000106147 001__ 106147
000106147 005__ 20210902121809.0
000106147 0247_ $$2doi$$a10.1016/j.apenergy.2020.115115
000106147 0248_ $$2sideral$$a118135
000106147 037__ $$aART-2020-118135
000106147 041__ $$aeng
000106147 100__ $$0(orcid)0000-0001-8350-6485$$aPina, Eduardo A.$$uUniversidad de Zaragoza
000106147 245__ $$aTackling thermal integration in the synthesis of polygeneration systems for buildings
000106147 260__ $$c2020
000106147 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106147 5203_ $$aA novel methodology is proposed for the synthesis of polygeneration systems in tertiary sector buildings with detailed thermal integration. The methodology involves a systematic approach that combines Pinch Analysis, mathematical programming, and the definition of a superstructure with thermal flexibility whereby mass flows can exchange heat in various temperature intervals. With the detailed characterization of the thermal energy flows associated with the thermal energy technologies and services to be supplied to the building, the optimization procedure provides a more realistic system configuration, ensures that thermodynamic principles are satisfied, and allows for synergies and potential benefits to emerge. The methodology is first introduced through a simple example of a gas engine-based energy system, highlighting the necessity of a detailed characterization of the hot and cold flows regarding their quantity and quality levels. Then, the approach is applied to the case study of a Brazilian university hospital that requires electricity, steam, hot water, and chilled water. The optimization is formulated as a multi-period mixed integer linear programming model that minimizes the total annual cost of installing and operating the system using local-based data. The results show the technical and economic interest of deploying cogeneration gas engines to cover electricity and thermal energy services. Besides, a strong synergy is observed between the cogeneration gas engine and the single-effect absorption chiller. Thus, it is demonstrated how a preliminary analysis of thermal integration opportunities must be an integral part of the optimal synthesis of energy supply systems.
000106147 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA/T55-17R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-87711-R
000106147 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000106147 590__ $$a9.746$$b2020
000106147 591__ $$aENGINEERING, CHEMICAL$$b6 / 143 = 0.042$$c2020$$dQ1$$eT1
000106147 591__ $$aENERGY & FUELS$$b9 / 114 = 0.079$$c2020$$dQ1$$eT1
000106147 592__ $$a3.035$$b2020
000106147 593__ $$aBuilding and Construction$$c2020$$dQ1
000106147 593__ $$aMechanical Engineering$$c2020$$dQ1
000106147 593__ $$aManagement, Monitoring, Policy and Law$$c2020$$dQ1
000106147 593__ $$aEnergy (miscellaneous)$$c2020$$dQ1
000106147 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000106147 700__ $$0(orcid)0000-0002-4411-9834$$aLozano, Miguel A.$$uUniversidad de Zaragoza
000106147 700__ $$aRamos, José C.
000106147 700__ $$0(orcid)0000-0002-5161-7209$$aSerra, Luis M.$$uUniversidad de Zaragoza
000106147 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000106147 773__ $$g269 (2020), 115115 [22 pp]$$pAppl. energy$$tApplied Energy$$x0306-2619
000106147 8564_ $$s1113342$$uhttps://zaguan.unizar.es/record/106147/files/texto_completo.pdf$$yPostprint
000106147 8564_ $$s2290715$$uhttps://zaguan.unizar.es/record/106147/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000106147 909CO $$ooai:zaguan.unizar.es:106147$$particulos$$pdriver
000106147 951__ $$a2021-09-02-09:59:32
000106147 980__ $$aARTICLE