• Ejecutar PVS-Studio y corregir warnings: 2,5 días (20h)

• Pruebas ejecución 32 y 64bits: 2 días (16h)

37

• Problemas no planificados (p.e. avifile): 2 días (16h)

• Documentación (cambios librerías, warnings, compilación...): 3 días (24h)

Total: 260h (32,5 días) (6 semanas y media).

4.2.2. ScatiVision

Migración librerías (mínimo 1 día para cada librería: última versión y compilar)
(total: 280h):

o IJL: (están 'obsoletas', ahora se utilizan ejemplos de IPP como en H.264
y MPEG-4): 2 semanas y media (100h) (riesgo)

o SIP: (funciones eliminadas de IPP, buscar alternativas, etc.): 2 semanas
y media (100h) (riesgo).

o El resto de librerías (están en una tabla en el estudio) tienen versión de
64 bits y no es necesario (a priori realizar cambios en el código fuente):
2 semanas (80h)

• Formación 64 bits (warnings, tipos de datos, instalación herramientas): 3 días

(24h) (por persona) (suponemos 2 personas: 48h)

• Compilación 64 bits (opciones compilador, directorios, etc.): 5 días (40h)

• Migración código 64 bits (warnings) (multiplicamos por 10 - según las líneas de
código) (total: 280h)

• Corregir warnings Visual Studio C++: 10 días (80h)
• Ejecutar PVSStudio y corregir warnings: 25 días (200h)

• Pruebas ejecución 32 y 64bits: 5 días (40h)

• Problemas no planificados (p.e. avifile): 10 días (120h) (riesgo)

• Documentación (cambios librerías, warnings, compilación...): 10 días (80h)

Total: 888h (111 días) (22 semanas y 1 día)

4.3. Cambios librerías para 64 bits

 A continuación se detallan los cambios realizados en las librerías para su
correcto funcionamiento en 64 bits.

IPPMedia:

 Se ha cambiado de versión de IPP de 6.1.3.047 a 7.1.1.119.
 Se han añadido los cambios realizados en SCATI a los ejemplos de las IPP de

la nueva versión:

38

 Forzado de keyframes en compresores H.264 y MPEG-4.
 Añadido límite de bitrate en modo de calidad constante en compresor

H.264.
 Cambios de formato de color revisados.

 Reestructuración de librerías resultantes de IPPMedia:
 En lugar de tener una sola librería 'IPPMedia.lib', ahora se tienen múltiples

librerías de cada uno de los módulos de los ejemplos (p.e. 'h264_enc.lib',
'h264_dec.lib', etc). Esto es debido a que el script que viene con ellas permite
hacer esto más fácilmente que juntar todas las librerías en una sola.

 En cada aplicación que utilice las librerías IPP, hay que utilizar la función
'InitPreferredCpu()' para que se utilicen las optimizaciones de la CPU
correspondiente. De esta manera el código de las funciones optimizadas de las
IPP cambia dependiendo de la arquitectura.

 No se han incluido las MFC (Microsoft Foundation Classes), librería que
envuelve parte del API de Windows en C++, en las librerías de los ejemplos de
las IPP.

 Utilización de las librerías de IPPMedia en el proyecto de ejemplos tanto en
32bits como en 64bit:
 Es necesario añadir las librerías de los ejemplos utilizadas

(utilizando 'pragma', tal y como se hacía hasta ahora con la librería
IPPMedia).

#pragma comment (lib, "vm_plus.lib")

 Necesario añadir las cabeceras de las IPP necesarias en los
ficheros que las utilizan.

#include "umc_app_utils.h"

 Es necesario añadir las siguientes librerías para el enlazado:
shell32.lib, ole32.lib, oleaut32.lib, uuid.lib, advapi32.lib, winmm.lib pdh.lib,
SetupAPI.lib.

 Añadida captura de excepciones en los ejemplos de las IPP (en las
propiedades de los proyectos de ejemplos 'Enable C++ Exceptions: Yes With
SEH Exceptions (/EHa)'). De esta forma se capturan excepciones producidas
en los ejemplos, que de otra forma no se podrían capturar y harían que el
programa que utiliza estos ejemplos se cerrara, sin poder recuperar el sitio en
el que ha tenido lugar el error.

ACE:

 Se ha cambiado de versión de ACE de 5.7.1.1 a 6.1.0. El cambio se ha
realizado para trabajar con la última versión de estas librerías.

 Se han compilado tanto en 32 bits como en 64 bits sin tener que realizar
ninguna modificación:

39

 Inicialmente no se han modificado las directivas de compilación. Se van
a realizar las pruebas iniciales; de esta forma de comprueba si funcionan las
librerías con los cambios mínimos necesarios.
 No se utilizan las directivas ACE_HAS_MFC,

ACE_LEGACY_MODE ni _USE_32BIT_TIME_T. Esta última no tiene
sentido en 64-bits.

Cryptopp:

 Se ha cambiado de versión de CryptoPP de 5.6.0 a 5.6.1. El cambio se ha
realizado para trabajar con la última versión de estas librerías.

 Se han compilado tanto en 32 bits como en 64 bits:
 Se han modificado las propiedades del proyecto de las librerías

Cryptopp de 'Multi-threaded' a 'Multi-threaded DLL' (tanto en
Debug como en Release).

Avifile:

 Se han compilado estas librerías tanto en 32 bits como en 64 bits sin tener que
realizar ninguna modificación.
 Pese a no tener que realizar ninguna modificación, han aparecido varios

warnings relacionados con el cambio de tamaño en la arquitectura de 64 bits.

warning C4267: 'initializing' : conversion from 'size_t'
to 'int', possible loss of data

warning C4244: '+=' : conversion from 'int64_t' to
'uint_t', possible loss of data

warning C4244: 'return' : conversion from 'time_t' to
'uint_t', possible loss of data

warning C4244: '=' : conversion from 'LRESULT' to
'unsigned long', possible loss of data

 Una vez realizados los cambios oportunos en las librerías, se han adaptado las
librerías propias de 32-bits a los cambios producidos en las nuevas versiones de las
librerías de terceros usadas.

 Adaptación a nueva versión de IPP:
 Cambios en las siguientes clases:

 IPP_DecompressorCodec: modificaciones para adaptarse a los
cambios de los ejemplos de las nuevas IPP.

 SC_CompresorCodecIPP: modificaciones para adaptarse a los
cambios de los ejemplos de las nuevas IPP. Se ha detectado una fuga de
memoria en el compresor H.264 de las IPP utilizando la herramienta de
Intel: Studio XE.

40

 ImageProcess: modificaciones en las funciones de
redimensionado; las funciones utilizadas hasta ahora ya no existen
(estaban deprecated hace varias versiones de las IPP. Se han
modificado por las funciones.

 Adaptación a nuevas librerías de ACE:
 No se utilizan versiones especiales de ACE con MFC; se ha cambiado

el fichero svc.conf para eliminar mfc.
 No se utiliza la directiva de precompilación _USE_32BIT_TIME_T.

 Cambios en las propiedades del proyecto
 En configuración Debug ha sido necesario añadir la siguiente librería

como ignorada: LIBCMTD.
 Se ha cambiado la directiva de compilación de __WIN32__ a __WINDOWS__

para distinguir entre sistemas operativos Windows y otros.
 Se ha detectado un problema en la escritura de ficheros AVI con la librería

AviFile. Es un error muy extraño ya que se produce sólo en Release en 32 bits;
parece que hay algún tipo de incompatibilidad con esta librería y con la utilización
de las funciones _open, _close y _write, se han cambiado por las funciones
fopen, fclose y fwrite.

 Se ha corregido un problema porque no se llegaba a utilizar la CPU al 100%
con varias descompresiones simultáneas, y es que el programa sólo realizaba una
descompresión simultáneamente. Se ha detectado utilizando la herramienta de
Intel: Studio XE.

4.4. Solución warnings migración a 64 bits

Una vez completado este proceso, se ha compilado para 64-bits con éxito sin
realizar ningún cambio, salvo la aparición de warnings propios de la migración, como
la conversión entre tipos de datos de tamaños diferentes.

... warning C4267: 'argument' : conversion from 'size_t' to 'int', possible loss of data ...

 Se han corregido los warnings detectados en la compilación anterior añadiendo
las conversiones necesarias a entero. Con estos cambios se han eliminado todos
los warnings. Lo ideal sería utilizar los tipos de datos correspondientes siempre
que fuera posible (evitar el uso de int y utilizar size_t (o ssizet_t) cuando
corresponda.

 Se modifica el fichero de ACE: OS_NS_unistd.inl para evitar un warning similar
a los anteriores en la llamada a la función swab.

 Por último, se ha usado la herramienta de análisis estático de código PVS-
Studio, para obtener un informe detallado de todos los posibles warnings relacionados
con la migración.

41

 Muchos de los warnings obtenidos en esta sección están relacionados con la
conversión de memsize a int, por lo que no haría falta cambiarlos.

 Se han ignorado los siguientes warnings tras ver que no son imprescindibles:

V101, V102, V103, V104, V106, V108, V110, V112, V113, V117, V119, V121,
V220, V302

Hay muchos warnings en el código de ACE, pero al ser una librería que no
depende de nosotros no podemos entrar a cambiar nada, puesto que lo más
seguro es que estropearíamos algo.

 Hay varios avisos también en el código de los ejemplos de las IPP.
 Otros warnings también en: ScatiTime, ImageData, SharedBuffer.

 Se ha observado también algún warning relacionado con la no inclusión de la
directiva de precompilación de ACE -> _USE_32BIT_TIME_T.

En SharedBuffer: ¿Devolvemos size_t o hacemos un cast a int? V110.

int size_bytes() const
 {
 return (buff_data_->size_ * sizeof(_T));
 }

Aparece el aviso V111 en las macros de ACE (habría que intentar evitar este warning).

 Avisos en las funciones de log
de init_encoder de SC_CompresorCodecIPP V204.

Warning GA (General Analysis)

 Ignorados: V524, V547 Comprobaciones que son siempre verdaderas o
falsas, V550 No parece dar problemas, V595 No comprobación de NULL al utilizar
punteros.

Otros Warnings

 Modificado SC_Base64, la función iba más allá del límite superior del vector,
aunque en ejecución no se había registrado ningún fallo. En el
fichero PtzCommand.cpp se puede producir underflow del buffer, debido a que
el tamaño que se usa en la función memcpy es un entero y por lo tanto puede ser
negativo, habría que usar un dato del tipo unsigned. V512.

 Se ha producido por una indexación incorrecta en un if al que sólo le sigue una
instrucción y que por tanto no tenía llave, V628.

42

 Modificado ComprStats para utilizar puntero a char en lugar
de std::string V510.
 Se han corregido varios cambios de tipo incorrectos en clases de

ipcamstest_gui: V576, V601.

 Eliminadas algunas variables declaradas pero no utilizados: V808 Variables
declaradas pero no usadas, V807 Se usaba varias veces el mismo acceso a una
clase y se ha creado un objeto que lo contenga para acceder únicamente al
principio a la clase y mejorar el rendimiento.

 Algunos V803 al no utilizar el elemento anterior del iterator en el bucle es
más efectivo usar ++iterator que iterator++ , algunos V802 optimización de
tamaño de estructuras reduciendo su tamaño en memoria y algunos V809 al usar
la función delete() no hace falta comprobar el puntero, por ahora no se quitan.

43

Capítulo 5

5. Pruebas de rendimiento

 En este capítulo se presentan las pruebas de rendimiento realizadas con la
aplicación SCATIRTPVideoClient, la cual se conecta a un servidor de vídeo mediante
el protocolo RTP (Real-time Transport Protocol) y RTSP (Real Time
Streaming Protocol) y muestra las imágenes por pantalla, comprime el vídeo
para guardarlo en disco, etc.
 El objetivo de estas pruebas es conocer el límite de conexiones que podemos
tener abiertas a la vez en la aplicación, comparando las versiones de 32 y 64 bits.
Estas pruebas se han realizado en dos ordenadores diferentes, para tener una mejor
visión de la diferencia en cada caso, no sólo por mejora del hardware, sino por la
optimización de la librería de las IPP. Esta librería es el cuello de botella de la
aplicación, pues es la encargada de hacer el procesamiento de datos con mayor carga
de trabajo.

5.1. Examples

 Las primeras pruebas se han realizado sobre la aplicación examples
encargada de descomprimir y comprimir vídeo.

44

Figura 20. Rendimiento aplicación Examples 64 bits.

45

 La Figura 20 muestra los frames por segundo en descompresión y
compresión para las versiones de 32 y 64 bits de la aplicación Examples, así como el
porcentaje de uso de CPU y la cantidad de memoria virtual usada. Nótese que el
SpeedUp conseguido está en torno a 1. Esto nos indica que no hay una mejoría de
rendimiento por el cambio a 64-bits. La migración en todo caso permite manejar más
memoria, algo muy importante para la aplicación, puesto que con ocho cámaras de
1MPixel, ya ocupamos 1GB de memoria virtual, lo que supone la cuarta parte del
máximo accesible con 4 GB.

 Otro dato a destacar, pese a que no está relacionado con la migración a 64
bits, es el mejor aprovechamiento de la CPU a la hora de manejar dos vídeos
simultáneamente debido al uso de hilos, ya que al contar con 2 CPUs, el trabajo se
distribuye mucho mejor. De aquí podemos concluir que sería ideal contar con un
núcleo por cada flujo de vídeo a tratar, pero esto es imposible para un gran número de
cámaras (por encima de 32), dado que un número mayor de flujos de vídeo que de
núcleos de procesamiento provoca una pérdida importante de rendimiento debido a
esperas de sincronización entre hilos.

5.2. SCATIRTPVideoClient

 A continuación se detallan las pruebas realizadas a la aplicación
SCATIRTPVideoClient de la que se han obtenido datos separados para
descompresión y compresión, así como para vídeos con un códec H.264 y MPEG-4.
También se han tomado medidas con un número distinto de cámaras (4, 8, 16, 32, 64
y 100) y un tamaño de imagen diferente (4CIF, 1Mpx, 5Mpx). Para la versión de 32
bits, se han tomado las medidas de los datos límite (100 cámaras, 5Mpx), que nos dan
una referencia clara del límite rendimiento para nuestra aplicación.

46

5.2.1. H264 - MPEG-4. Compresión y Descompresión

 En la figura 21, podemos observar las medidas obtenidas de la aplicación
ScatiRTPVideoClient para la versión de 64 bits, con distintos números de cámaras,
distintos tamaños de imagen (4CIF, 1Mpx y 5Mpx) y tanto para el códec H.263 como
MPEG-4. Las medidas más relevantes a tener en cuenta son: FPS, Bitrate, uso de
CPU y memoria.

Figura 21. Rendimiento H.264, MPEG-4 en descompresión y compresión.

47

Frames máximos

 En las Figuras 22 y 23, podemos observar los frames por segundo que es
capaz de descomprimir la aplicación en su versión de 64 bits para distinto número de
cámaras y tamaños de imagen. La gráfica para 32 bits es muy similar y no la
mostramos. Podemos observar que a partir de cierto límite, este valor alcanza su
máximo y se mantiene constante pese a que incrementemos el número de cámaras.
Esto nos indica el máximo que podemos obtener para cada tamaño de imagen. El
factor limitante principal es el tamaño de la imagen: con imágenes de 5Mpx el
programa satura con el mínimo número de cámaras.

48

Figura 22. Fps H.264, en descompresión para la versión de 64 bits.

Figura 23. Fps MPEG-4, en descompresión para la versión de 64 bits.

49

Uso de CPU

 En las Figuras 24 y 35 se muestra el uso de CPU para la versión de 64 bits.
Observamos que a partir de cierto número de cámaras, para cada tamaño de imagen,
el porcentaje de uso de la CPU se mantiene alrededor del 90%. Esto nos indica que
cuando llegamos a este valor, el incremento del número de cámaras simultáneas hace
que el rendimiento de la aplicación se degrade. Nótese que este valor nunca llegará al
100% debido a que el ordenador siempre estará ejecutando un mínimo de
operaciones en el 10% restante.

50

Figura 24. Uso de CPU en H.264 para la versión de 64 bits.

Figura 25. Uso de CPU en MPEG-4 para la versión de 64 bits.

51

Capítulo 6

Conclusiones y trabajo futuro

 La realización de una migración a 64 bits está fuertemente condicionada por la
tecnología usada, es decir, por las características de los componentes de software
empleados en el programa a migrar. Puede ser un proceso que se realice
simplemente compilando lo ya existente para plataformas de 64 bits, con el posterior
enlazado a sus correspondientes librerías de 64 bits, o puede ser un proceso mucho
más complejo, en el que haya que comenzar por el cambio de versión de las librerías
implicadas, su correcta revisión y análisis estático así como su compilación para
entornos de 64 bits. Pueden surgir problemas derivados del código que implique el
cambio de código legado, con todos los inconvenientes que esto conlleva. En este
Proyecto se ha llevado a cabo un análisis pormenorizado de todos estos aspectos,
enfocado a una aplicación en explotación (VisionSurfer 4.6, SCATI LABS.). La
estimación resultante del proceso de migración ha sido de 4 meses (Capítulo 4).

 Respecto al rendimiento observado en nuestra aplicación de 64 bits, la mejora
producida es leve, consiguiendo incluso resultados peores en ciertos casos. Esto es
debido al uso de la librería de las IPP optimizadas tanto para 32 como para 64 bits, y
que soportan aproximadamente un 90% del tiempo de ejecución total. Además, como
era de esperar el programa generado ocupa un mayor tamaño debido al crecimiento
de los tipos de datos como punteros, y la duplicación de los primeros cuatro
parámetros en una invocación a función.

 El principal beneficio de la migración a 64 bits que podemos reseñar es la
posibilidad de manejar cantidades de memoria superiores a 4GB (límite de los SO de
32 bits). Esto nos ha permitido poder manejar más flujos de vídeo de entrada en la
aplicación, elevando el número de cámaras simultáneas hasta 300 aproximadamente,
respecto a las 64 que podíamos manejar en su versión de 32 bits. Pese a que en un
principio se esperaba poder mejorar el rendimiento, la necesidad real, en función de
las necesidades del mercado, era poder conectar más cámaras de las permitidas
hasta este momento.

 Respecto a las líneas de desarrollo seguidas a partir del resultado de este
proyecto, se ha seguido con la migración de otras aplicaciones implicadas en
VisionSurfer. Esta aplicaciones por el momento han presentado problemas
similares y han mostrado resultados de rendimiento parecidos, una vez más la
posibilidad de una mayor manejo de memoria ha sido la mejora más destacable, si
bien es verdad que en otras aplicaciones y para caso concretos se han obtenido
mejores resultados que en la versión de 32 bits. Esto puede deberse a la supuesta
mejora obtenida al tener un mayor número de registros,que disminuye el spill
code, y por el paso de parámetros por registro en lugar de memoria (pila) como se
mostró en el Capítulo 2.

52

53

ANEXO 1:

CÓDIGO ENSAMBLADOR APLICACIÓN HELLO
WORLD 32 Y 64 BITS

A continuación se muestra el código ensamblador para las distintas versiones del
programa Hello World.

• Plataforma x86 Debug.

; COMDAT _wmain
_TEXT SEGMENT
_argc$ = 8 ; size = 4
_argv$ = 12 ; size = 4
_wmain PROC ; COMDAT

; 9 : {

 push ebp
 mov ebp, esp
 sub esp, 192 ; 000000c0H
 push ebx
 push esi
 push edi
 lea edi, DWORD PTR [ebp-192]
 mov ecx, 48 ; 00000030H
 mov eax, -858993460 ; ccccccccH
 rep stosd

; 10 : std::cout << "Hello World!!!" << std::endl;

 mov esi, esp
 mov eax, DWORD PTR
__imp_?endl@std@@YAAAV?$basic_ostream@DU?$char_traits@D@std@@@1@AAV21@@Z
 push eax
 push OFFSET ??_C@_0P@MKFFDJMN@Hello?5World?$CB?$CB?$CB?$AA@
 mov ecx, DWORD PTR
__imp_?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A
 push ecx
 call
 ??$?6U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?$char_traits@D
@std@@@0@AAV10@PBD@Z ; std::operator<<<std::char_traits<char> >
 add esp, 8
 mov ecx, eax
 call DWORD PTR
__imp_??6?$basic_ostream@DU?$char_traits@D@std@@@std@@QAEAAV01@P6AAAV01@AAV01@
@Z@Z
 cmp esi, esp
 call __RTC_CheckEsp

; 11 : return 0;

 xor eax, eax

; 12 : }

 pop edi
 pop esi
 pop ebx
 add esp, 192 ; 000000c0H
 cmp ebp, esp
 call __RTC_CheckEsp
 mov esp, ebp
 pop ebp
 ret 0

_wmain ENDP

54

• Plataforma x86 Release.

; COMDAT _wmain
_TEXT SEGMENT
_argc$ = 8 ; size = 4
_argv$ = 12 ; size = 4
_wmain PROC ; COMDAT

; 10 : std::cout << "Hello World!!!" << std::endl;

 mov eax, DWORD PTR
__imp_?endl@std@@YAAAV?$basic_ostream@DU?$char_traits@D@std@@@1@AAV21@@Z
 mov ecx, DWORD PTR
__imp_?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A
 push eax
 push ecx
 call
 ??$?6U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?$char_traits@D
@std@@@0@AAV10@PBD@Z ; std::operator<<<std::char_traits<char> >
 add esp, 4
 mov ecx, eax
 call DWORD PTR
__imp_??6?$basic_ostream@DU?$char_traits@D@std@@@std@@QAEAAV01@P6AAAV01@AAV01@
@Z@Z

; 11 : return 0;

 xor eax, eax

; 12 : }

 ret 0

_wmain ENDP

• Plataforma x64 Debug.

_TEXT SEGMENT
argc$ = 48
argv$ = 56
wmain PROC

; 9 : {

$LN3:
 mov QWORD PTR [rsp+16], rdx
 mov DWORD PTR [rsp+8], ecx
 push rdi
 sub rsp, 32 ; 00000020H
 mov rdi, rsp
 mov rcx, 8
 mov eax, -858993460 ; ccccccccH
 rep stosd
 mov ecx, DWORD PTR [rsp+48]

; 10 : std::cout << "Hello World!!!" << std::endl;

 lea rdx, OFFSET FLAT:$SG20069
 mov rcx, QWORD PTR
__imp_?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A
 call
 ??$?6U?$char_traits@D@std@@@std@@YAAEAV?$basic_ostream@DU?$char_traits@
D@std@@@0@AEAV10@PEBD@Z ; std::operator<<<std::char_traits<char> >
 mov rdx, QWORD PTR
__imp_?endl@std@@YAAEAV?$basic_ostream@DU?$char_traits@D@std@@@1@AEAV21@@Z
 mov rcx, rax
 call QWORD PTR
__imp_??6?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV01@P6AAEAV01@AEA
V01@@Z@Z

; 11 : return 0;

 xor eax, eax

55

; 12 : }

 add rsp, 32 ; 00000020H
 pop rdi
 ret 0
wmain ENDP

• Plataforma x64 Release.

; COMDAT wmain
_TEXT SEGMENT
argc$ = 48
argv$ = 56
wmain PROC ; COMDAT

; 9 : {

$LN3:
 sub rsp, 40 ; 00000028H

; 10 : std::cout << "Hello World!!!" << std::endl;

 mov rcx, QWORD PTR
__imp_?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A
 lea rdx, OFFSET FLAT:??_C@_0P@MKFFDJMN@Hello?5World?$CB?$CB?$CB?$AA@
 call
 ??$?6U?$char_traits@D@std@@@std@@YAAEAV?$basic_ostream@DU?$char_traits@
D@std@@@0@AEAV10@PEBD@Z ; std::operator<<<std::char_traits<char> >
 mov rdx, QWORD PTR
__imp_?endl@std@@YAAEAV?$basic_ostream@DU?$char_traits@D@std@@@1@AEAV21@@Z
 mov rcx, rax
 call QWORD PTR
__imp_??6?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV01@P6AAEAV01@AEA
V01@@Z@Z

; 11 : return 0;

 xor eax, eax

; 12 : }

 add rsp, 40 ; 00000028H
 ret 0
wmain ENDP

56

ANEXO 2:

WINDOWS 32 BITS ON WINDOWS 64 BITS

 Como ya hemos dicho antes, WOW64 es un subsistema de Windows que
permite ejecutar procesos de 32 bits en un entorno de Windows 64 bits.

 Cuando se lanza una aplicación de 32 bits, lo primero que se ejecuta es el
lanzador nativo de librerías. Este reconoce que es un proceso de 32 bits y lo trata de
una manera especial. Se configura un entorno de emulación WOW64 para los
procesos de 32 bits y se transfiere el control al cargador de 32 bits, en Ntdll.dll.

 La capa de emulación de WOW64 se ejecuta entre la aplicación de 32 bits y la
dll de 64 bits Ntdll.dll y traduce las llamadas de la aplicación a Ntdll.dll de 32 bits. a la
Ntdll.dll de 64 bits. Las llamadas de retorno se traducen de forma similar.

 Algunas de las limitaciones de WOW64 son:

• El espacio de direcciones está limitado a 2gB por defecto y 4GB si usamos
/LARGEADDRESSAWARE.

• Un proceso de 32 bits no puede cargar una DLL de 64 bits (excepto para
ciertas DLLs del sistema)

• No se pueden ejecutar procesos de 16 bits.
• El API de la Virtual DOS Machine (VDM) está desactivada.
• Otras limitaciones en arquitecturas Itanium.

 La redirección del registro permite al código de 32 bits acceder a los registros
apropiados en las máquinas de 64 bits. La redirección divide el registro en nodos de
32 y 64 bits.

 La redirección de archivos del sistema permite al código de 32 bits usar
nombres de fichero y rutas que hacen referencia a datos o módulos de 64 bits.

 Muchas veces los desarrolladores escriben en el código directamente las rutas
en sus aplicaciones. Por esto para mantener la compatibilidad de las aplicaciones el
sistema de ficheros de 64 bits se llama todavía Ssytem32.

 Esta redirección esta activada por defecto en WOW64. Para desactivarla se
puede usar la función Wow64DisableWow64FsRedirection(). Para volver a
activarla hay que usar la función Wow64RevertWow64FsRedirection(). Esto sólo
se aplica al hilo que hace la llamada a la función.

 Si usamos DLLs que ambos clientes (32 y 64 bits) necesitan, hay que manejar
las referencias a las DLLs para asegurar que no se usa la versión correcta.

 Podemos usar una tecnología como COM que automáticamente las une.

57

 Dejar las DLLs en una carpeta y añadir esa ruta a la variable de entorno
PATH. Como norma general hay que nombrar las DLLs de 32 y 64 bits. Si las
nombramos igual, debemos ponerlas en un directorio distinto cada una. Para 64 bits
es: C:\Windows\System32\Dll.dll y C:\Windows\Syswow64\Dll.dll para
32 bits.

58

ANEXO 3:

RESULTADOS DE LA COMPILACIÓN IPP 6.1 (X64)

 Esta es la salida producida por las IPP versión 6.1 al ser compiladas para 64
bits con Visual Studio 2008.

Compiling...
umc_mp4_parser_w.cpp
.\src\codec\mpeg4_mux\umc_mp4_parser_w.cpp(309) : warning C4267:
'=' : conversion from 'size_t' to 'Ipp32s', possible loss of data

umc_mp4_mux_atoms.cpp
.\src\codec\mpeg4_mux\umc_mp4_mux_atoms.cpp(738) : warning C4267:
'=' : conversion from 'size_t' to 'Ipp32s', possible loss of data
.\src\codec\mpeg4_mux\umc_mp4_mux_atoms.cpp(742) : warning C4244:
'=' : conversion from '__int64' to 'Ipp32s', possible loss of data
.\src\codec\mpeg4_mux\umc_mp4_mux_atoms.cpp(799) : warning C4267:
'=' : conversion from 'size_t' to 'Ipp32u', possible loss of data
.\src\codec\mpeg4_mux\umc_mp4_mux_atoms.cpp(837) : warning C4244:
'=' : conversion from '__int64' to 'Ipp32s', possible loss of data

..........................

umc_video_resizing.cpp
.\src\codec\color_space_converter\umc_video_resizing.cpp(81) :
warning C4267: 'argument' : conversion from 'size_t' to 'int',
possible loss of data
.\src\codec\color_space_converter\umc_video_resizing.cpp(81) :
warning C4267: 'argument' : conversion from 'size_t' to 'int',
possible loss of data
.\src\codec\color_space_converter\umc_video_resizing.cpp(97) :
warning C4267: 'argument' : conversion from 'size_t' to 'int',
possible loss of data

 Podemos ver en las sentencias subrayadas en Amarillo como el warning es
todo el rato el mismo, la conversión de un tipo de 64-bits como pueden ser size_t o
__int64 a tipos de 32-bits como Ipp32s o int, produce una pérdida de datos ya que el
tamaño de destino es menor que el de origen. Para ellos habrá que cambiar los tipos
de 32 bits para que sean del tamaño de la arquitectura. De esta forma evitaremos
estos problemas que pueden hacer que la aplicación falle por completo.

 El mayor problema reside en lo tedioso que puede resultar el cambio de los
tipos implicados. Esto es debido a que el cambio de un tipo de dato, puede hacer que
aparezcan nuevos problemas en ficheros que hasta ahora parecían correctos, por lo
que no podemos hacernos una idea exacta del tiempo que puede llevarnos, ya que se

59

pueden ir generando nuevos errores conforme avanzamos en el proceso de cambio de
los tipos para que todo funcione correctamente.

60

ANEXO 4:

MEJORAS POR EL USO DE LA LIBRERÍA IPP

 Además de las funciones que se describen en el proyecto pertenecientes a las
IPP, estas ofrecen también una reescritura de las funciones del sistema más comunes.
Debido a la optimización que realiza Intel sobre todas las funciones incluidas en su
librería IPP, podemos esperar que estas funciones también estén optimizadas y por
tanto, ofrezcan mejor rendimiento que las que estamos acostumbrados a usar
normalmente. Las funciones del sistema optimizadas por Intel son:

• Funciones para el manejo de hilos: create(), wait(),
set_priority(), close(), …

• Funciones para el manejo de sockets: select(), next(), create(),
accept(), write(), close(), …

• Funciones para el manejo de semáforos y mutex, muy parecidas a las
funciones usadas en los hilos.

• Funciones para el uso de archivos: fseek(), ftell(), fopen(),
fclose(), fread(), fwrite(), fgets(), fputs(), fscanf(),
fprintf(), …

 Tras analizar el comportamiento de nuestra aplicación de prueba, hemos visto
claramente que la operación de escribir a disco los vídeos generados y la operación
de escritura de cada frame en un archivo de imagen bmp, representan la mayoría del
tiempo que usa la aplicación en su ejecución. Por tanto si fuésemos capaces de
optimizar la operación de escritura en fichero, podríamos obtener una mejora global en
el rendimiento de la aplicación que fuese sustancial.

 Para ello hemos probado a cambiar la función con la que escribimos que es:
fwrite(), por su equivalente en la librería de las IPP vm_file_fwrite() y el
resultado ha sido el siguiente.

61

 Como se puede observar en azul tenemos el número de clocks de la CPU
para la llamada fwrite() para cada imagen y en rojo tenemos el número medio que
usaremos para comparar con la versión de las IPP. En la versión que hemos usado la
función de las IPP vm_file_fwrite() que a priori está optimizada, efectivamente
comprobamos que esto es así, podemos apreciar en el color amarillo que refleja lo
mismo que el azul pero para esta función y en la media (en color verde) que es
sustancialmente menor. El SpeedUp conseguido con este cambio tan pequeño es de
1,6. Dado que esta operación se realiza por cada frame del archivo de video que
estamos decodificando, esto supone un ahorro de tiempo considerable a tener muy en
cuenta, y que se puede traducir en la posibilidad de tratar algún video más
simultáneamente.

62

ANEXO 5

WARNINGS PVS-STUDIO

 A continuación se detallan los diferentes tipos de avisos producidos por la
herramienta de análisis estático de código PVS-Studio.
 Para un mayor entendimiento de cada error, se pude acceder a esta URL,
cambiando Code por el código de cada aviso. http://www.viva64.com/en/Code

• V101: El analizador ha detectado un error potencial debido a una conversión
implícita en una operación de asignación. Esto puede resultar en un error al
calcular la expresión de la asignación.

size_t a;
unsigned b;
...
a = b; // V101

• V102: El analizador ha encontrado un posible error en aritmética de punteros.
El error puede ser causado por un overflow al determinar el valor de la
expresión.

short a16, b16, c16;

char *pointer;

...

pointer += a16 * b16 * c16;

• V103: El analizador ha encontrado un posible error relacionado con la
conversión implícita de un tipo del tamaño de la memoria a uno de 32-bits. El
error consiste en la pérdida de los 32 bits más significativos.

size_t Width, Height, FrameCount;

...

unsigned BufferSizeForWrite = Width * Height * FrameCount *
sizeof(RGBStruct);

• V104: El analizador ha encontrado un posible error dentro de una operación
aritmética relacionado con la conversión implícita a un tipo del tamaño de la
memoria.

size_t n;

unsigned i;

// Infinite loop (n > UINT_MAX).

for (i = 0; i != n; ++i) { ... }

63

• V106: El analizador ha encontrado un posible error con una conversión
implícita de un argumento de la función a un tipo del tamaño de la memoria.

CArray<int, int> myArray;

...

int invalidIndex = 0;

INT_PTR validIndex = 0;

while (validIndex != myArray.GetSize()) {

 myArray.SetAt(invalidIndex, 123);

 ++invalidIndex;

 ++validIndex;

}

• V108: El analizador ha encontrado un posible error en la indexación de un
vector, debido al uso de un tipo de tamaño inferior al de la memoria,
provocando que quizás no se pudiese indexar entero.

extern char *longString;

extern bool *isAlnum;

...

unsigned i = 0;

while (*longString) {

 isAlnum[i] = isalnum(*longString++);

 ++i;

}

• V110: El analizador ha encontrado un posible error relacionado con la
conversión implícita del valor devuelto. El error provoca que se pierdan los 32
bits más significativos del valor devuelto de 64 bits.

extern char *begin, *end;

unsigned GetSize() {

 return end - begin;

}

• V111: El analizador ha encontrado un posible error relacionado con la
transferencia de uno de los argumentos del tipo de tamaño de memoria en la
función con un número variable de argumentos. Esto puede provocar que la
función tome como parámetro algo que no lo es, es decir, coja el final o
principio de un argumento como el siguiente debido al cambio de tamaño.

64

const char *invalidFormat = "%u";

size_t value = SIZE_MAX;

printf(invalidFormat, value);

• V112: El analizador ha encontrado el uso de un número mágico. El posible
error puede ser que se use como el tamaño asumido para arquitecturas de 32
bits, y provoque un error debido al cambio de tamaño en arquitecturas de 64
bits.

size_t ArraySize = N * 4;

size_t *Array = (size_t *)malloc(ArraySize);

• V113: El analizador ha encontrado un posible error relacionado con la
conversión implícita de un tipo del tamaño de memoria a un tipo doublé o
viceversa. El posible error consiste en no poder guardar la totalidad del valor en
un tipo double.

SIZE_T size = SIZE_MAX;

double tmp = size;

size = tmp; // x86: size == SIZE_MAX

 // x64: size != SIZE_MAX

• V117: El analizador ha encontrado un posible error relacionado con el uso de
un tipo del tamaño de memoria en una unión. Esto provoca que no se pueda
almacenar todo el dato, ya que el espacio del tipo sin signo es menor que el de
un puntero.

union PtrNumUnion {

 char *m_p;

 unsigned m_n;

} u;

...

u.m_p = str;

u.m_n += delta;

• V119: El analizador ha detectado una expresión aritmética no segura que
contiene varias operaciones sizeof(). Estas expresiones pueden devolver
valores incorrectos debido a que no tienen en cuenta el alineamiento en
estructuras para 64 bits.

65

struct MyBigStruct {

 unsigned m_numberOfPointers;

 void *m_Pointers[1];

};

size_t n2 = 1000;

void *p;

p = malloc(sizeof(unsigned) + n2 * sizeof(void *));

• V121: El analizador ha detectado un error potencial relacionado con la llamada
al operador new. Un valor que no es del tipo del tamaño de la memoria se le
pasa a este operador como argumento. El operador new coge el valor size_t y
pasa un tipo de 32-btis puede provocar un overflow.

unsigned a = 5;

unsigned b = 1024;

unsigned c = 1024;

unsigned d = 1024;

char *ptr = new char[a*b*c*d]; //V121

• V204: Este aviso informa sobre una conversión explícita de un tipo de 32 bits a
uno de 64 bits.

int n;

float *ptr;

...

ptr = (float *)(n);

• V220: Este aviso nos informa sobre una secuencia extraña de conversiones.
Un tipo de 64 bits es convertido a 32 bits para posteriormente volver a
convertirlo a 64 bits. Esto produce una pérdida de los bits más significativos.

char *p1;

char *p2;

ptrdiff_t n;

...

n = int(p1 - p2);

• V302: El analizador ha detectado un error potencial al trabajar con clases que
contiene el operador []. Si el operador es una tipo de 32 bits, esto puede ser un
error ya que no podríamos indexarlo entero.

66

class MyArray {

 std::vector<float> m_arr;

 ...

 float &operator[](int i) //V302

 {

 DoSomething();

 return m_arr[i];

 }

} A;

...

int x = 2000;

int y = 2000;

int z = 2000;

A[x * y * z] = 33;

• V510: En funciones con un número variable de argumentos, sólo tipos de datos
básicos pueden pasarse como argumentos. Estos datos planos son:

1. Todos los tipos aritméticos por defecto (incluyendo wchar_t y bool);
2. Tipos definidos como enum.
3. Punteros.
4. Estructuras de tipos de datos planos o uniones que cumplan lo siguiente:

a. No contener constructores, destructores o asignaciones.
b. No tengan clases base.
c. No contengan funciones virtuales.
d. No contengan miembros privados o protegidos que no sean estáticos.
e. No contengan miembros no estáticos de tipos de datos no básicos y

punteros.

wchar_t buf[100];

std::wstring ws(L"12345");

swprintf(buf, L"%s", ws);

• V512: El analizador ha encontrado un error potencial relacionado con el
llenado, copia o comparación de un buffer de memoria. Este error puede
causar tanto overflow como underflow del buffer.

#define CONT_MAP_MAX 50

int _iContMap[CONT_MAP_MAX];

memset(_iContMap, -1, CONT_MAP_MAX);

67

• V524: Este aviso es generado cuando el analizador detecta dos funciones
implementadas de la misma manera. Esto no es un error, pero sería deseable
que no ocurriese.

class Point

{

 ...

 float GetX() { return m_x; }

 float GetY() { return m_x; }

};

• V547: El analizador ha detectado un error potencial: una condición es siempre
verdadera o falsa. Esto no siempre es un error, pero es conveniente revisar la
lógica del programa para comprobarlo.

LRESULT CALLBACK GridProc(HWND hWnd,

 UINT message, WPARAM wParam, LPARAM lParam)

{

 ...

 if (wParam<0)

 {

 BGHS[SelfIndex].rows = 0;

 }

 else

 {

 BGHS[SelfIndex].rows = MAX_ROWS;

 }

 ...

}

• V550: El analizador ha detectado un error potencial en una operación de
comparación == o !=, usada con número en coma flotante. Estas
comparaciones pueden provocar errores. Es preferible usar una expresión del
tipo (A-B) > Epsilon.

68

double a = 0.5;

if (a == 0.5) //OK

 x++;

double b = sin(M_PI / 6.0);

if (b == 0.5) //ERROR

 x++;

• V576: El analizador ha detectado un error potencial con las funciones
(printf(), sprint(), etc.)

int A = 10;

double B = 20.0;

printf("%i %i\n", A, B);

• V595: El analizador ha detectado un error potencial que puede causar la
pérdida de la referencia de un puntero igual a NULL.

buf = Foo();

pos = buf->pos;

if (!buf) return -1;

• V601: El analizador ha detectado una conversión implícita rara. Este tipo de
conversión puede ser una señal de código mal escrito.

std::string str;

bool bstr;

...

str = true;

• V628: El analizador ha detectado un error potencial. Dos if seguidos pueden
indicar que uno de ellos debería comentarse, sino la lógica del programa
podría verse alterada.

if(!hwndTasEdit)

//hwndTasEdit = getTask()

if(hwndTasEdit)

{

 ...

}

69

• V803: El analizador ha detectado una construcción que puede ser optimizada.
Un iterador que se cambia con la operación posfija, ya que no se usa el
elemento anterior, se puede usar la operación infija que es más efectiva.

std::vector<size_t>::const_iterator it;

for (it = a.begin(); it != a.end(); it++)

{ ... }

• V807: el analizador ha detectado un código que puede ser optimizado. El
código contiene mensajes homogéneos para accede al mismo objeto.

Some->getFoo()->doIt1();

Some->getFoo()->doIt2();

Some->getFoo()->doIt3();

• V808: El analizador ha detectado código que puede se simplificado. Una
función que contiene variables locales que no se usan en ningún sitio.

void Foo()

{

 int A[100];

 string B[100];

 DoSomething(A);

}

• V808: El analizador ha detectado código que puede se simplificado. Una
función que contiene variables locales que no se usan en ningún sitio.

if (pointer != 0)

 delete pointer;

70

ANEXO 6:

TABLA LIBRERÍAS APLICACIÓN VISONSURFER

 Tabla con las librerías usadas, su versión y disponibilidad para 32/64 bits y
Windows/Linux:

Librería
Versión
actual

Versión más
reciente

x86 x64 Windows Linux

ACE 5.7.1.1 (5.7.1) 6.1.0 X X X X

Cryptopp 5.6.0 5.6.1 X X X
X

(libcryptopp)

ZLib 1.2.3 1.2.7 X X X X

Xercesc 3.0.1 3.1.1 X X X X

IPP 6.1.3.047 7.1.1 X X X X

Boost 1.40.0 1.52.0 X X X X

avifile 1.0.0.7 1.0.0.7 X X X X

IPPMedia 2.2.0 ??? (IPP 7.1) X X X X

ijl 2.0 2.0 X ? X

SDL 1.2.14 1.2.15 X X X X

SQLite 3.6.23 3.7.15.2 X X X X

MySQL
3.23 (5.1
Ubuntu)

5.5.29 X X X X

71

ANEXO 7:

HERRAMIENTAS DE ANALISIS DE INTEL

Intel Composer XE

 Con la librería de las IPP (Integrated Performance Primitives)
contenidas en la suite Composer XE (Windows y Linux), vienen una herramientas
para el análisis de código que son: Advisor XE, Inspector XE y VTune
Amplifier XE. Estas herramientas durante su instalación quedan integradas en
Visual Studio en Windows, pero también se pueden usar por separado en ambos
sistemas. Sirven para los lenguajes C++, C#y Fortran, en nuestro caso nos
centraremos en C++ que es el que usamos.

 Para todas las herramientas es recomendable hacer el análisis para la versión
Debug ya que nos permitirá acceder a más información sobre los problemas que nos
indique, salvo que se diga que es mejor en Release.

VTune Amplifier XE

 Esta herramienta hay que ejecutarla con permisos de administrador del sistema
para poder realizar todos los análisis que ofrece. Estos análisis nos dan datos de muy
bajo nivel, como pueden ser los puntos que más tiempo están en ejecución,
sincronización y concurrencia entre hilos. Estas son comunes a todas las arquitecturas,
pero también ofrece otras medidas especificas de cada arquitectura como pueden ser:
acceso a la memoria, ancho de banda de memoria y número de ciclos.

72

 Si sobre un ejemplo que contiene un deadlock ejecutamos el análisis de
Locks and Waits, obtenemos el siguiente resultado:

 Otra de las medidas que podemos obtener con esta herramienta son los
Hotspots, o sitios donde más tiempo está el programa ejecutándose, para un
ejemplo que renderiza y muestra una imagen este análisis nos ha dado el siguiente
resultado:

73

Observamos que en la función más costosa es render_one_pixel(),
puesto que se ejecuta para cada pixel de la imagen. Esta sería la función que
deberíamos mejorar si queremos obtener una mejora sustancial en el rendimiento de
nuestro programa, ya que al ser la que más tiempo lleva, una pequeña mejora aquí
sería más efectiva que una gran mejora en otra función que no use tanto tiempo.

 Por otro lado observamos que la función next_frame() tiene un tiempo de
sobrecarga casi igual al total del tiempo que tarda en realizarse, esto es debido a que
se accede desde todos los hilos y no hemos protegido la variable que hay en la
función (g_updates) con un mutex, por lo que aparecen problemas de sincronización
con esta variable llevándonos a una sobrecarga de tiempo grande.

El resto de tipos de análisis diferentes que ofrece quizás no nos interesen tanto a nivel
general, ya que dan información muy detallada de por ejemplo: accesos a memoria,
tiempo de accesos a memoria, ciclos de CPU, etc.

74

Inspector XE

 Esta es otra de las herramientas que tenemos a nuestra disposición. En esta
herramienta básicamente se pueden hacer dos tipos de análisis, de fugas y otros
problemas de memoria y problemas con los hilos como pueden ser condiciones de
carrera y deadlocks.

 Hemos realizado el análisis de problemas de memoria con el ejemplo anterior
del programa que renderiza y muestra una imagen, estos son los resultados que nos
ha dado:

 Vemos que el problema aquí es que reservamos espacio para la variable name,
pero nunca lo liberamos, la solución sería hacer un dealloc() de la memoria
asignada a name justo antes de salir del programa para liberar la memoria.

75

El otro tipo de análisis que podemos hacer con esta herramienta es el
relacionado con los hilos y sus posibles problemas como pueden ser las condiciones
de carrera por algún recurso o los deadlocks. Estos son los resultados del análisis
para el mismo ejemplo:

El resultado es que tenemos un problema con el recurso g_updates. Este
error es el que hemos visto anteriormente con la sobrecarga de la función
next_frame(), que por dentro usa este recurso. La solución es usar un mutex para
acceder a la variable, de esta manera los procesos se organizan para acceder cada
uno a su tiempo y no se produce tanta sobrecarga en esperar.

Advisor XE

 Esta es la tercera y última herramienta. Esta herramienta se usa básicamente
para detectar partes del código que se pueden paralelizar aprovechando los recursos
que nos ofrecen los procesadores modernos con cada vez más capacidad de
procesamiento en paralelo.

 El proceso a seguir es compilar al aplicación que queremos analizar en
Release, y con las siguientes opciones en el proyecto activadas:

• C++ → General → Debug Information Format: Program Database (/Zi)
• C++ → Optimization → Optimization: Maximize speed (/O2) | Inline Function

Expansion: Only __inline (/Ob1) | Enable Intrinsic Functions: No
• C++ → Code Generation → Runtime Library: Multi-threaded DLL (/MD)
• Linker → Debugging → Generate Debug Info: Yes (/DEBUG)

76

 El proceso de análisis tiene cinco fases bien diferenciadas.

 La primera consiste en recoger información sobre el programa para poder ver
que partes del código son buenas candidatas para paralelizar. El resultado de este
análisis para el ejemplo de la imagen es:

En la pestaña del análisis se nos muestra los bucles más importantes y el
tiempo de cada uno, así como la línea de código donde se encuentra cada uno. Con
esto podemos ir a cada bucle y poner unas instrucciones especiales que requieren
incluir: #include <advisor-annotate.h> y que se encuentra en la carpeta
donde se instala el programa en el directorio include.

Las anotaciones que podemos hacer para el parallel_thread() son:

static void parallel_thread (void)
{
 ANNOTATE_SITE_BEGIN(allRows);
 for (int y = starty; y < stopy; y++)
 {
 ANNOTATE_TASK_BEGIN(eachRow);
 // Instrucciones
 ANNOTATE_TASK_END(eachRow);
 }
 ANNOTATE_SITE_END(allRows);

}

 Para hacer estas anotaciones, seleccionamos el bucle y hacemos click derecho
→ Intel Advisor XE 2013 → Annotate Site, y para las instrucciones Annotate Task y les
damos un nombre a cada uno. Haríamos lo mismo para los demás bucles.

 La segunda fase es ver las anotaciones que hemos hecho en la fase 1 y

77

asegurarnos que están todas correctas y que hemos incluido la cabecera necesaria
para que el programa las detecte y podamos así avanzar a la siguiente fase.

En nuestro caso solo hemos hecho anotaciones en el bucle
parallel_thread(), los demás los hemos dejado pero podríamos haberlos incluido
también.

 La tercera fase nos dice, ayudándose en las anotaciones que hemos hecho,
que podríamos interpretar como intenciones de paralelización que tenemos, la
ganancia que obtendríamos por hacer lo que pone en las anotaciones para diversos
números de núcleos, métodos de sincronización, etc.

 Este es un ejemplo muy paralelizable, y podemos observar que para 8 núcleos
paralelizando el bucle que hemos anotado en la fase anterior, podríamos llegar a
obtener una ganancia de 7,87 o sea de casi 8 veces más rápido. Llegando a ser de
29,22 para 32 núcleos, lo que nos indica que en este caso aprovecharíamos todos los
núcleos que pudiésemos tener disponibles para ejecutar nuestra aplicación.

 La cuarta fase también hay que hacerla en Debug, y nos informa si los cambios

78

introducidos por la anotaciones que hemos hecho nos llevarían a problemas
relacionados con compartir datos entre procesos.

 Vuelve a indicarnos el problema con la variable g_updates que ya hemos
visto antes y luego nos dice también que hay problemas con la variable global
m_storage, que es usada en el bucle parallel_thread() y que cuando se
paraleliza cada ejecución accede a la misma variable sin restricciones, la solución es
declarar esa variable local al bucle ya que no la usamos fuera y de esta manera ya no
ocurre este problema.

79

 La quinta y última fase consiste en sustituir las anotaciones por código que de
verdad se ejecute en paralelo, mutex que realmente hagan el acceso exclusivo a las
variables, etc. Esto es un proceso que debemos hacer por nuestra cuenta y en el que
el programa no puede ayudarnos. Lo que sí que tenemos son unos enlaces a distintos
métodos para hacer este cambio y enlaces a cada uno de los tipos para aprender a
usarlos si no sabemos.

 La documentación se encuentra en:
Composer_XE_2013/documentation/en/tutorials/C++/index.htm

80

ANEXO 8:

TABLAS PRUEBAS RENDIMIENTO
SCATIRTPVIDEOCLIENT

H264

Sin activar ninguna opción del cliente de vídeo.

32/64 bits PC Códec Resolución Cámaras FPS totales FPS cámara Bitrate total Bitrate cámara CPU total CPU cámara Memoria total Memoria cámara
64 Celeron E3400 2.60GHz H.264 4CIF 4 59,86 14,965 434,9 108,725 90 22,5 78 19,5
64 Celeron E3400 2.60GHz H.264 4CIF 8 63,05 7,88125 458,2 57,275 93 11,625 146 18,25
64 Celeron E3400 2.60GHz H.264 4CIF 16 61,94 3,87125 456,7 28,54375 95 5,9375 281 17,5625
64 Celeron E3400 2.60GHz H.264 1MP 4 18,19 4,5475 895,1 223,775 92 23 204 51
64 Celeron E3400 2.60GHz H.264 1MP 8 12,53 1,56625 656,6 82,075 94 11,75 387 48,375
64 Celeron E3400 2.60GHz H.264 5MP 4 6,06 1,515 748 187 86 21,5 708 177
64 Celeron E3400 2.60GHz H.264 5MP 8 6,2 0,775 904,1 113,0125 90 11,25 1340 167,5
32 Celeron E3400 2.60GHz H.264 4CIF 4 58,55 14,6375 427,7 106,925 93 23,25 76 19
32 Celeron E3400 2.60GHz H.264 4CIF 8 59,01 7,37625 431,4 53,925 93 11,625 144 18
32 Celeron E3400 2.60GHz H.264 4CIF 16 60,12 3,7575 431,7 26,98125 96 6 278 17,375
32 Celeron E3400 2.60GHz H.264 1MP 4 18,39 4,5975 918,6 229,65 95 23,75 198 49,5
32 Celeron E3400 2.60GHz H.264 1MP 8 18,26 2,2825 898,9 112,3625 95 11,875 384 48
32 Celeron E3400 2.60GHz H.264 5MP 4 5,57 1,3925 741,8 185,45 94 23,5 708 177
32 Celeron E3400 2.60GHz H.264 5MP 8 5,76 0,72 749,9 93,7375 98 12,25 1405 175,625

Descomprimiendo sólo los keyframes.

64 Celeron E3400 2.60GHz H.264 4CIF 4 99,42 24,855 719 179,75 8 2 75 18,75
64 Celeron E3400 2.60GHz H.264 4CIF 8 199,83 24,97875 1455 181,875 16 2 141 17,625
64 Celeron E3400 2.60GHz H.264 4CIF 16 400,89 25,055625 2923 182,6875 35 2,1875 275 17,1875
64 Celeron E3400 2.60GHz H.264 4CIF 32 800,2 25,00625 5839,7 182,490625 70 2,1875 541 16,90625
64 Celeron E3400 2.60GHz H.264 4CIF 64 932,63 14,5723438 6622,6 103,478125 74 1,15625 1070 16,71875
64 Celeron E3400 2.60GHz H.264 1MP 4 99,69 24,9225 4906,5 1226,625 53 13,25 196 49
64 Celeron E3400 2.60GHz H.264 1MP 8 161 20,125 7885,9 985,7375 82 10,25 382 47,75
64 Celeron E3400 2.60GHz H.264 1MP 16 153 9,5625 7522,1 470,13125 82 5,125 751 46,9375
64 Celeron E3400 2.60GHz H.264 1MP 32 153,4 4,79375 7538,8 235,5875 88 2,75 1478 46,1875
64 Celeron E3400 2.60GHz H.264 5MP 4 50,08 12,52 6442,9 1610,725 86 21,5 710 177,5
64 Celeron E3400 2.60GHz H.264 5MP 8 50,71 6,33875 6537,5 817,1875 90 11,25 1400 175
32 Celeron E3400 2.60GHz H.264 4CIF 4 99,79 24,9475 726,3 181,575 8 2 74 18,5
32 Celeron E3400 2.60GHz H.264 4CIF 8 198,99 24,87375 1448,8 181,1 19 2,375 142 17,75
32 Celeron E3400 2.60GHz H.264 4CIF 16 398,72 24,92 2885,5 180,34375 36 2,25 275 17,1875
32 Celeron E3400 2.60GHz H.264 4CIF 32 799,35 24,9796875 5833,1 182,284375 75 2,34375 542 16,9375
32 Celeron E3400 2.60GHz H.264 4CIF 64 883,33 13,8020313 6414,9 100,2328125 86 1,34375 1071 16,734375
32 Celeron E3400 2.60GHz H.264 1MP 4 99,57 24,8925 4900,6 1225,15 50 12,5 192 48
32 Celeron E3400 2.60GHz H.264 1MP 8 108,29 13,53625 5311,7 663,9625 60 7,5 378 47,25
32 Celeron E3400 2.60GHz H.264 1MP 16 140,76 8,7975 6931,2 433,2 76 4,75 747 46,6875
32 Celeron E3400 2.60GHz H.264 5MP 4 99,96 24,99 4922,9 1230,725 50 12,5 795 198,75
32 Celeron E3400 2.60GHz H.264 5MP 8 65,23 8,15375 8527,4 1065,925 80 10 1410 176,25

81

Sin opciones seleccionada en el cliente

Comparación FPS versión de 64-bits (arriba.) y 32-bits (abajo) son
prácticamente iguales.

Sólo teniendo en cuenta los keyframes.

Resultan casi idénticos los resultados entre las versiones de 32-bits (abajo) y

64-bits (arriba) pero son valores muy superiores a los anteriores como cabría esperar.

MPEG4

Sin activar ninguna opción del cliente de vídeo.

32/64 bits PC Códec Resolución Cámaras FPS totales FPS cámara Bitrate total Bitrate cámara CPU total CPU cámara Memoria total Memoria cámara
64 Celeron E3400 2.60GHz MPEG4 4CIF 4 98,62 24,655 628,5 157,125 53 13,25 33 8,25
64 Celeron E3400 2.60GHz MPEG4 4CIF 8 154,52 19,315 996,8 124,6 88 11 61 7,625
64 Celeron E3400 2.60GHz MPEG4 4CIF 16 155,49 9,718125 935,3 58,45625 90 5,625 111 6,9375
64 Celeron E3400 2.60GHz MPEG4 4CIF 32 159,02 4,969375 982,6 30,70625 93 2,90625 208 6,5
64 Celeron E3400 2.60GHz MPEG4 4CIF 64 147,72 2,308125 1201,4 18,771875 90 1,40625 406 6,34375
64 Celeron E3400 2.60GHz MPEG4 1MP 4 48,43 12,1075 778,3 194,575 87 21,75 82 20,5
64 Celeron E3400 2.60GHz MPEG4 1MP 8 54,48 6,81 860 107,5 88 11 152 19
64 Celeron E3400 2.60GHz MPEG4 5MP 4 12,3 3,075 1321,7 330,425 94 23,5 290 72,5
64 Celeron E3400 2.60GHz MPEG4 5MP 8 13,06 1,6325 1438,2 179,775 96 12 575 71,875
32 Celeron E3400 2.60GHz MPEG4 4CIF 4 98,93 24,7325 635,5 158,875 60 15 51 12,75
32 Celeron E3400 2.60GHz MPEG4 4CIF 8 155,13 19,39125 1012,2 126,525 90 11,25 77 9,625
32 Celeron E3400 2.60GHz MPEG4 4CIF 16 149,62 9,35125 1010,9 63,18125 90 5,625 130 8,125
32 Celeron E3400 2.60GHz MPEG4 4CIF 32 156,84 4,90125 952,5 29,765625 94 2,9375 235 7,34375
32 Celeron E3400 2.60GHz MPEG4 1MP 4 49,28 12,32 791,5 197,875 89 22,25 93 23,25
32 Celeron E3400 2.60GHz MPEG4 1MP 8 51,61 6,45125 814,8 101,85 91 11,375 167 20,875
32 Celeron E3400 2.60GHz MPEG4 5MP 4 12,53 3,1325 1379,9 344,975 95 23,75 307 76,75

82

Descomprimiendo sólo los keyframes.

64 Celeron E3400 2.60GHz MPEG4 4CIF 4 99,69 24,9225 649,6 162,4 4 1 32 8
64 Celeron E3400 2.60GHz MPEG4 4CIF 8 197,98 24,7475 1247,2 155,9 7 0,875 57 7,125
64 Celeron E3400 2.60GHz MPEG4 4CIF 16 399,83 24,989375 2562,6 160,1625 15 0,9375 108 6,75
64 Celeron E3400 2.60GHz MPEG4 4CIF 32 806,81 25,2128125 5185,3 162,040625 33 1,03125 207 6,46875
64 Celeron E3400 2.60GHz MPEG4 4CIF 64 1617,11 25,2673438 10504,4 164,13125 63 0,984375 401 6,265625
64 Celeron E3400 2.60GHz MPEG4 4CIF 100 1600,54 16,0054 10347,4 103,474 70 0,7 622 6,22
64 Celeron E3400 2.60GHz MPEG4 1MP 4 99,25 24,8125 1592,9 398,225 15 3,75 83 20,75
64 Celeron E3400 2.60GHz MPEG4 1MP 8 199,57 24,94625 3195,9 399,4875 32 4 151 18,875
64 Celeron E3400 2.60GHz MPEG4 1MP 16 398,21 24,888125 6381,7 398,85625 62 3,875 292 18,25
64 Celeron E3400 2.60GHz MPEG4 1MP 32 516,12 16,12875 8285,9 258,934375 75 2,34375 573 17,90625
64 Celeron E3400 2.60GHz MPEG4 1MP 64 455,28 7,11375 7327,4 114,490625 88 1,375 1019 15,921875
64 Celeron E3400 2.60GHz MPEG4 5MP 4 24,22 6,055 3435,5 858,875 83 20,75 294 73,5
64 Celeron E3400 2.60GHz MPEG4 5MP 8 24,26 3,0325 3436,5 429,5625 89 11,125 575 71,875
64 Celeron E3400 2.60GHz MPEG4 5MP 16 80,9 5,05625 8775,4 548,4625 91 5,6875 1135 70,9375
32 Celeron E3400 2.60GHz MPEG4 4CIF 4 99,81 24,9525 629,5 157,375 3 0,75 48 12
32 Celeron E3400 2.60GHz MPEG4 4CIF 8 199,63 24,95375 1292,8 161,6 9 1,125 75 9,375
32 Celeron E3400 2.60GHz MPEG4 4CIF 16 401,39 25,086875 2595,5 162,21875 19 1,1875 128 8
32 Celeron E3400 2.60GHz MPEG4 4CIF 32 796,4 24,8875 5189,5 162,171875 40 1,25 232 7,25
32 Celeron E3400 2.60GHz MPEG4 4CIF 64 1612,84 25,200625 10501,2 164,08125 68 1,0625 437 6,828125
32 Celeron E3400 2.60GHz MPEG4 4CIF 100 1537,31 15,3731 9873,5 98,735 79 0,79 665 6,65
32 Celeron E3400 2.60GHz MPEG4 1MP 4 99,68 24,92 1597,5 399,375 17 4,25 92 23
32 Celeron E3400 2.60GHz MPEG4 1MP 8 202,07 25,25875 3247,1 405,8875 31 3,875 165 20,625
32 Celeron E3400 2.60GHz MPEG4 1MP 16 398,58 24,91125 6384,7 399,04375 64 4 307 19,1875
32 Celeron E3400 2.60GHz MPEG4 1MP 32 487,61 15,2378125 7882 246,3125 80 2,5 590 18,4375
32 Celeron E3400 2.60GHz MPEG4 1MP 64 510,43 7,97546875 8117,3 126,8328125 85 1,328125 1149 17,953125
32 Celeron E3400 2.60GHz MPEG4 5MP 4 77,29 19,3225 8339,4 2084,85 82 20,5 306 76,5
32 Celeron E3400 2.60GHz MPEG4 5MP 8 76 9,5 8168,1 1021,0125 81 10,125 574 71,75
32 Celeron E3400 2.60GHz MPEG4 5MP 16 79,67 4,979375 8621,5 538,84375 91 5,6875 1122 70,125

Los resultados son mejores que para H264 como era de esperar, puesto que el

códec h264 ofrece un tamaño menor al comprimir, lo que hace que se necesiten más
recursos a la hora de realizar la compresión.

Sin opciones seleccionada en el cliente

Comparación FPS versión de 64-bits (arriba.) y 32-bits (abajo) son
prácticamente iguales.

Sólo teniendo en cuenta los keyframes.

Resultan casi idénticos los resultados entre las versiones de 32-bits (abajo) y
64-bits (arriba) pero son valores muy superiores a los anteriores como cabría esperar.

83

84

BIBLIOGRAFIA

[1] Microsoft, Best Practices for WOW64.
[2] Bill Graham y Edwin Verplanke, Optimizing Intel Multi-core Embedded Platforms,
Intel Corporation.
[3] Agner Fog, Optimizing software in C++. An optimization guide for Windows, Linux
and Mac platforms, Copenhagen University College of Engineering.
[4] Intel Integrated Performance Primitives for Windows OS, Intel Software
Development Products.
[5] Intel Integrated Performance Primitivesreference manual, Volume 2: Image and
Video Processing, Intel Software Development Products.
[6] Quick-Reference Guide to Optimization with Intel Compilers version 10.x, Intel
Software Development Products.
[7] " http://software.intel.com/en-us/articles. Web site que contiene artículos
relacionados con las arquitecturas de Intel".
[8] " http://blogs.msdn.com. Blog de Microsoft que contiene explicaciones sobre las
distintas opciones disponibles en Visual Studio 2008 C++".
[9] " http://msdn.microsoft.com/en-us/library. Web site con artículos relacionados con
la compilación y opciones de las herramientas de desarrollo de Microsoft".
[10] " http://www.codemachine.com/article_x64deepdive.html. Artículo sobre los
problemas más comunes a la hora de realizar una migración a 64 bits".
[11] " http://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/. Artículo
que describe la estructura y uso de la pila en arquitecturas de 64 bits".
[12] " http://mark.masmcode.com/. Artículo con consejos a la hora de optimizar código
ensamblador, Mark Larson".
[13] " http://graphics.stanford.edu/~seander/bithacks.html. Trucos para mejorar el
rendimiento en operaciones con bits, Sean Eron Anderson, Stanford University".
[14] " http://www.gamedev.net/page/resources/_/technical/general-programming/100-
bugs-in-open-source-cc-projects-r2886. 100 ejemplos de problemas a la hora de migrar
un aplicación de 32 a 64 bits en código abierto, Andrey Karpov".
[15] " http://www.tantalon.com/pete/cppopt/final.htm. Web site que describe posibles
optimizaciones, Pete Isensee".
[16] " http://www.viva64.com/. Web site donde se puede obtener el analizador estático
utilizado para el análisis de código, además contiene muchos artículos relacionados con
el tema, Evgeniy Ryzhkov y Andrey Karpov"

85

	portada
	memoria
	2.1. Primer contacto
	Al igual que hacemos cuando empezamos a programa en un lenguaje nuevo, para tener una primera aproximación a lo que puede significar el cambio de 32 a 64 bits en nuestra aplicación, hemos compilado el programa más conocido: Hello World en C++ tanto p...
	El enlazado en Windows de las librerías por defecto de C++ es dinámico, y no puede realizarse de manera estática. Aunque si podemos enlazar estáticamente librerías no estándar de C++ o Windows.
	El código ensamblador ha sido generado con: Listing generated by Microsoft (R) Optimizing Compiler Version 15.00.21022.08 .
	2.2. Mejoras al compilar para 64 bits
	2.2.1. Windows
	Tal y como podemos ver en la tabla anterior, hay que especificar el Flag LOAD_LIBRARY_AS_DATAFILE cuando se llama a LoadLibraryEx().
	2.2.2. Linux
	2.3. Otras formas de mejorar el rendimiento
	2.4. Estimación en coste de la migración
	2.5. Guía de buenas prácticas
	2.5.1. Ejemplos
	Warning GA (General Analysis)
	Otros Warnings

