000106151 001__ 106151
000106151 005__ 20230519145354.0
000106151 0247_ $$2doi$$a10.1016/j.cam.2020.113020
000106151 0248_ $$2sideral$$a118598
000106151 037__ $$aART-2021-118598
000106151 041__ $$aeng
000106151 100__ $$0(orcid)0000-0003-2538-9027$$aGracia, José Luis$$uUniversidad de Zaragoza
000106151 245__ $$aA finite difference method for an initial–boundary value problem with a Riemann–Liouville–Caputo spatial fractional derivative
000106151 260__ $$c2021
000106151 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106151 5203_ $$aAn initial–boundary value problem with a Riemann–Liouville–Caputo space fractional derivative of order a¿(1, 2) is considered, where the boundary conditions are reflecting. A fractional Friedrichs’ inequality is derived and is used to prove that the problem approaches a steady-state solution when the source term is zero. The solution of the general problem is approximated using a finite difference scheme defined on a uniform mesh and the error analysis is given in detail for typical solutions which have a weak singularity near the spatial boundary x=0. It is proved that the scheme converges with first order in the maximum norm. Numerical results are given that corroborate our theoretical results for the order of convergence of the difference scheme, the approach of the solution to steady state, and mass conservation.
000106151 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-75139-R
000106151 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000106151 590__ $$a2.872$$b2021
000106151 592__ $$a0.875$$b2021
000106151 594__ $$a5.1$$b2021
000106151 591__ $$aMATHEMATICS, APPLIED$$b37 / 267 = 0.139$$c2021$$dQ1$$eT1
000106151 593__ $$aComputational Mathematics$$c2021$$dQ2
000106151 593__ $$aApplied Mathematics$$c2021$$dQ2
000106151 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000106151 700__ $$aStynes, Martin
000106151 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000106151 773__ $$g381 (2021), 113020 1-14$$pJ. comput. appl. math.$$tJournal of Computational and Applied Mathematics$$x0377-0427
000106151 8564_ $$s1262431$$uhttps://zaguan.unizar.es/record/106151/files/texto_completo.pdf$$yPostprint
000106151 8564_ $$s1334728$$uhttps://zaguan.unizar.es/record/106151/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000106151 909CO $$ooai:zaguan.unizar.es:106151$$particulos$$pdriver
000106151 951__ $$a2023-05-18-13:30:23
000106151 980__ $$aARTICLE