SOLUTIONS OF THE LAPLACIAN FLOW AND COFLOW OF A LOCALLY
CONFORMAL PARALLEL Go-STRUCTURE
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ABSTRACT. We study the Laplacian flow of a Ga-structure where this latter structure is claimed to
be Locally Conformal Parallel. The first examples of long time solutions of this flow with the Locally
Conformal Parallel condition are given. All of the solutions are ancient and Laplacian soliton of shrinking
type. These examples are one-parameter families of Locally Conformal Parallel Ga-structures on rank-
one solvable extensions of six-dimensional nilpotent Lie groups. The found solutions are used to construct
long time solutions to the Laplacian coflow starting from a Locally Conformal Parallel structure. We
also study the behavior of the curvature of the solutions obtaining that for one of the examples the
induced metric is Einstein along all the flow (resp. coflow).
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INTRODUCTION

A Go-structure on a 7-dimensional smooth manifold M is a reduction to the exceptional Lie group Go
of the structure group GL(7,R) of the frame bundle of M. We call Go-manifold a 7-dimensional manifold
endowed with a Ga-structure. The presence of a Go-structure is equivalent to the existence of a globally
defined 3-form ¢, which is called the Go form or the fundamental 3-form and it can be described locally
as

567 135 146 236 245

(1) o = el 4 347 1 57 e e — ™t — e

with respect to some local basis {e!,...,e”} of the 1-forms on M, which we call an adapted basis. The
notation e’ stands for et A --- A e’*. The fundamental 3-form ¢ is stable in the sense that its orbit
at each point p € M under the natural action of the group GL(T,M) is open (see [15]).

The existence of a Gy form ¢ on a manifold M induces a Riemannian metric g, and a volume element
vol, on M related by the formula:

1
(2) 9o(X,Y)vol, = GLXP ALY P AP,
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for any vector fields X,Y on M.

If V denotes the Levi-Civita connection with respect to the induced metric g, Ferndndez and Gray [10]
defined many different Ga-structures in terms of the intrinsic torsion of the Go-structure given by V.
Moreover, it is proved that the intrinsic torsion is completely determined by the exterior derivative of
the Go form ¢ and the 4-form *p, where * denotes the Hodge star operator induced by the metric
and the volume form (2). The most restrictive class of Gg-structures is the one contaning the so called
parallel Go-structures, which are covariantly constant with respect to V. Manifolds endowed with such
structure are characterized by the condition that both ¢ and #¢ are closed. Equivalently, the Ga-form ¢
and the Riemannian holonomy group of the underlying metric g, is a subgroup of G being in addition
Ricci-flat [2].

The development of flows in Riemannian geometry has been mainly motivated by the study of the Ricci
flow. The same techniques are also useful in the study of flows involving other geometrical structures,
like for example, the Kéahler Ricci flow.

Given a closed (or calibrated in the terminology of Harvey and Lawson [14]) Ga-structure ¢o on a
manifold M, that is dgg = 0, Bryant introduced in [3] a natural flow, the so-called Laplacian flow, given
by the initial value problem

where A; is the Hodge Laplacian operator of the metric g, determined by ¢(t). The short time existence
and uniqueness of solution for the Laplacian flow of any closed Ga-structure, on a compact manifold M,
has been proved by Bryant and Xu in the unpublished paper [4]. Also, long time existence and convergence
of the Laplacian flow starting near a torsion-free Ga-structure was proved in the unpublished paper [24]
whenever the torsion of ¢ is sufficiently small. In the last years, Lotay and Wei in [18], [19] and [20] have
obtained many results concerning the properties of the Laplacian flow.

In [7] the first examples of noncompact manifolds with long time existence of the solution for the
Laplacian flow of a closed Gs-structure are shown. Those examples are nilpotent Lie groups admitting
an invariant closed Gg-structure which determines the nilsoliton metric. Recently in [11] the authors
studied the Laplacian flow of a closed Ga-structure on warped products of the form M x S! where the
base space is a 6-dimensional compact manifold endowed with an SU(3)-structure. Impossing the warping
function to be constant they find sufficient conditions for the existence of solution of the Laplacian flow
and present some examples where M is a six-dimensional solvmanifold.

Karigiannis, McKay and Tsui in [16] introduced the Laplacian coflow (or coflow for short). In this
case the initial Ga-form g is claimed to be coclosed (or cocalibrated as in [14]), i.e. diyg = 0, where
o = *pg. The equations of this flow are given by

Lyp(t) = —Awp(t),
dip(t) =0,
¥(0) = o,

with ¥(t) = #;p(t) the Hodge dual 4-form of the Go-structure ¢(t) and A; is the Hodge Laplacian
operator with respect to the metric g, ) induced by ¢(t). Unlike the Laplacian flow, up to now short
time existence of solution of the coflow is not known. Assuming short time existence and uniqueness of
solution, it is shown in [16] that the condition of the initial Go-form g to be coclosed (equiv. g closed)
is preserved along the flow.

In [12] Grigorian introduced a modified version of the Laplacian coflow which is called the modified
Laplacian coflow and proved short time existence and uniqueness of solution for this modified flow.
Recently in [1] explicit solutions for the coflow and the modified Laplacian coflow have been described.
These solutions are one-parameter families of Ga-structures defined on the 7-dimensional Heisenberg Lie
group. The solutions for the coflow are always ancient, i.e., defined for all time —o0 < ¢t < T, with
T < oo, for every initial cocalibrated Go-structure. The condition of the induced metric to be Ricci
soliton is preserved along the coflow. For overviews on these topics, see [13] and [17].
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In this paper we are concerned with studying the Laplacian flow, resp. coflow, on Locally Conformal
Parallel Go-structures, (LCP for short) as they play in some sense an intermediate role between closed
and coclosed Go-structures. LCP Ga-structures are characterized by the fact that at each point p € M,
there is some differentiable function f defined on a local neighbourhood of p such that the underlying
metric g, can be modified locally to a metric § with holonomy a subgroup of Go by means of a conformal
change § = €%/ g,,. Equivalently, the LCP condition is given in terms of the exterior derivatives of ¢ and

xp by:
(3) de=3Tnrnp, dxe =4TA=xp,

with 7 the Lee 1-form. These Ga-structures are of type Xy in the sense of Ferndndez-Gray, see [10].

In order to describe the first examples of solution of these flows we will consider the class of solvable
Lie groups described by Fino and Chiossi in [5] constructed as rank-one solvable extensions of nilpotent
Lie groups admitting left-invariant Locally Conformal Parallel Go-structures.

The paper is structured as follows: in Section 1, we review some explicit examples on Lie groups
solving the Laplacian flow and the Laplacian coflow. This allows us to set a generic ansatz for solving
flows related with Ga-structures on Lie groups which will be useful in the rest of the paper. Section 2 starts
by introducing rank-one solvable extensions of nilpotent Lie groups. We detailed in Proposition 2.1 the list
of Lie algebras found in [5, Theorem 1] underlying the seven dimensional solvable Lie groups constructed
in this way and admitting a left-invariant LCP Ga-structure. The rest of this section deals with exploring
the Laplacian flow under the assumption of solutions defined in Section 1 either setting necessary and
sufficient conditions preserving the LCP condition or describing the Ap(¢) in a suitable form. Sections 3
and 4 are devoted to construct explicit examples of solutions to the Laplacian flow and coflow preserving
the LCP-condition. In Theorem 3.1 we present an explicit solution for the Laplacian flow where the
LCP-condition is preserved, notice that the metric induced by the solution remains Einstein along the
flow. The rest of Section 3 is devoted to obtain solutions for the remaining solvable Lie groups described
by Chiossi and Fino. The solutions of the flow turn out to be Laplacian solitons. In Section 4 we
obtain relations between the sets of solutions of the Laplacian flow and coflow where the LCP-condition
is preserved (see Theorem 4.1). Finally, in the Appendix we include the expressions of the curvature for
the metric induced by the solutions of the Laplacian flow previously obtained.

1. LAPLACIAN FLOWS ON LIE GROUPS

In the last years there has been a wide interest in finding solutions for the Laplacian flow and related
notions have been explored such as new examples with extra properties. In general, flows of Go-structures
are of the form

n { Lo(t) = Avp(t),

p(t) eC,

where A; denotes the corresponding Hodge Laplacian operator, C is a specific class of Ga-structures and
t lives in an open real interval. We will refer to it as C-flow.

The first author considering flows of Ga-structures was Bryant in [3]. The objective of considering
flows of Gy-structures was to obtain examples of Go-manifolds without torsion as the result of certain
evolution of other Go-structures with torsion. Thus, Bryant considered the so-called Laplacian flow of a
Go-structure oo which is given by (4) where ¢(t) is supposed to be closed. On compact manifolds short
time existence and uniqueness of solution for the Laplacian flow of a closed Gs-structure has been proved
by Bryant and Xu in [4]. Xu and Ye in [24] proved long time existence and convergence of solution of
the Laplacian flow starting near a torsion-free Go-structure. In the last years Lotay and Wei in the series
of papers [20, 19, 18] have obtained important results concerning long time existence and convergence of
solutions of the Laplacian flow.

On the other hand, in [16] Karigiannis, McKay and Tsui introduced the Laplacian coflow. This latter
flow can be considered as the analogue to the Laplacian flow in which the fundamental 3-form is claimed
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to be coclosed instead of closed. Thus, this flow is given by the equations

GVt = —Aw(t),
(5) ¥(0) = 9o,
dip(t) = 0,

with ¢(t) = #;¢(t) and *; denoting the Hodge star operator. As far as the authors know, short time
existence and uniqueness of solution for this latter flow is not known. In [12] Grigorian introduced a
modified version of this flow called modified Laplacian coflow for which he proved short time existence
and uniqueness of solution.

1.1. Torsion of Gs-structures. The torsion of a Go-structure can be identified with the covariant
derivative of the fundamental form ¢ with respect to the Levi-Civita connection of the induced metric.
As it is described in [10], it can be decomposed into four Go irreducible components, namely X7, X5, X3
and Xy. Thus, a Go-structure is said to be of type P, &;, X; @ &, X; @ X; @ X, or X if Vo lies in
{0}, X;, Xi ®X,;, X, ®X; ® Xy, or X = X1 ® Xy ® X3 @ Xy, respectively. Hence, there exist 16 different
classes of Go-structures. Some of the principal classes are summarized in Table 1 and Figure 1.

X1

Cocalibrated

Nearly Parallel

Parallel
N

" {Aged X3

e zoﬁ
X 2 X4

FIGURE 1. Principal classes of Ga-structures

Equivalently these classes of Go-structures can be characterized in terms of the exterior derivatives of
¢ and =@ [10].

Class Type Exterior derivatives
P parallel dy =0, d+p =0
Xo calibrated (or closed) dp =0

X,y locally conformal parallel (LCP) dp =37 A ¢, dxp=4T Axgp
REROP cocalibrated (or coclosed) d+¢o =20
TABLE 1. Some classes of Gag-structures.
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1.2. Examples of solution. The first examples of long time solutions for the Laplacian flow of closed
Go-structures (C = Xy) were described in [7] using nilpotent Lie groups endowed with a one parameter
family of left-invariant closed Go-structures.

Example 1.1. Consider the connected and simply connected Lie group G whose underlying Lie algebra
has the structure equations:

de® =el ne?, de® =et ned, andde’ =0 for all i =1,2,3,4,7.

The family of closed Go forms ¢(t) on G given by
o(t) = M7 4 26T 1 (35T 4 p(1)3e123 4 156 4 245 _ ;346 ‘e (_130’_%0) ’
where f(t) is the positive function
F(t) = (%Ot + 1)%.

1s the solution of the Laplacian flow with initial value

o = 6147 + 6267 + 6357 + 6123 + 6156 + 6245 _ 6346.

Analogously in [1] have been given explicit long time solutions for the Laplacian coflow (5).

Example 1.2. Consider the 7-dimensional Heisenberg Lie group Hr7, whose corresponding Lie algebra,
namely b7, is given by the structure equations

de7=@( ael e net +e° ael), andde’ =0 foralli=1,...,6.

6
The solution of the Laplacian coflow on Hy; with the initial coclosed Go form,
0o = €127 4 BT 4 (FOT | (135 _ o146 _ (236 _ ;245
s given by
1 3
o(t) = D (€127 4 €347 1 &567) 1 f(£)3(el35 — 146 _ 236 _ ¢245) 4 ¢ (_ o, 3)

where f(t) is the positive function

1.3. Results on Lie groups. Notice that the previous examples consist on solutions of the flows on
Lie groups where a very concrete ansatz has been considered. In general, let G be a simply connected
solvable Lie group of dimension 7 with Lie algebra g. Let {e!,...,e"} be a basis of the dual space g* of g,
and let f; = fi(t) (i =1,...,7) be some differentiable real functions depending on a parameter t € I < R
such that f;(0) = 1 and f;(t) # 0, for any ¢t € I, where I is a real open interval. For each ¢ € I, we define
the basis {z!,...,27} of g* by
rt=2'(t) = fi(t)e!, 1<i<T.

We consider the one-parameter family of left-invariant Go-structures ¢(t) on G given by
o(t) = 2127 1 347 4 g56T | 135 _ p146 ;236 245

= f127€"" + fau7€™'T + fr67€™7 + frz5e"®® — frage'® — fazee®®® — foase®®,

where fi;x = fijx(t) stands for the product f;(t)f;(¢t)fx(t). Now, following [9] can be introduced the
function (4, j, k) on ordered indices (i, j, k) as follows:

G K) = {1 if (i,5,k) e A ={(1,2,7),(1,3,5),(3,4,7), (5,6,7)};

(6)

-1 if (4,5,k) € B ={(1,4,6),(2,3,6),(2,4,5)};
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Thus, the Gy form ¢ defined in (1), can be expressed as ¢ = Z(m,k)eAuB (i, j, k)e“* and the family of
Go forms ¢(t) given by (6) becomes
o)=Y, (i, k)"
(i,4,k)eAUB

Therefore,

d fisk i )

o= Y ctgnPen - » gl

dt o dt - Jijk
(i,5,k)EAUB (i,j,k)EAUB

Moreover, we express the 3-form A;p(t) as a linear combination of the basis of 3-forms {2} as

(7) At(p(t) = 2 E(i,j, k)Aijk {Eijk + Z Aijk (Eijk y

(i,4,k)€AUB 1<i<j<k<T7, (i,j,k)¢ AUB
where (i, j, k)Ayji is the coefficient in 2% of Ayp(t) if (4,7,k) € AU B (i.e., if (i, 4, k) # 0), and Ay,
is the coefficient in 2%% of Asp(t) if (i,7,k) ¢ A U B. Consequently, the first equation of the C-flow (4)
(regardless of condition C) is equivalent to the system of differential equations
{Aijk: et it (i,j,k) e AU B,

8
) Ak =0 if1<i<j<k<T7and (i,5,k) ¢ AU B.

The following lemma generalizes [9, Lemma 1] and states some properties involving the A;;;, coefficients.

Lemma 1.3. Let ¢(t) be a family of left invariant Ga-structures given by (6) on the Lie group G solving
the system (8). For ordered indices (i, j,k) and (p,q,7) € AU B and a, 8 € R we have

Z) if aAijk = ﬂqur: then (fijk)a = (qur)ﬁ;'
i) if afijxDijk = BfogrDpgr, then alfijr —1) = B(fpgr — 1).

Proof. For i) suppose al;jr = BApqr. In view of (8) this is equivalent to a(J;ﬁ?"“)l = ﬂ();fi‘”)/ Notice
: par

ijk

that the last expression can be stated as a4 In(fijx) = 8% In(fyqr). Therefore 2 In (EJ{J’“))Z) = 0. Hence

In (%) is constant and since f;(0) = 1 for all I = 1,...,7 we conclude that (fi;x)® = (fpqr)”. Part

i) is immediate. O

Notice that flows on Ga-structures whose fundamental form is claimed to be calibrated (belonging to
class C = X5) or cocalibrated (in class C = X} @ X3) have been deeply studied. Thus in view of diagram
1 it seems natural to consider the remaining case, i.e. flows where the fundamental form is required to
be Locally Conformal Parallel (C = X,). However, as far as the authors know, nothing has been done for
flows of Ga-structures where the LCP condition is required along the flow. Therefore in this paper we
are concerned with studying the Laplacian flow, resp. coflow, of an LCP Gs-structure on a manifold M,
or simply the LCP-flow, resp. LCP-coflow, which can be defined as:

(©) %@(t) = Asip(t), (10) %Mt) = —Aw(t),

p(t) € Xy #1h(t) € Xy
where a Ga-structure ¢ belongs to class Xy if it satisfies equation (3).

2. LAPLACIAN FLOW ON LCP RANK-ONE SOLVABLE EXTENSIONS OF NILPOTENT LIE GROUPS

In this section we study the Laplacian flow on a specific set of Lie groups endowed with a left-invariant
LCP Gg-structure. The associated Lie algebras of these groups are rank-one solvable extensions of 6-
dimensional nilpotent Lie algebras. These solvable extensions are constructed generically as follows (see
[23]). Given a n-dimensional metric nilpotent Lie algebra (n,{:,-)n), its (n + 1)-dimensional solvable
extension is a vector space s = n @ Re, 11 where e,41 ¢ n endowed with a metric (-,-)s which is fixed
on s extending the one on nie (-, -)s = (,)n and declaring that {e,+1,€n+1)s = 1 and {es41,1)s = 0.
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Now, given a derivation D of the Lie algebra n, the Lie bracket [, ]s on s is defined as [X,Y]s = [X,Y]x
and [e,41,Y]s = DY for every X, Y en, ie., ade,,,|n = D.

Fino and Chiossi [5] adapt the former construction when n is a six-dimensional nilpotent Lie algebra
endowed with an SU(3)-structure (w,ty) and D is a derivation of n being non-singular, self-adjoint
with respect to {,-)s and diagonalisable by an adapted Hermitian basis {e1,...,eg} of n (the latter
condition being equivalent to (DJ)? = (JD)?). In this setting, the Maurer-Cartan equations for the
seven-dimensional Lie algebra yield

de* = nkek/\e7—|—czek, 1<k<6,
de” = 0,

where the 7 are the eigenvalues of the derivation D and de* = Di<i<j<6 cfjeij is the exterior derivative
at the 6-dimensional level n.

It turns out that there is a natural Gs-structure on the solvable Lie group S = N x R corresponding
to the 3-form:

o=wne +,

where €7 denotes the 1-form {e7,-)s and N is the nilpotent Lie group associated to the nilpotent Lie
algebra n. Indeed, they prove that when (S, ¢) is locally conformal parallel the SU(3)-structure (w, ;)
is half-flat, that is, dw? = 0 and di); = 0. More concretely, the list of Lie algebras underlying such locally
conformal parallel structures in this setting is contained in the following classifying result (in a slightly
different representation with respect to the original one found inside the proof of [5, Theorem 1]):

Proposition 2.1. Let N be a nilpotent Lie group of dimension 6 endowed with an invariant SU(3)-
structure (w, ). Suppose that there is a non-singular and self-adjoint derivation D of the Lie algebra n
such that (DJ)? = (JD)?. Then, on the solvable extension s = n@® Rey with ad., = D, the Ga-structure

@ = (12 + €3 4 €56 p 7 4 135 _ o146 _ (236 _ 245

is locally conformal parallel if and only if s is isomorphic to one of the following list:

cp =(—me'”, —me*", —me3", —mel”, —me’", —meS7, 0);
4 2 2
cps’ :( - gme17 + gme?’(j7 —me*", —Zme3", —me'", —me®7, —gmem,O),
3 1 1 3 3 3
cpgn :( — ime17 + §me36 + §me45, —m627, —Zme‘w, —zm 47, —Zmem, me67,0>,
7 2 6 2 4 3 4
cpT :( — gme17 + gme36 + gme45, —gme27 - 5me46, —gme?ﬂ, —gmeu, —5me57, *’/71667,0),
5 5 1 1 3 3
Cpgn :( - Zme” + im 457 *Zm m_ im 646, *m€37, *5771647, *Zmem, —m 67, O),
4 1 . 1 1 1 2 2
cpgl =( — gme17 + gme‘36 + §m645, 3m627 + gme35 — gm 46, fgm 37, —gm 47, ffmem, m667, 0),
6 2 2 2
cpy’ =( — —melT + Zme38, —Zme?”, —Zme3T, Zme?® — —me?”, Zme?3 — —me®”, —=me7, 0)
5 5 5 5 5 5 5 5
Proof. All the Lie algebras fulfilling the hypothesis of the theorem are originally expressed (see the proof
of [5, Theorem 1], expression numbers from (9) to (15)) in a basis {v'!,...,v7} of 5* where the Ga-structure

© adopts the following expression:

0= 1/125 _ 1/345 + 1/567 + V136 + 1/246 _ 1/237 + 1/147.

In all the cases, ¢ turns out to be locally conformal parallel with Lee 1-form 7 = mv”. Now, for every
Lie algebra the new basis of 1-forms:

expresses @ in our canonical way (1), and the structure equations of ¢p”, 1 < s < 7, result as above. [
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A quick inspection of the Lie algebras cp?" listed in Proposition 2.1 reveals that each of them is
determined by two tuples: one containing the eigenvalues (71,...,76) of the derivation D and other
one including the non-identically zero structure constants (cig, cis, 35, Cig, Cag, Cag) Of the underlying
6-dimensional Lie algebra. In Table 2 we set both tuples for each case.

(M-, m6) (0%67 Czllsa 035, Cisa 0367 Cgs)
cpf” (—=m, —m, —m, —m, —m, —m) (0,0,0,0,0,0)
cpy | (=2, —m, =22 —m, —m, -2 (22,0,0,0,0,0)
epy | (=75, —m, — I, =T, 0, ) (%,%,0,0,0,0)
Py | (Tt i dp dp) | (320, -2,0,0)
Bg | (- om gt i) | (0,8,0,-5,0,0)
G i i Wi s s w0 LS S5 25 S )
oy | (o, i G Gp dm) | (320,002 %)

m
s -

TABLE 2. Defining parameters of the Lie algebras cp

Now, we shall study solutions to the Laplacian flow on every Lie algebra cp?*. As we mentioned before,
we assume a family of Ga-structures ¢(t) given by (6) where the unknown data are some differentiable
real functions f;(t) depending on a parameter ¢ € I < R such that f;(0) = 1 and f;(¢) # 0, for any
t € I, where I is a real open interval. Observe that in fact, the functions f;(¢) are positive. The basis
24 (t) = fi(t)e! is adapted to the Ga-structure at any ¢, and the structure equations for any of the Lie
algebras cp?* depend on the functions and defining parameters of the algebras contained in Table 2:

(11)
1o ™M ar H@) 56, 1 fil) 45 5 _ "5 57,5 fs(t) a3

dx I20) T+ cag Fao(®) T°° + c45 0 x*, dx [20) x°" 4 ¢34 Fas () %,
de2 = P’ em 2 fa(t) 235 4 2 fa(t) 16 deb = 6 67

) f2(t) % fa5(t) Y fet) T f2@t) "
dz® = fn(gt) 237, dz” = 0.

7

A = M a4 fa(t) 226
AR DR

Since we want to solve the LCP-flow (9), we need to solve two equations. Let us start looking
for necessary and sufficient conditions on the evolution functions f;(t) in order to preserve the locally
conformal parallel condition, i.e, p(t) € Xy, that we state in a more restrictive version imposing that the
Lee 1-form remains constant along the flow:

Proposition 2.2. The family of Ga-structures ¢(t) given by (6) satisfies
(12) dp(t) = 3me” A p(t), d*p(t) =4dme” A xp(t),

and in particular remains locally conformal parallel if and only if the evolution functions f;(t), 1 <i <7,
satisfy the following conditions:

o p": For any fi(t),i=1,...,7.
o opy's fi7(t) = fae(t).
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op3': fir(t) = fae(t) = fas(2).

cpits frr(t) = fae(t )

cpsts fur( )

cpgts fre(t) = f36 t) = fas(t), far(t) = fas5(t) = fas(t).
( s fas(t) = fs7(t), fae(t) = far(t).

Proof. Let us start computing dy(t) using the general structure equations (11). Directly:

Cp;n.’ f17 t

_ s [t 2(t) o7 [t o L) ]
dolt) = @ [ R fas(t)] K [ ORI f46<t)]
2367 [772 +773+776 (t) A f4( ) . f5(t) ] 2457 [772+774+775 ol fl(t) ]
f2(t) 36f ®) P he®) P f2(t) P fas(t) |

Now, the equation dp(t) = 3me” A @(t) = ;’7—% 27 A p(t) is equivalent to the following system of
equations:
(11 + 115 + 15 + 3m) fras(t) = )
M+ na +ne + 3m) frae(t) = (
) = cls frzr(t),
) )

( ) fi3s(

( ) f1a6(
< (N2 + ma + 15 + 3m) faus(t

(2 + 13 + 16 + 3m) faze(t) = cig fr27(t) + 36 faar(t) + B3 foer(L).

Similar computations for d #; ¢(t) yield:

_ _gemr Mttt s f(O) | aser Mt tus e 4 falt)
R = ] R v b |
34567 |:773+774+775776* fl() fl() f2() T2 fZ()]
f2(®) S fast) 5f4o() 35f ) Y fiet)]

7 7

Again, solving the equation d ¢ p(t) = dme’ A #p(t) = %x A #4p(t) is equivalent to solve the

system of equations:

t
M+ 02 13+ e+ Am = 3 ;5;Et;,
t
(14) M+ 12+ 15+ e+ 4m = g ;;L;Eti
t) 1 fir(@®) far(t) far(t)
4m = cl 17 2 2 )
M3+ M4+ 175 + N+ 4m = C3¢ f36 (t) (t) +¢35 f&)( ) — Cy6 f46 (t)
The final result is obtained by substituting the defining parameters of the Lie algebras ¢p?* listed in
Table 2 in both the expressions (13) and (14). O
d(t)

After solving () € Xy, let us focus on the evolution equation e Arp(t). Next, we get a generic

expression of the Laplacian A;p(t) suitable for any of the Lie algebras cp.

Proposition 2.3. Let p(t) be a family of Ga-structures given by (6) and remaining locally conformal
parallel in the sense of (12), for each Lie algebra cp™ the Laplacian Ayp(t) is given by:

Avp(t) = 2 e(i, j, k) Ayjp, x*

(i,5,k)eAUB
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where
Avzr = gz [3(4m + 13 + 04+ 05 +16) + 40 + 1)),
Azar =7z [522 67 + 4 (n3 + n4)]
Aser = 7z [82 67 + 4 (15 + n6)]
(15) Avgs = 5[4 06 +3(n2 + e m)]
N [32% 64 + 2m b5 + 222 66 + 3 (2 + 13 + 15) ],
Nozs =3 [82% 63 + 2m 03 + 8’” 6+ 206 + 22 67 + 3 (m +ma +15)]
Do =74 [2m 03 + 32 64 + 2m 85 + 47” 56 — (771 +n3 +16)],
s, =\

Proof. The Laplacian operator on 3-forms is defined as: Arp(t) = —d = d = p(t) + #d = dp(t). Taking into
account the conformally parallel conditions (12) expressed in terms of the orthonormal basis {z;}7_,, the
Laplacian of () can be computed as:

Avplt) = % [—4(dx (27 A #p(t))) + 3 (sd + (27 A o(t)))]

— f;r(”t) [_4 (d * (.’1712347 + .1'12567 + (L‘34567)) +3 (*d* (—1‘1357 + 1}1467 + 372367 + $2457))]
7

QL [—4 (d(z'? + 2% + 2%9)) + 3 (sd(z1 + 2195 + 225 — ;240))]
f7 ()
If we apply (11) and the Hodge star operator in the second summand, we obtain the following expression

_ m fi1(?) fi(t) 5 Jfa(t) e fa(t) M+ 12 -
feell) = 7 [3<§6f36<t> t @ T S ) i6f46<t>> ”( 120 )]

m | fa(t) N3 + M4 5(t) N5 + N
7 |3 ) +4< f2(0) )]xw* 0] [362%3@) +4< £(0) )]7

:3(772+774+776) 448 fz(t)] [ 3( 2+n3+n5>+4036%]x146
)

J7(t) % fa5(t)

m | g (mAmatns (0 A@) 4 falt 5(8) \ | y2s6
RO 3( f2(t) ) 4(36f36(t) T g (t)Jr 23f23()>]

m + 13+ 76 v Fi®) T aas
| —3 —4 .
&0 ( F(0) ) st
To get the final expression just apply Proposition 2.2 together with the defining parameters of the Lie
algebras collected in Table 2. O

Remark 2.4. We notice that for any family of Ga-structures o(t) given by (6) and any (i, j, k) e Au B
the expressions of fZ(t)A;j, obtained in (15) depend only on the defining parameters of the Lie algebra
cp™ and not on the functions f;(t).

3. LONG TIME SOLUTIONS OF THE LAPLACIAN FLOW OF AN LCP G5-STRUCTURE

In this section we obtain long time solutions for the Laplacian flow on the solvable Lie groups S,
s =1,...,7, where S has underlying Lie algebra cp?" described in Proposition 2.1 in terms of a basis
{el, ..., €7} such that the canonical 3-form ¢q given by (1) is an LCP Ga-structure. We divide our study
starting by the solvable Lie group S; as the results obtained on it guide the method on the rest of cases.
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Theorem 3.1. Let S; be a solvable Lie group with underlying Lie algebra cpT*. The family of Ga-
structures given by:

1
o(t) = (1—4m?t)? (612 +e3t + 656) el + (1—4m2t)% (6135 —el16 _ 236 _ 6245) , tel= (—OO, s 2)
m

is the unique solution for the Laplacian LCP-flow (9). Moreover, the underlying metric g(t) is Finstein
at any t € I and converges to a flat metric as t goes to —o0.

Proof. Taking into account (11) and the defining parameters of the Lie algebra cp7* given in Table 2, the

Maurer-Cartan equations in the adapted basis {z*,..., 2"} are:
dzt = —%xk/\ﬂ, 1<k<6,
dz” = 0.

Proposition 2.2 shows that for c¢p7* the family of Ga-structures ¢(t) given by (6) remains locally
conformal parallel regardless of the evolution functions f;(t). Then, we only need to solve the evolution

do(t
Zi ) = Ayip(t).
We get the expression of the Laplacian A¢p(t) substituting the defining parameters of the Lie algebra

cp* provided in Table 2 in the generic formula given in Proposition 2.3:

—m?2

F2 ()

equation

App(t) =

Now, the equalities:

[8 (.13127 4 33‘347 4 1‘567) +9 ($135 _ 1‘146 _ 33236 _ .13245)] .

—8m? —9m?
Ator = Agyr = Aser = ) Aizs = A1ge = Daze = Aogs = 20
7 7

imply respectively by Lemma 1.3 part i) that fio = fsq = fs6 and fi35 = fia6 = fa36 = fo45. From

the first group we get f4(t) = 1}32((:)) and fg(t) = 1}52((:))’ thus, substituting in the second one we get

f2(t) = f2(t) = f2(t) = f2(t). Furthermore, as f;(t) > 0, we conclude that f;(t) = f(¢) for any 1 < i < 6.
At this point, solving the evolution equation (8) reduces to solve the following system of two differential
equations with unknowns f(t) and f7(t):

imz _ _fiar o d 0 _d . . . ) fr()
720 = A7 = Frar o 0(f12r) = 2 [In(f1(8) + n(f2(#)) + In(f7(2))] _Qf(t) + A0k
—9m? _ fizs f'(t)

f2(t) Bias = fi3s

which is equivalent to:

= i) = SA0) +((0) + (f5(0)] = 3

—2m? _ fi(t)
IO O
—3m” f'(t)

OOk

The first equation involves only f7(¢) and can be explicitly solved:
FrO () = —2m? = fo(t) = (—4m?t + C) .

Moreover, using the fact that f7(0) = 1, we get that C' = 1 and f7(¢) = (1 — 4m2t) 2 With this value
for f7(t), it is also possible to solve explicitly the second equation:

—3m? _ f'(t)

1—4m2t  f(t)

Again, the value of C is determined imposing the initial condition f(0) = 1, obtaining that f(¢) =

(1 —4m?t)”*. The domains of the functions f(¢) and f7(¢) imply that the family ¢(t) of Gg-structures is
defined for any t € I = (-0, 113).

= %ln(l —4m?t) = In f(t) + C.
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Concerning the metric, it turns out that the non-vanishing components of the curvature tensor R;;x;
g(R(xs,x;)xk, x;) at any ¢ € I are (modulo its symmetry properties):

m2

i e

forany 1<i<j<T.

Thus, tlim R(g:) = 0. Moreover, an standard computation shows that the Ricci tensor Ric(gy)i;
——0

7 .
k-1 Rriji satisfies

6m?

Ricloe) = =1~ gna

Gt
that is, g; is Einstein concluding the proof.

For the rest of the Lie algebras cp?’, we obtain the following explicit solutions:

12

Theorem 3.2. Let S be a solvable Lie group with underlying Lie algebra cpT*. The family of Ga-

structures given below is a solution for the Laplacian flow:

o pi': Forte (-0, 5z),
1 1 1
o(t) = (1— Eomzt)l—; (6127 _ 6236) +(1- Eom2t)2 (6347 _ e567) +(1- 30 2t)15—2 (6135 _ 146 6245) )

o pi': Forte (—w,513),

go(t) _ (1 _ 3m2t)%(6127 _ 236 _ 6245) + (1 B 3m2t)2(6347 + 6567) + (1 B 3m2t)%(6135 B 6146).

o py': Forte (—w0, 113),
14 . 14 . 14 .
(p(t) _ (1 . ETn2t)177(6127 _ Q146 236 e245) + (1 . ngt)2(6347 + 6567) + (1 o Em2t)%6135'

o pl': Forte (—w,53),

¢(t) _ (1 o 3m2t)§(6127 _ 46 6245) + (1 B 3m2t)2(6347 + 6567) + (1 B 3m2t)%(6135 B 6236).

o oppt: Forte (-, g35),

8 8
QO(t) — (1 o ngt)%(€127 + 6135 o 6146 o 6236 _ 6245) + (1 o §m2t)2(6347 + 6567).

o p': Forte (=0, 1153),
14 5,15 127 | 347 567 _ 236 14 5,18 135 _ 146 _ 245
p(t) = (L= =m0 7 (€77 + e 47— ™) 4 (1 - =m™) 7 (e — '™ — ™).

Proof. Inspired by the solution to the Laplacian flow on the solvable Lie group S obtained in Theorem 3.1
we will consider families of Ga-structures of type (6) on the rest of Lie groups Ss where the evolution

functions f7(t) are specifically given by:

16 fft)=1—a,m?t)%, foranyl<i<7,
K3

hence, for each Lie algebra c¢p?*, the unknowns are now a, € R* and 8; € R, i = 1,...,7. Now,
Proposition 2.2 states necessary and sufficient conditions for the property being LCP to be preserved
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during the flow, which under the assumption (16) transform into relations involving the §; coefficients as
follows:

cps’ : B1+ Br = B3 + Bs;

ps’ 1+ PBr = B3+ Be = PBa+ Ps;

i P+ Pr=P3+P6=Pa+B5, B2+ Br=Pa+ Bs;

ps' 1+ Br=Pa+ Bs, Bat Br = Ba+ Bs;

g’ P+ PBr =03+ 06 =0La+Bs, B2+ Br=PLs+ B =P+ Pe;

op7 B+ Br=PB3+ 086, Ba+B3=05+pPr, B2+ Be=ps+ b1
In addition, system (8) reduces to

~ (fir)  —am®(Bi + B + Br)
N = = 3 ,
fijk (1 —am?t)
where the unknowns are o and f1, ..., (7.
Explicitly, taking the A;j;, coefficients given in Proposition 2.3:

(1-— am2t)1’257

Bi+ B2+ pr = —T[3(4m+773+774+775+776)+4(771 +n2)],
1 —am?t)' =267 [6m
B3+ Pa+Pr = Uil c) i 57+4(773+774)],
am | 5
1 —am?t)' =27 [6m
Bs+Bs + Br = _(zame) T — 67 +4(ns +776)],
oam | 5
1 —am?t)' =267 [4m
B+ B3+ B = _(mam7e) T 56+3(772+774+776)]a
am | 3
1 —am?t)1=267 [8m 4m
Pi+Ba+Bs = (L zom) T —04+2mbs + —— 06 +3(n2 + 13 +15) | ,
am | S 3
1 — am?t)1=207 [8m 8m 4m 24m
Ba+ Ps+ P = —¥ — 02 +2m 3 + 7(54-1—7(56-"-7574-3(771-1-774-1-775) s
am | 3 ) 3 5
1 —am?t) =267 [ 8m 4m
Bo+ Ps+ Py = —<—) 2m s + — 04 + 2m 5 + 7(56—3(7]1 +T]3+776) .
am i 5 3
Clearly, the latter system admits solution only if 57 = % Now, for each Lie algebra cp?* the values
of a and f1,...,Bs result of solving the system that yields substituting above the concrete values of
7,...,76 listed in Table 2 joint with the corresponding relations (17) involving the preservation of the
LCP condition during the flow. The values of the solution parameters are listed in Table 3 and the
resulting solutions ¢(t) are picked in the statement of the theorem. (I
Lie group | « (B1,.--,07) Lie group | « (B1,.--,07)
10 9 4 7 4 4 7 1 11 11 5 2 3 3 1
S2 3 | (5516755 150 3) S5 3| (e 113
533331 8 33331
S 3 (L3144 1) S 3 L1511 % 3)
14 13 11 5 11 5 1 14 | (13 10 10 13 13 10 1
Sa 5 (1’ﬁ’ﬁ’7’ﬁ’7’§) St 5 (ﬂ’ﬁ’ﬂ’ﬁ’ﬂ’ﬁ’?)

TABLE 3. Defining parameters of the functions f;(t) = (1 — am?t)?:.
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Remark 3.3. The non-vanishing elements (up to symmetries) of the Riemannian curvature of g, are
tabulated in Tables 4 and 5 in Appendiz, where the coefficients C1, Ca, Cs, Cy are given in terms of the
parameter o by:

—6m? —m? 1 —m? 1 —m? 1
Cih=———, Co= , C3= , Cy= .
YTl am?t 2 3 <l—am2t) s 4 (l—amQt) : 5 (l—amzt)

A direct computation of the Ricci tensors in the orthonormal basis {x;(t)}!_, shows that:

epI : Ric(gy) = Co diag(22,17,12,17,17,12, 17),

o : Riclg,) = Cs diag(32,22,17,17,17,17,22),
cp’* ¢ Ric(gy) = C4 diag(37,32,22,17,22,17,27),
p? : Ric(g) = Cs diag(27,27,22,12,17,17,22),
ep? : Ric(gs) = Ca diag(21,21,11,11,11, 11, 16),
p™ : Riclg,) = Cy diag(32,17,17,32,32,17,27),

Hence, unlike the case of S1, none of the metrics listed in Theorem 3.2 obtained as solutions of the
Laplacian LCP-flow for S, s =2,...,7, are Einstein.

Proposition 3.4. The Go-structures obtained in Theorem 3.1 and 3.2 are Laplacian solitons of shrinking
type.
Proof. Recall that a Go-structure ¢ is called Laplacian soliton if it satisfies the equation

Ap = Xp + Lx,

for some real number A\ and some vector field X. Depending on the sign of A\, Laplacian solitons are
called shrinking (if A < 0); steady (if A = 0) or expanding (if A > 0).
In the left-invariant setting, the Lie derivative of a 3-form 2 can be computed following the formula:

LxQ(Y1,Ys,Ys) = —Q([X,Y1],Ys,Y3) — Q(Y1, [X,Y3], Y3) — Q(Y7, Ya, [ X, Y3]),

where Y7, Y5, Y3 are invariant vector fields.
In our case, consider the left-invariant vector field X = —%XW where X7 denotes the dual of the

1-form 27. Then, taking into account the generic structure equations (11) and the formula above we

get an expression of the Lie derivative Lxo(t) in terms of the defining parameters n,...,ng of the Lie

algebras:
a8 Lxe(t) = 73 [m+n2) 27+ (3 + na) 247 + (05 + 06) 2°°7 + (1 + s + 1) 2
=m0+ 4+ n6) ¢ — (12 + 13 + 16) %6 — (112 + 14+ 15) 2245] .

Now, if we compute Ap(t) — Lx¢(t), using (18), Proposition 2.3 and Table 2, we obtain:

m? 9 21 9 21
Ap(t) — Lxp(t) = ———=¢(t) (601 + 52+ -3+ — 4+ =I5 + 46 + — 67 |,
o) = Lxplt) =~ g lt) (601 + 502+ 50+ 5+ 505+ 4o + 500
so they are Laplacian solitons. Moreover, since the constant \; is negative in all cases, the solitons are of
shrinking type. ]

4. LONG TIME SOLUTIONS OF THE LAPLACIAN COFLOW OF AN LCP G3-STRUCTURE

In this section we consider the Laplacian coflow (10). More concretely, we seek explicit solutions
to the coflow on the set of solvable Lie groups endowed with a left-invariant LCP structure listed in
Proposition 2.1.

We look for solutions within the families of invariant Ga-structures ¢(t) of type (6) depending on some
unknown functions f;(t), 1 < ¢ < 7, in the same terms as it has been set in the paper. Then, at any ¢ € I,
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the 4-form 9 (t) = =;(t) involved in the evolution equation of the coflow can be expressed in terms of
the adapted basis {z%(¢)}7_; as:

G(t) = aPIS6 | 1256 | 41234 42467 | 42857 4 1457 4 1367
f3456(£)€3150 + fio56(£)e!?%0 + floga(t)e'?3* — fouqr(t)e?467
+ fo357(£)€3%7 + fras7(t)e 57 + fi3e7(t)et367.

and the Laplacian of the 4-form 9 (¢):

(19) Atw(t) = Z E(l, m,mn, O)Almno ghmno 4 Z Almno'rl’rrmo-
(I,m,n,0)eKu{(2,4,6,7)} (I,m,n,0)¢Ku{(2,4,6,7)}

where K = {(1,2,3,4),(1,2,5,6), (1,3,6,7), (1,4,5,7), (2,3,5,7), (3,4, 5,6)}. The symbols £(I,m, n, 0) are

defined as:

el n, 0) = 1 if (I,m,n,0) € K,
U =1 it (I,myn, o) = (2,4,6,7);

Therefore, by a similar a similar argument as in the flow case, the first equation of the Laplacian LCP-
coflow (10) becomes the system of differential equations:

{ Apmng = —imne)" if (1,m,n,0)e KU {(2,4,6,7)}

flmno

Almno = 07 otherwise.

Concerning the preservation of the LCP property of =4 (¢), functions f;(¢) must satisfy the relations
stated in Proposition 2.2. Now, in the next result we show that there is a correspondence between
solutions of the ansatz type (6) of the Laplacian LCP-flow and the Laplacian LCP-coflow assuming that
the functions are of potential type.

Theorem 4.1. Let ©(t) and @(t) be two different families of Go-structures on cp?* with s = 1,...,7,
given by (6), where

) = (1 —am?t)’ and }\g(t) =1 —ym?)%, for i=1,...,7,

7

(
and B7 = % and 87 = L. If the defining parameters of the functions f$(t) and }‘\f(t) are related by:

237 B 1 1- 25
(20) v=a 2= B ., and 5i:f+7f with ie{l,...,7),
2 2 _2+2j=15j

then:
(i) o(t) is LCP if and only if §(t) is LCP.
(i) p(t) solves the Laplacian LCP-flow (9) if and only if ¥(t) = %.p(t) solves the Laplacian LCP-
coflow (10).

Proof. We denote by (I,m,n,0) € K the set of complementary indexes to (i,j,k) € A U B (see page 6),

—_—

ie. (I,m,n,o0) = (i,5,k) = (1,... T T k..., 7). With this notation, (20) implies
(21) Y (01 + Om + 0p +65) = —a (B + B + Br),

for all (I,m,n,0) € K and (I,m,n,o0) = (m)
Now we prove the two statements of the theorem.
(i) Let us consider two pair of indexes (i1, j1, k1), (i2, j2, k2) € AU B such that they have a common index,
let us say k1 = ko = k. Under this hypothesis and making use of (21) the following identities hold:
7(61+...+67) = 7(51-"—...4—57)
Y(0iy + 05, +0k) + 701, + Oy + 0y +90,) = Y(biy + 65, + k) +V(01, + Omy + Oy + 00,)
7(511 + 5j1 + 516) - O‘(ﬁil + /le + ﬁk) = ’7(61'2 + 5j2 + 5k) - a(ﬁb + 5j2 + ﬂk)
7[(512 + 6j2) - (5i1 + 5j1 )] _a[(/Bil + le) - (512 + /BjQ)]'
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We observe that the relations (17) concerning the preservation of the LCP property are always of the
form:

Biy + Bjy = Biz + Bja;

for a pair of indexes satisfying that (i1, j1, k) € A, (i2,J2, k) € B. The LCP conditions for $(t) are exactly
the same that the LCP conditions for ¢(t) interchanging the parameters g; for ¢;. Therefore, considering
the non-zero values of the parameter « of the solutions of the Laplacian flow (see Theorem 3.2) it is easy
to see that v # 0 in all the cases, hence we conclude that ¢(t) is LCP if and only if $(t) is so.

(ii) Let () and @(¢) be two families of Go-structures (6) whose defining parameters of the functions f7(t)
and f3(t) are related by (20). Let ¢(t) be a solution of the Laplacian LCP-flow; we want to prove that
O(t) = %,3(t) is a solution of the corresponding coflow. That t(t) is solution of the coflow is equivalent
to:

(f3(1)*Atmino = ym(0) + 6 + 6 +0,)  for any (I,m,n,0) € K U {(2,4,6,7)},

where we have used the same ideas as in the proof of Theorem 3.2, that is, the functions ff(t) are of
potential type and §; = %

Firstly observe that, as the Hodge star operator commutes with the Laplacian operator, we have that
Aprpp(t) = % App(t), hence, the coefficients of App(t) and Aep(t) appearing in the linear combinations (7)
and (19) are related by:

—

Aln’ww = Aijkn for any (Z7J7k) € Au B and (lam7n?0) = (iaj7 k)

This fact together with the non-dependence of the (f5(¢))?A;;x with respect to the specific chosen func-
tions noticed in Remark 2.4 yields:

—

(F3 (1) Atmno = (FF()?Bijie = (F£(1))*Ayj,  for any (i,5,k) € AU B and (I,m,n,0) = (i, j, k).
Now, since ¢(t) is solution of the flow then we have:
(f2()Aijk = —am(B; + B + Br) for any (i,j,k) e Au B.

Therefore, bearing in mind (21) the following sequence of identities hold:

(F2 ()2 Atmno = (F2(1))?Asje = —am(Bi + B + Br) = ym(8) + Sm + 6, + 85),

for every (I,m,n,0) € K U {(2,4,6,7)}, that is, {)(t) is a solution of the coflow.
The converse of the statement is basically the same and we omit the proof. O

As a consequence of the previous theorem, for every Lie group S5 we provide in the following corollary
an explicit solution of the LCP-coflow based on the defining parameters of the solutions of the flow
contained in Table 3.

Corollary 4.2. Let Ss be a solvable Lie group with underlying Lie algebra c¢p?*. The family of Ga-
structures given below is solution for the Laplacian coflow:
o pl": Forte ( o),

1
T em2

o(t) = (1+ 6m2t)% (6127 LT 6567) + (1 + 6m2t) (6135 _ pl46 _ 236 _ 6245) '

o pi': Fort e (—1iz, ),
16

Emzt)i773 (e —e*%) + (1+

16 19
Emzt)ﬁ (347 4+ €57) 4+ (1 +

%Gm%)% (6135 _ 46 _ 6245) )

o p': Forte ( ),

1
T BEm2:

(,O(t) _ (1 + 5m2t)(€127 _ 6236 _ 6245) + (1 + 5m2t)g(e347 + 6567) + (1 + 5m2t)1%(6135 _ 6146).
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),

__5_
24m?2"

o cpi': Forte (
24 : 24 24
e(t) =(1+ gmzt)g(e127 — 10 236 _ 245y 4 (1 4 €m2t)%(6347 +e57) + (1 + ngt)%elga

1
T Bm2:

p(t) = (1 +5m2t)('?7 — M6 — e24) 4 (14 5m2t)5 (%47 + €27) + (1 + 5m?) 16 (1% — £239),

o cpl': Forte( ),

o oppt: Forte (—g52, o),
o) = (1 + %mzt)g(elw 4+ 135 _ o146 _ 236 _ 6245) +(1+ %mzt)%(e:&u + 6567)_
[ ] Cp”%n: FOTtE (—ﬁ, OO),
24 24
(p(t) — (1 + ngt)%(6127 + 6347 + 6567 _ 6236) + (1 + ngt)g(el?,s _ 6146 _ 6245).

Remark 4.3. Direct computations show that, for each Lie algebra c¢p?*, the Ricci tensors of the metrics
J: induced by the solutions @(t) to the coflow given in Corollary 4.2 are given by
1—am?t

Ric(g;) = (MTth) Ric(gy),

where Ric(gy) are the Ricci tensors of the metrics g; induced by the solutions p(t) to the flow given in
Remark 3.3. Thus, as in the flow case, only the solutions on S, are Einstein.
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APPENDIX
Solvmanifold R(g))

Ruzer(t) = Rugsr(t) = 5202, Rame(t) = 50 Co, - Raras(t) = 505,
Ri212(t) = Ria14(t) = Risi5(t) = —4 Oy,

% Rugia(t) = Rigis(t) = Rass(t) = 5 Coy Rarar(t) = Rerer(t) = 5 Cs,
Ro323(t) = Raga6(t) = Rs34(t) = Rs535(t) = Ruaeas(t) = Rsese(t) = —2Cs,
Roa24(t) = Ras25(t) = Rora7(t) = Rasas(t) = Rarar(t) = Rsrs7(t) = —3 Ca.
Risia(t) = 52 C3,  Riziz(t) = Riaa(t) = Risi5(t) = Rigis(t) = == Cs,
Ruzer(t) = Riasr(t) = —Risar(t) = —Raear(t) = —Ranie(t) = —Rans(t) =
Rsm1a(t) = Reris(t) = 2 C5,  Raeus(t) = Rasse(t) = =52,

S3 Rizi7(t) = —9Cs, Rirse(t) = Riras(t) = Rae17(t) = Rasi7(t) = 2 Cs,
Ro323(t) = Rasoa(t) = Rosas(t) = Ragas(t) = Raess(t) = Rusas(t) = —3Cs,
Rsuse(t) = —Rssag(t) = —Rugss(t) = Rsesa(t) = G2, Ropar(t) = —4Cs,
R3434(t) = Ras35(t) = Rar37(t) = Rypas(t) = Rarar(t) = Rsese(t) =
Rsrs7(t) = Rerer(t) = 32 Cs.
Ri234(t) = Ri2s6(t) = —Ria23(t) = —Rie2s(t) = —Rasa(t) = —Rosie(t) =
Rsa12(t) = Raase(t) = —Rssae(t) = —Ragss(t) = Rsera2(t) = Rsesa(t) = S,
Ri367(t) = —Ri547(t) = —Roser(t) = Rogar(t) = —Ryri5(t) = Raras(t) =
Renis(t) = —Reraa(t) = 32 Ca,  Ruizia(t) = Risis(t) = =2 Cy,
Ris14(t) = Rigi6(t) = —4Cy, Ruasr(t) = —Rugar(t) = 22 Cy,

Sy Ri736(t) = Ri745(t) = Rsg17(t) = Rusi7(t) = L Cs,  Risna(t) = =22 Cy,
Rosas(t) = Rasas(t) = =% C1, Raaza(t) = Rasas(t) = 57 Cu,
Rorag(t) = Rugar(t) = 22 Cu,  Rsaza(t) = Rupas(t) = Rsese(t) = =22 Cu,
Rss35(t) = Rarar(t) = Rapsr(t) = =22 Cy,  Raese(t) = Rasas(t) = —3Cy,
Reas(t) = Rasao(t) = 52 Ca,  Rarie(t) = —Rsna(t) = 5 Cu,
Ruza7(t) = Rerer(t) = 22 Ca,  Rinq(t) = =2 Cu.

TABLE 4. Non-vanishing coefficients of the curvature of the metric g; induced by the
solutions of the LCP flow expresssed in the adapted basis {z;}7_;.
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R(gt)
Ri212(t) = Ri717(t) = Rorar(t) = =22 C5,  Rizis(t) = Rasas(t) = —5Cs,
Rios6(t) = —Rieas(t) = —Rasis(t) = Rse12(t) = <,
Ri1414(t) = Ra424(t) = Rys45(t) = Raeas(t) = Rsese(t) = Rsrsr(t) =
Rerer(t) = 2 Cs,  Risis(t) = Ragas(t) = 5 Cs,
Ss Rias7(t) = —R2467( ) = Rsr1a(t) = —Rer24(t) = £ C3,  Raaza = —2Cs,
Risa7(t) = —Rogar(t) = Raris(t) = —Razae(t) = G, Rarar = —4Cs,
Ri745(t) = —Roras(t) = Rusi7(t) = —Rugar(t) = 5 Cs,  Ragar = — Cs,
Rigi6(t) = Rasas(t) = =12 O3, Rasas(t) = Raess(t) = =3 Cs.
Ri234(t) = Ri256(t) = R3a12(t) = Rause(t) = Rse12(t) = Resa(t) = <2,
Ri313(t) = Ri414(t) = Ri515(t) = Rig16(t) = Razes(t) = Roaza(t) = Rasas(t) =
Roe26(t) = 53+ Ca,  Risna(t) = Rimiz(t) = Raorar(t) = =52 C,
Ri324(t) = *R1423(t) = Ri506(t) = —Rigas(t) = *R2314(t) = Ro13(t) = Roei5(t) =
Rysa6(t) = —Raeas(t) = —Russs(t) = Ruess(t) = $2,
Se Ri367(t) = Riss7(t) = —Ris47(t) = —Ruesr(t) = Rozsr(t) = —Raaer(t) = —Raszr(t) =
Ropa7(t) = —Rsr16(t) = —Rara5(t) = —Rar15(t) = Rara6(t) = Rs714(t) = Rs7o3(t) =
Renis(t) = —Reraa(t) = =52,
Ri736(t) = Ri745(t) = Rar35(t) = —Rarae(t) = Rasar(t) = Rae17(t) = Rasi7(t) =
—Rypo7(t) = 2C2, Rasss(t) = Rsese(t) = Rusas(t) = Rugas(t) = 55 Co,
R3ss4(t) = Rarar(t) = Rarar(t) = Rsgse(t) = Rsrsr(t) = Rerer(t) = 5 Ca,
Ri234(t) = Ri256(t) = —Ria23(t) = Ris26(t) = —Ra314(t) = Rae15(t) = Raara(t) =
Rga56(t) = —Raeas (t) = —Rasse(t) = Rse12(t) = Rseaa(t) = =52 Cy,
Ri313(t) = Rig16(t) = Roa2a(t) = Rosas(t) = Rssss(t) = Raeas(t) = =~ Cu,
Rize7(t) = —Rie37(t) = —Raaer(t) = —Rass7(t) = Rarss(t) = —Rarae(t) = Rasar(t) =
S; —Rs716(t) = —Raras(t) = —Raear(t) = Reri3(t) = —Reraa(t) = 22 Cy,
Rig14(t) = Ris15(t) = Riri7(t) = Rusas(t) = Rarar(t) = Rssr(t) = =28 Cu,
Ri736(t) = Rass7(t) = Rogar(t) = Rsgi7(t) = Ruras(t) = Rsras(t) = 2 Cy,
Ras23(t) = Ragas(t) = Raese(t) = =22 Ca, Rarar(t) = Rarsr(t) = Rerer(t) = 2 Cu.

TABLE 5. Continuation of Table 4.
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