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Abstract. We study the Laplacian flow of a G2-structure where this latter structure is claimed to

be Locally Conformal Parallel. The first examples of long time solutions of this flow with the Locally
Conformal Parallel condition are given. All of the solutions are ancient and Laplacian soliton of shrinking

type. These examples are one-parameter families of Locally Conformal Parallel G2-structures on rank-

one solvable extensions of six-dimensional nilpotent Lie groups. The found solutions are used to construct
long time solutions to the Laplacian coflow starting from a Locally Conformal Parallel structure. We

also study the behavior of the curvature of the solutions obtaining that for one of the examples the

induced metric is Einstein along all the flow (resp. coflow).
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Introduction

A G2-structure on a 7-dimensional smooth manifold M is a reduction to the exceptional Lie group G2

of the structure group GLp7,Rq of the frame bundle of M . We call G2-manifold a 7-dimensional manifold
endowed with a G2-structure. The presence of a G2-structure is equivalent to the existence of a globally
defined 3-form ϕ, which is called the G2 form or the fundamental 3-form and it can be described locally
as

(1) ϕ “ e127 ` e347 ` e567 ` e135 ´ e146 ´ e236 ´ e245,

with respect to some local basis te1, . . . , e7u of the 1-forms on M , which we call an adapted basis. The
notation ei1...ik stands for ei1 ^ ¨ ¨ ¨ ^ eik . The fundamental 3-form ϕ is stable in the sense that its orbit
at each point p PM under the natural action of the group GLpTpMq is open (see [15]).

The existence of a G2 form ϕ on a manifold M induces a Riemannian metric gϕ and a volume element
volϕ on M related by the formula:

(2) gϕpX,Y qvolϕ “
1

6
ιXϕ^ ιY ϕ^ ϕ,
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for any vector fields X,Y on M .
If ∇ denotes the Levi-Civita connection with respect to the induced metric gϕ, Fernández and Gray [10]

defined many different G2-structures in terms of the intrinsic torsion of the G2-structure given by ∇ϕ.
Moreover, it is proved that the intrinsic torsion is completely determined by the exterior derivative of
the G2 form ϕ and the 4-form ˚ϕ, where ˚ denotes the Hodge star operator induced by the metric
and the volume form (2). The most restrictive class of G2-structures is the one contaning the so called
parallel G2-structures, which are covariantly constant with respect to ∇. Manifolds endowed with such
structure are characterized by the condition that both ϕ and ˚ϕ are closed. Equivalently, the G2-form ϕ
and the Riemannian holonomy group of the underlying metric gϕ is a subgroup of G2 being in addition
Ricci-flat [2].

The development of flows in Riemannian geometry has been mainly motivated by the study of the Ricci
flow. The same techniques are also useful in the study of flows involving other geometrical structures,
like for example, the Kähler Ricci flow.

Given a closed (or calibrated in the terminology of Harvey and Lawson [14]) G2-structure ϕ0 on a
manifold M , that is dϕ0 “ 0, Bryant introduced in [3] a natural flow, the so-called Laplacian flow, given
by the initial value problem

$

&

%

d
dtϕptq “ ∆tϕptq,

dϕptq “ 0,
ϕp0q “ ϕ0,

where ∆t is the Hodge Laplacian operator of the metric gϕptq determined by ϕptq. The short time existence
and uniqueness of solution for the Laplacian flow of any closed G2-structure, on a compact manifold M ,
has been proved by Bryant and Xu in the unpublished paper [4]. Also, long time existence and convergence
of the Laplacian flow starting near a torsion-free G2-structure was proved in the unpublished paper [24]
whenever the torsion of ϕ is sufficiently small. In the last years, Lotay and Wei in [18], [19] and [20] have
obtained many results concerning the properties of the Laplacian flow.

In [7] the first examples of noncompact manifolds with long time existence of the solution for the
Laplacian flow of a closed G2-structure are shown. Those examples are nilpotent Lie groups admitting
an invariant closed G2-structure which determines the nilsoliton metric. Recently in [11] the authors
studied the Laplacian flow of a closed G2-structure on warped products of the form M ˆ S1 where the
base space is a 6-dimensional compact manifold endowed with an SUp3q-structure. Impossing the warping
function to be constant they find sufficient conditions for the existence of solution of the Laplacian flow
and present some examples where M is a six-dimensional solvmanifold.

Karigiannis, McKay and Tsui in [16] introduced the Laplacian coflow (or coflow for short). In this
case the initial G2-form ϕ0 is claimed to be coclosed (or cocalibrated as in [14]), i.e. dψ0 “ 0, where
ψ0 “ ˚ϕ0. The equations of this flow are given by

$

&

%

d
dtψptq “ ´∆tψptq,

dψptq “ 0,
ψp0q “ ψ0,

with ψptq “ ˚tϕptq the Hodge dual 4-form of the G2-structure ϕptq and ∆t is the Hodge Laplacian
operator with respect to the metric gϕptq induced by ϕptq. Unlike the Laplacian flow, up to now short
time existence of solution of the coflow is not known. Assuming short time existence and uniqueness of
solution, it is shown in [16] that the condition of the initial G2-form ϕ0 to be coclosed (equiv. ψ0 closed)
is preserved along the flow.

In [12] Grigorian introduced a modified version of the Laplacian coflow which is called the modified
Laplacian coflow and proved short time existence and uniqueness of solution for this modified flow.
Recently in [1] explicit solutions for the coflow and the modified Laplacian coflow have been described.
These solutions are one-parameter families of G2-structures defined on the 7-dimensional Heisenberg Lie
group. The solutions for the coflow are always ancient, i.e., defined for all time ´8 ă t ă T , with
T ă 8, for every initial cocalibrated G2-structure. The condition of the induced metric to be Ricci
soliton is preserved along the coflow. For overviews on these topics, see [13] and [17].
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In this paper we are concerned with studying the Laplacian flow, resp. coflow, on Locally Conformal
Parallel G2-structures, (LCP for short) as they play in some sense an intermediate role between closed
and coclosed G2-structures. LCP G2-structures are characterized by the fact that at each point p P M ,
there is some differentiable function f defined on a local neighbourhood of p such that the underlying
metric gϕ can be modified locally to a metric rg with holonomy a subgroup of G2 by means of a conformal
change rg “ e2fgϕ. Equivalently, the LCP condition is given in terms of the exterior derivatives of ϕ and
˚ϕ by:

(3) dϕ “ 3 τ ^ ϕ, d ˚ ϕ “ 4 τ ^ ˚ϕ,

with τ the Lee 1-form. These G2-structures are of type X4 in the sense of Fernández-Gray, see [10].
In order to describe the first examples of solution of these flows we will consider the class of solvable

Lie groups described by Fino and Chiossi in [5] constructed as rank-one solvable extensions of nilpotent
Lie groups admitting left-invariant Locally Conformal Parallel G2-structures.

The paper is structured as follows: in Section 1, we review some explicit examples on Lie groups
solving the Laplacian flow and the Laplacian coflow. This allows us to set a generic ansatz for solving
flows related with G2-structures on Lie groups which will be useful in the rest of the paper. Section 2 starts
by introducing rank-one solvable extensions of nilpotent Lie groups. We detailed in Proposition 2.1 the list
of Lie algebras found in [5, Theorem 1] underlying the seven dimensional solvable Lie groups constructed
in this way and admitting a left-invariant LCP G2-structure. The rest of this section deals with exploring
the Laplacian flow under the assumption of solutions defined in Section 1 either setting necessary and
sufficient conditions preserving the LCP condition or describing the ∆tϕptq in a suitable form. Sections 3
and 4 are devoted to construct explicit examples of solutions to the Laplacian flow and coflow preserving
the LCP-condition. In Theorem 3.1 we present an explicit solution for the Laplacian flow where the
LCP-condition is preserved, notice that the metric induced by the solution remains Einstein along the
flow. The rest of Section 3 is devoted to obtain solutions for the remaining solvable Lie groups described
by Chiossi and Fino. The solutions of the flow turn out to be Laplacian solitons. In Section 4 we
obtain relations between the sets of solutions of the Laplacian flow and coflow where the LCP-condition
is preserved (see Theorem 4.1). Finally, in the Appendix we include the expressions of the curvature for
the metric induced by the solutions of the Laplacian flow previously obtained.

1. Laplacian flows on Lie groups

In the last years there has been a wide interest in finding solutions for the Laplacian flow and related
notions have been explored such as new examples with extra properties. In general, flows of G2-structures
are of the form

(4)

#

d
dtϕptq “ ∆tϕptq,

ϕptq P C,

where ∆t denotes the corresponding Hodge Laplacian operator, C is a specific class of G2-structures and
t lives in an open real interval. We will refer to it as C-flow.

The first author considering flows of G2-structures was Bryant in [3]. The objective of considering
flows of G2-structures was to obtain examples of G2-manifolds without torsion as the result of certain
evolution of other G2-structures with torsion. Thus, Bryant considered the so-called Laplacian flow of a
G2-structure ϕ0 which is given by (4) where ϕptq is supposed to be closed. On compact manifolds short
time existence and uniqueness of solution for the Laplacian flow of a closed G2-structure has been proved
by Bryant and Xu in [4]. Xu and Ye in [24] proved long time existence and convergence of solution of
the Laplacian flow starting near a torsion-free G2-structure. In the last years Lotay and Wei in the series
of papers [20, 19, 18] have obtained important results concerning long time existence and convergence of
solutions of the Laplacian flow.

On the other hand, in [16] Karigiannis, McKay and Tsui introduced the Laplacian coflow. This latter
flow can be considered as the analogue to the Laplacian flow in which the fundamental 3-form is claimed
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to be coclosed instead of closed. Thus, this flow is given by the equations

(5)

$

&

%

d
dtψptq “ ´∆tψptq,

ψp0q “ ψ0,
dψptq “ 0,

with ψptq “ ˚tϕptq and ˚t denoting the Hodge star operator. As far as the authors know, short time
existence and uniqueness of solution for this latter flow is not known. In [12] Grigorian introduced a
modified version of this flow called modified Laplacian coflow for which he proved short time existence
and uniqueness of solution.

1.1. Torsion of G2-structures. The torsion of a G2-structure can be identified with the covariant
derivative of the fundamental form ϕ with respect to the Levi-Civita connection of the induced metric.
As it is described in [10], it can be decomposed into four G2 irreducible components, namely X1, X2, X3

and X4. Thus, a G2-structure is said to be of type P,Xi,Xi ‘ Xj ,Xi ‘ Xj ‘ Xk or X if ∇ϕ lies in
t0u, Xi, Xi ‘Xj , Xi ‘Xj ‘Xk or X “ X1 ‘X2 ‘X3 ‘X4, respectively. Hence, there exist 16 different
classes of G2-structures. Some of the principal classes are summarized in Table 1 and Figure 1.
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Figure 1. Principal classes of G2-structures

Equivalently these classes of G2-structures can be characterized in terms of the exterior derivatives of
ϕ and ˚ϕ [10].

Class Type Exterior derivatives
P parallel dϕ “ 0, d ˚ ϕ “ 0
X2 calibrated (or closed) dϕ “ 0
X4 locally conformal parallel (LCP) dϕ “ 3 τ ^ ϕ, d ˚ ϕ “ 4 τ ^ ˚ϕ

X1 ‘ X3 cocalibrated (or coclosed) d ˚ ϕ “ 0
Table 1. Some classes of G2-structures.
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1.2. Examples of solution. The first examples of long time solutions for the Laplacian flow of closed
G2-structures (C “ X2) were described in [7] using nilpotent Lie groups endowed with a one parameter
family of left-invariant closed G2-structures.

Example 1.1. Consider the connected and simply connected Lie group G whose underlying Lie algebra
has the structure equations:

de5 “ e1 ^ e2, de6 “ e1 ^ e3, and dei “ 0 for all i “ 1, 2, 3, 4, 7.

The family of closed G2 forms ϕptq on G given by

ϕptq “ e147 ` e267 ` e357 ` fptq3e123 ` e156 ` e245 ´ e346, t P

ˆ

´
3

10
,`8

˙

,

where fptq is the positive function

fptq “
´10

3
t` 1

¯
1
5

.

is the solution of the Laplacian flow with initial value

ϕ0 “ e147 ` e267 ` e357 ` e123 ` e156 ` e245 ´ e346.

Analogously in [1] have been given explicit long time solutions for the Laplacian coflow (5).

Example 1.2. Consider the 7-dimensional Heisenberg Lie group H7, whose corresponding Lie algebra,
namely h7, is given by the structure equations

de7 “

?
6

6
pe1 ^ e2 ` e3 ^ e4 ` e5 ^ e6q, and dei “ 0 for all i “ 1, . . . , 6.

The solution of the Laplacian coflow on H7 with the initial coclosed G2 form,

ϕ0 “ e127 ` e347 ` e567 ` e135 ´ e146 ´ e236 ´ e245,

is given by

ϕptq “
1

fptq
pe127 ` e347 ` e567q ` fptq3pe135 ´ e146 ´ e236 ´ e245q, t P

´

´8,
3

5

¯

where fptq is the positive function

fptq “
´

1´
5

3
t
¯

1
10

.

1.3. Results on Lie groups. Notice that the previous examples consist on solutions of the flows on
Lie groups where a very concrete ansatz has been considered. In general, let G be a simply connected
solvable Lie group of dimension 7 with Lie algebra g. Let te1, . . . , e7u be a basis of the dual space g˚ of g,
and let fi “ fiptq pi “ 1, . . . , 7q be some differentiable real functions depending on a parameter t P I Ă R
such that fip0q “ 1 and fiptq ‰ 0, for any t P I, where I is a real open interval. For each t P I, we define
the basis tx1, . . . , x7u of g˚ by

xi “ xiptq “ fiptqe
i, 1 ď i ď 7.

We consider the one-parameter family of left-invariant G2-structures ϕptq on G given by

ϕptq “ x127 ` x347 ` x567 ` x135 ´ x146 ´ x236 ´ x245

“ f127e
127 ` f347e

347 ` f567e
567 ` f135e

135 ´ f146e
146 ´ f236e

236 ´ f245e
245,

(6)

where fijk “ fijkptq stands for the product fiptqfjptqfkptq. Now, following [9] can be introduced the
function εpi, j, kq on ordered indices pi, j, kq as follows:

εpi, j, kq “

#

1 if pi, j, kq P A “ tp1, 2, 7q, p1, 3, 5q, p3, 4, 7q, p5, 6, 7qu;

´1 if pi, j, kq P B “ tp1, 4, 6q, p2, 3, 6q, p2, 4, 5qu;
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Thus, the G2 form ϕ defined in (1), can be expressed as ϕ “
ř

pi,j,kqPAYB εpi, j, kqe
ijk, and the family of

G2 forms ϕptq given by (6) becomes

ϕptq “
ÿ

pi,j,kqPAYB

εpi, j, kqxijk.

Therefore,

d

dt
ϕptq “

ÿ

pi,j,kqPAYB

εpi, j, kq
dfijk
dt

eijk “
ÿ

pi,j,kqPAYB

εpi, j, kq
pfijkq

1

fijk
xijk.

Moreover, we express the 3-form ∆tϕptq as a linear combination of the basis of 3-forms txabcu as

(7) ∆tϕptq “
ÿ

pi,j,kqPAYB

εpi, j, kq∆ijk x
ijk `

ÿ

1ďiăjăkď7, pi,j,kqRAYB

∆ijk x
ijk ,

where εpi, j, kq∆ijk is the coefficient in xijk of ∆tϕptq if pi, j, kq P AY B (i.e., if εpi, j, kq ‰ 0), and ∆ijk

is the coefficient in xijk of ∆tϕptq if pi, j, kq R A Y B. Consequently, the first equation of the C-flow (4)
(regardless of condition C) is equivalent to the system of differential equations

#

∆ijk “
pfijkq

1

fijk
if pi, j, kq P AYB,

∆ijk “ 0 if 1 ď i ă j ă k ď 7 and pi, j, kq R AYB.
(8)

The following lemma generalizes [9, Lemma 1] and states some properties involving the ∆ijk coefficients.

Lemma 1.3. Let ϕptq be a family of left invariant G2-structures given by (6) on the Lie group G solving
the system (8). For ordered indices pi, j, kq and pp, q, rq P AYB and α, β P R we have

i) if α∆ijk “ β∆pqr, then pfijkq
α “ pfpqrq

β;

ii) if αfijk∆ijk “ βfpqr∆pqr, then αpfijk ´ 1q “ βpfpqr ´ 1q.

Proof. For iq suppose α∆ijk “ β∆pqr. In view of (8) this is equivalent to α
pfijkq

1

fijk
“ β

pfpqrq
1

fpqr
. Notice

that the last expression can be stated as α d
dt lnpfijkq “ β d

dt lnpfpqrq. Therefore d
dt ln

`

pfijkq
α

pfpqrqβ

˘

“ 0. Hence

ln
`

pfijkq
α

pfpqrqβ

˘

is constant and since flp0q “ 1 for all l “ 1, . . . , 7 we conclude that pfijkq
α “ pfpqrq

β . Part

iiq is immediate. �

Notice that flows on G2-structures whose fundamental form is claimed to be calibrated (belonging to
class C “ X2) or cocalibrated (in class C “ X1 ‘ X3) have been deeply studied. Thus in view of diagram
1 it seems natural to consider the remaining case, i.e. flows where the fundamental form is required to
be Locally Conformal Parallel (C “ X4). However, as far as the authors know, nothing has been done for
flows of G2-structures where the LCP condition is required along the flow. Therefore in this paper we
are concerned with studying the Laplacian flow, resp. coflow, of an LCP G2-structure on a manifold M ,
or simply the LCP-flow, resp. LCP-coflow, which can be defined as:

(9)

$

&

%

d

dt
ϕptq “ ∆tϕptq,

ϕptq P X4

(10)

$

&

%

d

dt
ψptq “ ´∆tψptq,

˚tψptq P X4

where a G2-structure ϕ belongs to class X4 if it satisfies equation (3).

2. Laplacian flow on LCP rank-one solvable extensions of nilpotent Lie groups

In this section we study the Laplacian flow on a specific set of Lie groups endowed with a left-invariant
LCP G2-structure. The associated Lie algebras of these groups are rank-one solvable extensions of 6-
dimensional nilpotent Lie algebras. These solvable extensions are constructed generically as follows (see
[23]). Given a n-dimensional metric nilpotent Lie algebra pn, x¨, ¨ynq, its pn ` 1q-dimensional solvable
extension is a vector space s “ n ‘ Ren`1 where en`1 R n endowed with a metric x¨, ¨ys which is fixed
on s extending the one on n i.e x¨, ¨ys|n “ x¨, ¨yn and declaring that xen`1, en`1ys “ 1 and xen`1, nys “ 0.
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Now, given a derivation D of the Lie algebra n, the Lie bracket r¨, ¨ss on s is defined as rX,Y ss “ rX,Y sn
and ren`1, Y ss “ DY for every X, Y P n, i.e., aden`1 |n “ D.

Fino and Chiossi [5] adapt the former construction when n is a six-dimensional nilpotent Lie algebra
endowed with an SU(3)-structure pω, ψ`q and D is a derivation of n being non-singular, self-adjoint
with respect to x¨, ¨ys and diagonalisable by an adapted Hermitian basis te1, . . . , e6u of n (the latter
condition being equivalent to pDJq2 “ pJDq2). In this setting, the Maurer-Cartan equations for the
seven-dimensional Lie algebra yield

#

dek “ ηk e
k ^ e7 ` d̂ek, 1 ď k ď 6,

de7 “ 0,

where the ηk are the eigenvalues of the derivation D and d̂ek “
ř

1ďiăjď6 c
k
ije

ij is the exterior derivative
at the 6-dimensional level n.

It turns out that there is a natural G2-structure on the solvable Lie group S “ N ˆ R corresponding
to the 3-form:

ϕ “ ω ^ e7 ` ψ`

where e7 denotes the 1-form xe7, ¨ys and N is the nilpotent Lie group associated to the nilpotent Lie
algebra n. Indeed, they prove that when pS, ϕq is locally conformal parallel the SU(3)-structure pω, ψ`q
is half-flat, that is, dω2 “ 0 and dψ` “ 0. More concretely, the list of Lie algebras underlying such locally
conformal parallel structures in this setting is contained in the following classifying result (in a slightly
different representation with respect to the original one found inside the proof of [5, Theorem 1]):

Proposition 2.1. Let N be a nilpotent Lie group of dimension 6 endowed with an invariant SU(3)-
structure pω, ψ`q. Suppose that there is a non-singular and self-adjoint derivation D of the Lie algebra n
such that pDJq2 “ pJDq2. Then, on the solvable extension s “ n‘ Re7 with ade7 “ D, the G2-structure

ϕ “ pe12 ` e34 ` e56q ^ e7 ` e135 ´ e146 ´ e236 ´ e245,

is locally conformal parallel if and only if s is isomorphic to one of the following list:

cpm1 “p´me
17,´me27,´me37,´me47,´me57,´me67, 0q;

cpm2 “
´

´
4

3
me17 `

2

3
me36,´me27,´

2

3
me37,´me47,´me57,´

2

3
me67, 0

¯

;

cpm3 “
´

´
3

2
me17 `

1

2
me36 `

1

2
me45,´me27,´

3

4
me37,´

3

4
me47,´

3

4
me57,´

3

4
me67, 0

¯

;

cpm4 “
´

´
7

5
me17 `

2

5
me36 `

2

5
me45,´

6

5
me27 ´

2

5
me46,´

4

5
me37,´

3

5
me47,´

4

5
me57,´

3

5
me67, 0

¯

;

cpm5 “
´

´
5

4
me17 `

1

2
me45,´

5

4
me27 ´

1

2
me46,´me37,´

1

2
me47,´

3

4
me57,´

3

4
me67, 0

¯

;

cpm6 “
´

´
4

3
me17 `

1

3
me36 `

1

3
me45,´

4

3
me27 `

1

3
me35 ´

1

3
me46,´

2

3
me37,´

2

3
me47,´

2

3
me57,´

2

3
me67, 0

¯

;

cpm7 “
´

´
6

5
me17 `

2

5
me36,´

3

5
me27,´

3

5
me37,

2

5
me26 ´

6

5
me47,

2

5
me23 ´

6

5
me57,´

3

5
me67, 0

¯

.

Proof. All the Lie algebras fulfilling the hypothesis of the theorem are originally expressed (see the proof
of [5, Theorem 1], expression numbers from (9) to (15)) in a basis tν1, . . . , ν7u of s˚ where the G2-structure
ϕ adopts the following expression:

ϕ “ ν125 ´ ν345 ` ν567 ` ν136 ` ν246 ´ ν237 ` ν147.

In all the cases, ϕ turns out to be locally conformal parallel with Lee 1-form τ “ mν7. Now, for every
Lie algebra the new basis of 1-forms:

e1 “ ν3, e2 “ ν2, e3 “ ν1, e4 “ ν4, e5 “ ´ν6, e6 “ ν5, e7 “ ν7,

expresses ϕ in our canonical way (1), and the structure equations of cpms , 1 ď s ď 7, result as above. �
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A quick inspection of the Lie algebras cpms listed in Proposition 2.1 reveals that each of them is
determined by two tuples: one containing the eigenvalues pη1, . . . , η6q of the derivation D and other
one including the non-identically zero structure constants pc136, c

1
45, c

2
35, c

2
46, c

4
26, c

5
23q of the underlying

6-dimensional Lie algebra. In Table 2 we set both tuples for each case.

pη1, . . . , η6q pc136, c
1
45, c

2
35, c

2
46, c

4
26, c

5
23q

cpm1 p´m,´m,´m,´m,´m,´mq p0, 0, 0, 0, 0, 0q

cpm2 p´ 4m
3 ,´m,´

2m
3 ,´m,´m,´

2m
3 q p 2m3 , 0, 0, 0, 0, 0q

cpm3 p´ 3m
2 ,´m,´

3m
4 ,´

3m
4 ,´

3m
4 ,´

3m
4 q pm2 ,

m
2 , 0, 0, 0, 0q

cpm4 p´ 7m
5 ,´

6m
5 ,´

4m
5 ,´

3m
5 ,´

4m
5 ,´

3m
5 q p 2m5 ,

2m
5 , 0,´

2m
5 , 0, 0q

cpm5 p´ 5m
4 ,´

5m
4 ,´m,´

m
2 ,´

3m
4 ,´

3m
4 q p0, m2 , 0,´

m
2 , 0, 0q

cpm6 p´ 4m
3 ,´

4m
3 ,´

2m
3 ,´

2m
3 ,´

2m
3 ,´

2m
3 q pm3 ,

m
3 ,

m
3 ,´

m
3 , 0, 0q

cpm7 p´ 6m
5 ,´

3m
5 ,´

3m
5 ,´

6m
5 ,´

6m
5 ,´

3m
5 q p 2m5 , 0, 0, 0,

2m
5 ,

2m
5 q

Table 2. Defining parameters of the Lie algebras cpms .

Now, we shall study solutions to the Laplacian flow on every Lie algebra cpms . As we mentioned before,
we assume a family of G2-structures ϕptq given by (6) where the unknown data are some differentiable
real functions fiptq depending on a parameter t P I Ă R such that fip0q “ 1 and fiptq ‰ 0, for any
t P I, where I is a real open interval. Observe that in fact, the functions fiptq are positive. The basis
xiptq “ fiptqe

i is adapted to the G2-structure at any t, and the structure equations for any of the Lie
algebras cpms depend on the functions and defining parameters of the algebras contained in Table 2:

(11)
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

dx1 “
η1
f7ptq

x17 ` c136
f1ptq

f36ptq
x36 ` c145

f1ptq

f45ptq
x45, dx5 “

η5
f7ptq

x57 ` c523
f5ptq

f23ptq
x23,

dx2 “
η2
f7ptq

x27 ` c235
f2ptq

f35ptq
x35 ` c246

f2ptq

f46ptq
x46, dx6 “

η6
f7ptq

x67,

dx3 “
η3
f7ptq

x37, dx7 “ 0.

dx4 “
η4
f7ptq

x47 ` c426
f4ptq

f26ptq
x26,

Since we want to solve the LCP-flow (9), we need to solve two equations. Let us start looking
for necessary and sufficient conditions on the evolution functions fiptq in order to preserve the locally
conformal parallel condition, i.e, ϕptq P X4, that we state in a more restrictive version imposing that the
Lee 1-form remains constant along the flow:

Proposition 2.2. The family of G2-structures ϕptq given by (6) satisfies

(12) dϕptq “ 3me7 ^ ϕptq, d ˚t ϕptq “ 4me7 ^ ˚tϕptq,

and in particular remains locally conformal parallel if and only if the evolution functions fiptq, 1 ď i ď 7,
satisfy the following conditions:

‚ cpm1 : For any fiptq, i “ 1, . . . , 7.
‚ cpm2 : f17ptq “ f36ptq.
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‚ cpm3 : f17ptq “ f36ptq “ f45ptq.
‚ cpm4 : f17ptq “ f36ptq “ f45ptq, f27ptq “ f46ptq.
‚ cpm5 : f17ptq “ f45ptq, f27ptq “ f46ptq.
‚ cpm6 : f17ptq “ f36ptq “ f45ptq, f27ptq “ f35ptq “ f46ptq.
‚ cpm7 : f17ptq “ f36ptq, f23ptq “ f57ptq, f26ptq “ f47ptq.

Proof. Let us start computing dϕptq using the general structure equations (11). Directly:

dϕptq “ x1357
„

η1 ` η3 ` η5
f7ptq

´ c235
f2ptq

f35ptq



´ x1467
„

η1 ` η4 ` η6
f7ptq

` c246
f2ptq

f46ptq



´

x2367
„

η2 ` η3 ` η6
f7ptq

´ c136
f1ptq

f36ptq
´ c426

f4ptq

f26ptq
´ c523

f5ptq

f23ptq



´ x2457
„

η2 ` η4 ` η5
f7ptq

´ c145
f1ptq

f45ptq



.

Now, the equation dϕptq “ 3me7 ^ ϕptq “ 3m
f7ptq

x7 ^ ϕptq is equivalent to the following system of

equations:

(13)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pη1 ` η3 ` η5 ` 3mq f135ptq “ c235 f127ptq,

pη1 ` η4 ` η6 ` 3mq f146ptq “ ´c
2
46 f127ptq,

pη2 ` η4 ` η5 ` 3mq f245ptq “ c145 f127ptq,

pη2 ` η3 ` η6 ` 3mq f236ptq “ c136 f127ptq ` c
4
26 f347ptq ` c

5
23 f567ptq.

Similar computations for d ˚t ϕptq yield:

d ˚t ϕptq “ ´x12347
„

η1 ` η2 ` η3 ` η4
f7ptq

´ c523
f5ptq

f23ptq



´ x12567
„

η1 ` η2 ` η5 ` η6
f7ptq

´ c426
f4ptq

f26ptq



´

x34567
„

η3 ` η4 ` η5 ´ η6
f7ptq

´ c136
f1ptq

f36ptq
´ c145

f1ptq

f45ptq
´ c235

f2ptq

f35ptq
` c246

f2ptq

f46ptq



.

Again, solving the equation d ˚t ϕptq “ 4me7 ^ ˚tϕptq “
4m
f7ptq

x7 ^ ˚tϕptq is equivalent to solve the

system of equations:

(14)

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

η1 ` η2 ` η3 ` η4 ` 4m “ c523
f57ptq

f23ptq
,

η1 ` η2 ` η5 ` η6 ` 4m “ c426
f47ptq

f26ptq
,

η3 ` η4 ` η5 ` η6 ` 4m “ c136
f17ptq

f36ptq
` c145

f17ptq

f45ptq
` c235

f27ptq

f35ptq
´ c246

f27ptq

f46ptq
.

The final result is obtained by substituting the defining parameters of the Lie algebras cpms listed in
Table 2 in both the expressions (13) and (14). �

After solving ϕptq P X4, let us focus on the evolution equation
dϕptq

dt
“ ∆tϕptq. Next, we get a generic

expression of the Laplacian ∆tϕptq suitable for any of the Lie algebras cpms .

Proposition 2.3. Let ϕptq be a family of G2-structures given by (6) and remaining locally conformal
parallel in the sense of (12), for each Lie algebra cpms the Laplacian ∆tϕptq is given by:

∆tϕptq “
ÿ

pi,j,kqPAYB

εpi, j, kq∆ijk x
ijk
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where

(15)

∆127 “ m
f2
7
r3p4m` η3 ` η4 ` η5 ` η6q ` 4pη1 ` η2qs ,

∆347 “ m
f2
7

“

6m
5 δ7 ` 4 pη3 ` η4q

‰

,

∆567 “ m
f2
7

“

6m
5 δ7 ` 4 pη5 ` η6q

‰

,

∆135 “ m
f2
7

“

4m
3 δ6 ` 3 pη2 ` η4 ` η6q

‰

,

∆146 “ m
f2
7

“

8m
5 δ4 ` 2mδ5 `

4m
3 δ6 ` 3 pη2 ` η3 ` η5q

‰

,

∆236 “ m
f2
7

“

8m
3 δ2 ` 2mδ3 `

8m
5 δ4 `

4m
3 δ6 `

24m
5 δ7 ` 3 pη1 ` η4 ` η5q

‰

,

∆245 “ m
f2
7

“

2mδ3 `
8m
5 δ4 ` 2mδ5 `

4m
3 δ6 ´ 3 pη1 ` η3 ` η6q

‰

,

and δs “

#

1, if g – cpms ,

0, if g fl cpms .

Proof. The Laplacian operator on 3-forms is defined as: ∆tϕptq “ ´d ˚ d ˚ϕptq ` ˚d ˚ dϕptq. Taking into
account the conformally parallel conditions (12) expressed in terms of the orthonormal basis txiu

7
i“1, the

Laplacian of ϕptq can be computed as:

∆tϕptq “
m

f27 ptq

“

´4
`

d ˚ px7 ^ ˚ϕptqq
˘

` 3
`

˚d ˚ px7 ^ ϕptqq
˘‰

“
m

f27 ptq

“

´4
`

d ˚ px12347 ` x12567 ` x34567q
˘

` 3
`

˚d ˚ p´x1357 ` x1467 ` x2367 ` x2457q
˘‰

“
m

f27 ptq

“

´4
`

dpx12 ` x34 ` x56q
˘

` 3
`

˚dpx136 ` x145 ` x235 ´ x246q
˘‰

.

If we apply (11) and the Hodge star operator in the second summand, we obtain the following expression

∆tϕptq “ m
f2
7 ptq

„

3

ˆ

c136
f1ptq

f36ptq
` c145

f1ptq

f45ptq
` c235

f2ptq

f35ptq
´ c246

f2ptq

f46ptq

˙

` 4

ˆ

η1 ` η2
f7ptq

˙

x127

` m
f2
7 ptq

„

3 c426
f4ptq

f26ptq
` 4

ˆ

η3 ` η4
f7ptq

˙

x347 ` m
f2
7 ptq

„

3 c523
f5ptq

f23ptq
` 4

ˆ

η5 ` η6
f7ptq

˙

x567

` m
f2
7 ptq

„

3

ˆ

η2 ` η4 ` η6
f7ptq

˙

` 4 c235
f2ptq

f35ptq



x135 ` m
f2
7 ptq

„

´3

ˆ

η2 ` η3 ` η5
f7ptq

˙

` 4 c246
f2ptq

f46ptq



x146

` m
f2
7 ptq

„

´3

ˆ

η1 ` η4 ` η5
f7ptq

˙

´ 4

ˆ

c136
f1ptq

f36ptq
` c426

f4ptq

f26ptq
` c523

f5ptq

f23ptq

˙

x236

` m
f2
7 ptq

„

´3

ˆ

η1 ` η3 ` η6
f7ptq

˙

´ 4 c145
f1ptq

f45ptq



x245.

To get the final expression just apply Proposition 2.2 together with the defining parameters of the Lie
algebras collected in Table 2. �

Remark 2.4. We notice that for any family of G2-structures ϕptq given by (6) and any pi, j, kq P AYB
the expressions of f27 ptq∆ijk obtained in (15) depend only on the defining parameters of the Lie algebra
cpms and not on the functions fiptq.

3. Long time solutions of the Laplacian flow of an LCP G2-structure

In this section we obtain long time solutions for the Laplacian flow on the solvable Lie groups Ss,
s “ 1, . . . , 7, where Ss has underlying Lie algebra cpms described in Proposition 2.1 in terms of a basis
te1, . . . , e7u such that the canonical 3-form ϕ0 given by (1) is an LCP G2-structure. We divide our study
starting by the solvable Lie group S1 as the results obtained on it guide the method on the rest of cases.
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Theorem 3.1. Let S1 be a solvable Lie group with underlying Lie algebra cpm1 . The family of G2-
structures given by:

ϕptq “ p1´4m2tq2
`

e12 ` e34 ` e56
˘

^e7`p1´4m2tq
9
4

`

e135 ´ e146 ´ e236 ´ e245
˘

, t P I “

ˆ

´8,
1

4m2

˙

is the unique solution for the Laplacian LCP-flow (9). Moreover, the underlying metric gptq is Einstein
at any t P I and converges to a flat metric as t goes to ´8.

Proof. Taking into account (11) and the defining parameters of the Lie algebra cpm1 given in Table 2, the
Maurer-Cartan equations in the adapted basis tx1, . . . , x7u are:

#

dxk “ ´m
f7
xk ^ x7, 1 ď k ď 6,

dx7 “ 0.

Proposition 2.2 shows that for cpm1 the family of G2-structures ϕptq given by (6) remains locally
conformal parallel regardless of the evolution functions fiptq. Then, we only need to solve the evolution

equation
dϕptq

dt
“ ∆tϕptq.

We get the expression of the Laplacian ∆tϕptq substituting the defining parameters of the Lie algebra
cpm1 provided in Table 2 in the generic formula given in Proposition 2.3:

∆tϕptq “
´m2

f27 ptq

“

8 px127 ` x347 ` x567q ` 9 px135 ´ x146 ´ x236 ´ x245q
‰

.

Now, the equalities:

∆127 “ ∆347 “ ∆567 “
´8m2

f27 ptq
, ∆135 “ ∆146 “ ∆236 “ ∆245 “

´9m2

f27 ptq
,

imply respectively by Lemma 1.3 part i) that f12 “ f34 “ f56 and f135 “ f146 “ f236 “ f245. From

the first group we get f4ptq “
f12ptq
f3ptq

and f6ptq “
f12ptq
f5ptq

, thus, substituting in the second one we get

f21 ptq “ f22 ptq “ f23 ptq “ f25 ptq. Furthermore, as fiptq ą 0, we conclude that fiptq “ fptq for any 1 ď i ď 6.
At this point, solving the evolution equation (8) reduces to solve the following system of two differential

equations with unknowns fptq and f7ptq:

$

’

’

’

&

’

’

’

%

´8m2

f27 ptq
“ ∆127 “

f 1127
f127

“
d

dt
lnpf127q “

d

dt
rlnpf1ptqq ` lnpf2ptqq ` lnpf7ptqqs “ 2

f 1ptq

fptq
`
f 17ptq

f7ptq
,

´9m2

f27 ptq
“ ∆135 “

f 1135
f135

“
d

dt
lnpf135q “

d

dt
rlnpf1ptqq ` lnpf3ptqq ` lnpf5ptqqs “ 3

f 1ptq

fptq
,

which is equivalent to:
$

’

’

’

&

’

’

’

%

´2m2

f27 ptq
“

f 17ptq

f7ptq
,

´3m2

f27 ptq
“

f 1ptq

fptq
.

The first equation involves only f7ptq and can be explicitly solved:

f7ptqf
1
7ptq “ ´2m2 ùñ f7ptq “

`

´4m2t` C
˘1{2

.

Moreover, using the fact that f7p0q “ 1, we get that C “ 1 and f7ptq “
`

1´ 4m2t
˘1{2

. With this value
for f7ptq, it is also possible to solve explicitly the second equation:

´3m2

1´ 4m2t
“
f 1ptq

fptq
ùñ

3

4
lnp1´ 4m2tq “ ln fptq ` C.

Again, the value of C is determined imposing the initial condition fp0q “ 1, obtaining that fptq “
p1´ 4m2tq3{4. The domains of the functions fptq and f7ptq imply that the family ϕptq of G2-structures is
defined for any t P I “ p´8, 1

4m2 q.
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Concerning the metric, it turns out that the non-vanishing components of the curvature tensor Rijkl “
gpRpxi, xjqxk, xlq at any t P I are (modulo its symmetry properties):

Rijji “ ´
m2

1´ 4m2t
for any 1 ď i ă j ď 7.

Thus, lim
tÑ´8

Rpgtq “ 0. Moreover, an standard computation shows that the Ricci tensor Ricpgtqij “
ř7
k“1Rkijk satisfies

Ricpgtq “ ´
6m2

1´ 4m2t
gt,

that is, gt is Einstein concluding the proof. �

For the rest of the Lie algebras cpms , we obtain the following explicit solutions:

Theorem 3.2. Let Ss be a solvable Lie group with underlying Lie algebra cpms . The family of G2-
structures given below is a solution for the Laplacian flow:

‚ cpm2 : For t P p´8, 3
10m2 q,

ϕptq “ p1´
10

3
m2tq

11
5

`

e127 ´ e236
˘

` p1´
10

3
m2tq2

`

e347 ´ e567
˘

` p1´
10

3
m2tq

12
5

`

e135 ´ e146 ´ e245
˘

.

‚ cpm3 : For t P p´8, 1
3m2 q,

ϕptq “ p1´ 3m2tq
7
3 pe127 ´ e236 ´ e245q ` p1´ 3m2tq2pe347 ` e567q ` p1´ 3m2tq

5
2 pe135 ´ e146q.

‚ cpm4 : For t P p´8, 5
14m2 q,

ϕptq “ p1´
14

5
m2tq

17
7 pe127 ´ e146 ´ e236 ´ e245q ` p1´

14

5
m2tq2pe347 ` e567q ` p1´

14

5
m2tq

18
7 e135.

‚ cpm5 : For t P p´8, 1
3m2 q,

ϕptq “ p1´ 3m2tq
4
3 pe127 ´ e146 ´ e245q ` p1´ 3m2tq2pe347 ` e567q ` p1´ 3m2tq

5
2 pe135 ´ e236q.

‚ cpm6 : For t P p´8, 3
8m2 q,

ϕptq “ p1´
8

3
m2tq

5
2 pe127 ` e135 ´ e146 ´ e236 ´ e245q ` p1´

8

3
m2tq2pe347 ` e567q.

‚ cpm7 : For t P p´8, 5
14m2 q,

ϕptq “ p1´
14

5
m2tq

15
7 pe127 ` e347 ` e567 ´ e236q ` p1´

14

5
m2tq

18
7 pe135 ´ e146 ´ e245q.

Proof. Inspired by the solution to the Laplacian flow on the solvable Lie group S1 obtained in Theorem 3.1
we will consider families of G2-structures of type (6) on the rest of Lie groups Ss where the evolution
functions fsi ptq are specifically given by:

(16) fsi ptq “ p1´ αsm
2 tqβ

s
i , for any 1 ď i ď 7,

hence, for each Lie algebra cpms , the unknowns are now αs P R˚ and βsi P R, i “ 1, . . . , 7. Now,
Proposition 2.2 states necessary and sufficient conditions for the property being LCP to be preserved
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during the flow, which under the assumption (16) transform into relations involving the βi coefficients as
follows:

(17)

cpm2 : β1 ` β7 “ β3 ` β6;

cpm3 : β1 ` β7 “ β3 ` β6 “ β4 ` β5;

cpm4 : β1 ` β7 “ β3 ` β6 “ β4 ` β5, β2 ` β7 “ β4 ` β6;

cpm5 : β1 ` β7 “ β4 ` β5, β2 ` β7 “ β4 ` β6;

cpm6 : β1 ` β7 “ β3 ` β6 “ β4 ` β5, β2 ` β7 “ β3 ` β5 “ β4 ` β6;

cpm7 : β1 ` β7 “ β3 ` β6, β2 ` β3 “ β5 ` β7, β2 ` β6 “ β4 ` β7.

In addition, system (8) reduces to

∆ijk “
pfijkq

1

fijk
“
´αm2pβi ` βj ` βkq

p1´ αm2tq
,

where the unknowns are α and β1, . . . , β7.
Explicitly, taking the ∆ijk coefficients given in Proposition 2.3:

β1 ` β2 ` β7 “ ´
p1´ αm2tq1´2β7

αm
r3p4m` η3 ` η4 ` η5 ` η6q ` 4pη1 ` η2qs ,

β3 ` β4 ` β7 “ ´
p1´ αm2tq1´2β7

αm

„

6m

5
δ7 ` 4 pη3 ` η4q



,

β5 ` β6 ` β7 “ ´
p1´ αm2tq1´2β7

αm

„

6m

5
δ7 ` 4 pη5 ` η6q



,

β1 ` β3 ` β5 “ ´
p1´ αm2tq1´2β7

αm

„

4m

3
δ6 ` 3 pη2 ` η4 ` η6q



,

β1 ` β4 ` β6 “ ´
p1´ αm2tq1´2β7

αm

„

8m

5
δ4 ` 2mδ5 `

4m

3
δ6 ` 3 pη2 ` η3 ` η5q



,

β2 ` β3 ` β6 “ ´
p1´ αm2tq1´2β7

αm

„

8m

3
δ2 ` 2mδ3 `

8m

5
δ4 `

4m

3
δ6 `

24m

5
δ7 ` 3 pη1 ` η4 ` η5q



,

β2 ` β4 ` β5 “ ´
p1´ αm2tq1´2β7

αm

„

2mδ3 `
8m

5
δ4 ` 2mδ5 `

4m

3
δ6 ´ 3 pη1 ` η3 ` η6q



.

Clearly, the latter system admits solution only if β7 “
1
2 . Now, for each Lie algebra cpms the values

of α and β1, . . . , β6 result of solving the system that yields substituting above the concrete values of
η1, . . . , η6 listed in Table 2 joint with the corresponding relations (17) involving the preservation of the
LCP condition during the flow. The values of the solution parameters are listed in Table 3 and the
resulting solutions ϕptq are picked in the statement of the theorem. �

Lie group α pβ1, . . . , β7q Lie group α pβ1, . . . , β7q

S2
10
3

`

9
10 ,

4
5 ,

7
10 ,

4
5 ,

4
5 ,

7
10 ,

1
2

˘

S5 3
`

11
12 ,

11
12 ,

5
6 ,

2
3 ,

3
4 ,

3
4 ,

1
2

˘

S3 3
`

1, 56 ,
3
4 ,

3
4 ,

3
4 ,

3
4 ,

1
2

˘

S6
8
3

`

1, 1, 34 ,
3
4 ,

3
4 ,

3
4 ,

1
2

˘

S4
14
5

`

1, 1314 ,
11
14 ,

5
7 ,

11
14 ,

5
7 ,

1
2

˘

S7
14
5

`

13
14 ,

10
14 ,

10
14 ,

13
14 ,

13
14 ,

10
14 ,

1
2

˘

Table 3. Defining parameters of the functions fiptq “ p1´ αm
2tqβi .
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Remark 3.3. The non-vanishing elements (up to symmetries) of the Riemannian curvature of gt are
tabulated in Tables 4 and 5 in Appendix, where the coefficients C1, C2, C3, C4 are given in terms of the
parameter α by:

C1 “
´6m2

1´ αm2t
, C2 “

´m2

3

ˆ

1

1´ αm2t

˙

, C3 “
´m2

4

ˆ

1

1´ αm2t

˙

, C4 “
´m2

5

ˆ

1

1´ αm2t

˙

.

A direct computation of the Ricci tensors in the orthonormal basis txiptqu
7
i“1 shows that:

cpm2 : Ricpgtq “ C2 diagp22, 17, 12, 17, 17, 12, 17q,

cpm3 : Ricpgtq “ C3 diagp32, 22, 17, 17, 17, 17, 22q,

cpm4 : Ricpgtq “ C4 diagp37, 32, 22, 17, 22, 17, 27q,

cpm5 : Ricpgtq “ C3 diagp27, 27, 22, 12, 17, 17, 22q,

cpm6 : Ricpgtq “ C2 diagp21, 21, 11, 11, 11, 11, 16q,

cpm7 : Ricpgtq “ C4 diagp32, 17, 17, 32, 32, 17, 27q,

Hence, unlike the case of S1, none of the metrics listed in Theorem 3.2 obtained as solutions of the
Laplacian LCP-flow for Ss, s “ 2, . . . , 7, are Einstein.

Proposition 3.4. The G2-structures obtained in Theorem 3.1 and 3.2 are Laplacian solitons of shrinking
type.

Proof. Recall that a G2-structure ϕ is called Laplacian soliton if it satisfies the equation

∆ϕ “ λϕ` LXϕ,

for some real number λ and some vector field X. Depending on the sign of λ, Laplacian solitons are
called shrinking (if λ ă 0); steady (if λ “ 0) or expanding (if λ ą 0).

In the left-invariant setting, the Lie derivative of a 3-form Ω can be computed following the formula:

LXΩpY1, Y2, Y3q “ ´ΩprX,Y1s, Y2, Y3q ´ ΩpY1, rX,Y2s, Y3q ´ ΩpY1, Y2, rX,Y3sq,

where Y1, Y2, Y3 are invariant vector fields.
In our case, consider the left-invariant vector field X “ ´ m

f7ptq
X7, where X7 denotes the dual of the

1-form x7. Then, taking into account the generic structure equations (11) and the formula above we
get an expression of the Lie derivative LXϕptq in terms of the defining parameters η1, . . . , η6 of the Lie
algebras:

(18)
LXϕptq “ m

f2
7 ptq

“

pη1 ` η2qx
127 ` pη3 ` η4qx

347 ` pη5 ` η6qx
567 ` pη1 ` η3 ` η5qx

135

´pη1 ` η4 ` η6qx
146 ´ pη2 ` η3 ` η6qx

236 ´ pη2 ` η4 ` η5qx
245

‰

.

Now, if we compute ∆ϕptq ´ LXϕptq, using (18), Proposition 2.3 and Table 2, we obtain:

∆ϕptq ´ LXϕptq “ ´
m2

f27 ptq
ϕptq

ˆ

6 δ1 ` 5 δ2 `
9

2
δ3 `

21

5
δ4 `

9

2
δ5 ` 4 δ6 `

21

5
δ7

˙

,

so they are Laplacian solitons. Moreover, since the constant λi is negative in all cases, the solitons are of
shrinking type. �

4. Long time solutions of the Laplacian coflow of an LCP G2-structure

In this section we consider the Laplacian coflow (10). More concretely, we seek explicit solutions
to the coflow on the set of solvable Lie groups endowed with a left-invariant LCP structure listed in
Proposition 2.1.

We look for solutions within the families of invariant G2-structures ϕptq of type (6) depending on some
unknown functions fiptq, 1 ď i ď 7, in the same terms as it has been set in the paper. Then, at any t P I,
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the 4-form ψptq “ ˚tϕptq involved in the evolution equation of the coflow can be expressed in terms of
the adapted basis txiptqu7i“1 as:

ψptq “ x3456 ` x1256 ` x1234 ´ x2467 ` x2357 ` x1457 ` x1367

“ f3456ptqe
3456 ` f1256ptqe

1256 ` f1234ptqe
1234 ´ f2467ptqe

2467

`f2357ptqe
2357 ` f1457ptqe

1457 ` f1367ptqe
1367.

and the Laplacian of the 4-form ψptq:

(19) ∆tψptq “
ÿ

pl,m,n,oqPKYtp2,4,6,7qu

εpl,m, n, oq∆lmno x
lmno `

ÿ

pl,m,n,oqRKYtp2,4,6,7qu

∆lmnox
lmno.

where K “ tp1, 2, 3, 4q, p1, 2, 5, 6q, p1, 3, 6, 7q, p1, 4, 5, 7q, p2, 3, 5, 7q, p3, 4, 5, 6qu. The symbols εpl,m, n, oq are
defined as:

εpl,m, n, oq “

#

1 if pl,m, n, oq P K,
´1 if pl,m, n, oq “ p2, 4, 6, 7q;

Therefore, by a similar a similar argument as in the flow case, the first equation of the Laplacian LCP-
coflow (10) becomes the system of differential equations:

#

∆lmno “
´pflmnoq

1

flmno
, if pl,m, n, oq P K Y tp2, 4, 6, 7qu,

∆lmno “ 0, otherwise.

Concerning the preservation of the LCP property of ˚tψptq, functions fiptq must satisfy the relations
stated in Proposition 2.2. Now, in the next result we show that there is a correspondence between
solutions of the ansatz type (6) of the Laplacian LCP-flow and the Laplacian LCP-coflow assuming that
the functions are of potential type.

Theorem 4.1. Let ϕptq and rϕptq be two different families of G2-structures on cpms with s “ 1, . . . , 7,
given by (6), where

fsi ptq “ p1´ αm
2tqβi and Ăfsi ptq “ p1´ γ m

2tqδi , for i “ 1, . . . , 7,

and β7 “
1
2 and δ7 “

1
2 . If the defining parameters of the functions fsi ptq and Ăfsi ptq are related by:

(20) γ “ α

˜

2´
ř7
i“1 βi

2

¸

, and δi “
1

2
`

1´ 2βi

´2`
ř7
j“1 βj

with i P t1, . . . , 7u,

then:

(i) ϕptq is LCP if and only if rϕptq is LCP.

(ii) ϕptq solves the Laplacian LCP-flow (9) if and only if rψptq “ r̊t rϕptq solves the Laplacian LCP-
coflow (10).

Proof. We denote by pl,m, n, oq P K the set of complementary indexes to pi, j, kq P A Y B (see page 6),

i.e. pl,m, n, oq “ {pi, j, kq “ p1, . . . , î, . . . , ĵ, . . . , k̂, . . . , 7q. With this notation, (20) implies

(21) γ pδl ` δm ` δn ` δoq “ ´α pβi ` βj ` βkq,

for all pl,m, n, oq P K and pl,m, n, oq “ {pi, j, kq.
Now we prove the two statements of the theorem.

(i) Let us consider two pair of indexes pi1, j1, k1q, pi2, j2, k2q P AYB such that they have a common index,
let us say k1 “ k2 “ k. Under this hypothesis and making use of (21) the following identities hold:

γpδ1 ` . . .` δ7q “ γpδ1 ` . . .` δ7q

γpδi1 ` δj1 ` δkq ` γpδl1 ` δm1 ` δn1 ` δo1q “ γpδi2 ` δj2 ` δkq ` γpδl2 ` δm2 ` δn2 ` δo2q

γpδi1 ` δj1 ` δkq ´ αpβi1 ` βj1 ` βkq “ γpδi2 ` δj2 ` δkq ´ αpβi2 ` βj2 ` βkq

γrpδi2 ` δj2q ´ pδi1 ` δj1qs “ ´αrpβi1 ` βj1q ´ pβi2 ` βj2qs.
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We observe that the relations (17) concerning the preservation of the LCP property are always of the
form:

βi1 ` βj1 “ βi2 ` βj2 ,

for a pair of indexes satisfying that pi1, j1, kq P A, pi2, j2, kq P B. The LCP conditions for rϕptq are exactly
the same that the LCP conditions for ϕptq interchanging the parameters βi for δi. Therefore, considering
the non-zero values of the parameter α of the solutions of the Laplacian flow (see Theorem 3.2) it is easy
to see that γ ‰ 0 in all the cases, hence we conclude that ϕptq is LCP if and only if rϕptq is so.
(ii) Let ϕptq and rϕptq be two families of G2-structures (6) whose defining parameters of the functions fsi ptq

and rfsi ptq are related by (20). Let ϕptq be a solution of the Laplacian LCP-flow; we want to prove that
rψptq “ r̊t rϕptq is a solution of the corresponding coflow. That ψ̃ptq is solution of the coflow is equivalent
to:

p rfs7 ptqq
2∆̃lmno “ γmpδl ` δm ` δn ` δoq for any pl,m, n, oq P K Y tp2, 4, 6, 7qu,

where we have used the same ideas as in the proof of Theorem 3.2, that is, the functions rfsi ptq are of
potential type and δ7 “

1
2 .

Firstly observe that, as the Hodge star operator commutes with the Laplacian operator, we have that
∆t˚tϕptq “ ˚t∆tϕptq, hence, the coefficients of ∆tϕptq and ∆tψptq appearing in the linear combinations (7)
and (19) are related by:

∆lmno “ ∆ijk, for any pi, j, kq P AYB and pl,m, n, oq “ {pi, j, kq.

This fact together with the non-dependence of the pfs7 ptqq
2∆ijk with respect to the specific chosen func-

tions noticed in Remark 2.4 yields:

p rfs7 ptqq
2∆̃lmno “ p rf

s
7 ptqq

2∆̃ijk “ pf
s
7 ptqq

2∆ijk, for any pi, j, kq P AYB and pl,m, n, oq “ {pi, j, kq.

Now, since ϕptq is solution of the flow then we have:

pfs7 ptqq
2∆ijk “ ´αmpβi ` βj ` βkq for any pi, j, kq P AYB.

Therefore, bearing in mind (21) the following sequence of identities hold:

p rfs7 ptqq
2
r∆lmno “ pf

s
7 ptqq

2∆ijk “ ´αmpβi ` βj ` βkq “ γmpδl ` δm ` δn ` δoq,

for every pl,m, n, oq P K Y tp2, 4, 6, 7qu, that is, rψptq is a solution of the coflow.
The converse of the statement is basically the same and we omit the proof. �

As a consequence of the previous theorem, for every Lie group Ss we provide in the following corollary
an explicit solution of the LCP-coflow based on the defining parameters of the solutions of the flow
contained in Table 3.

Corollary 4.2. Let Ss be a solvable Lie group with underlying Lie algebra cpms . The family of G2-
structures given below is solution for the Laplacian coflow:

‚ cpm1 : For t P p´ 1
6m2 , 8q,

ϕptq “ p1` 6m2tq
7
6

`

e127 ` e347 ` e567
˘

` p1` 6m2tq
`

e135 ´ e146 ´ e236 ´ e245
˘

.

‚ cpm2 : For t P p´ 3
16m2 , 8q,

ϕptq “ p1`
16

3
m2tq

17
16

`

e127 ´ e236
˘

` p1`
16

3
m2tq

19
16

`

e347 ` e567
˘

` p1`
16

3
m2tq

15
16

`

e135 ´ e146 ´ e245
˘

.

‚ cpm3 : For t P p´ 1
5m2 , 8q,

ϕptq “ p1` 5m2tqpe127 ´ e236 ´ e245q ` p1` 5m2tq
6
5 pe347 ` e567q ` p1` 5m2tq

9
10 pe135 ´ e146q.
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‚ cpm4 : For t P p´ 5
24m2 , 8q,

ϕptq “ p1`
24

5
m2tq

23
24 pe127 ´ e146 ´ e236 ´ e245q ` p1`

24

5
m2tq

29
24 pe347 ` e567q ` p1`

24

5
m2tq

7
8 e135.

‚ cpm5 : For t P p´ 1
5m2 , 8q,

ϕptq “ p1` 5m2tqpe127 ´ e146 ´ e245q ` p1` 5m2tq
6
5 pe347 ` e567q ` p1` 5m2tq

9
10 pe135 ´ e236q.

‚ cpm6 : For t P p´ 14
3m2 , 8q,

ϕptq “ p1`
3

14
m2tq

13
14 pe127 ` e135 ´ e146 ´ e236 ´ e245q ` p1`

3

14
m2tq

17
14 pe347 ` e567q.

‚ cpm7 : For t P p´ 5
24m2 , 8q,

ϕptq “ p1`
24

5
m2tq

9
8 pe127 ` e347 ` e567 ´ e236q ` p1`

24

5
m2tq

7
8 pe135 ´ e146 ´ e245q.

Remark 4.3. Direct computations show that, for each Lie algebra cpms , the Ricci tensors of the metrics
rgt induced by the solutions rϕptq to the coflow given in Corollary 4.2 are given by

Ricprgtq “

ˆ

1´ αm2t

1` γ m2t

˙

Ricpgtq,

where Ricpgtq are the Ricci tensors of the metrics gt induced by the solutions ϕptq to the flow given in
Remark 3.3. Thus, as in the flow case, only the solutions on S1 are Einstein.
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Appendix

Solvmanifold Rpgtq

R1367ptq “ R1637ptq “
´2
3 C2, R1717ptq “

´16
3 C2, R1736ptq “

4
3C2,

R1212ptq “ R1414ptq “ R1515ptq “ ´4C2,

S2 R1313ptq “ R1616ptq “ R3636ptq “
´7
3 C2, R3737ptq “ R6767ptq “

´4
3 C2,

R2323ptq “ R2626ptq “ R3434ptq “ R3535ptq “ R4646ptq “ R5656ptq “ ´2C2,

R2424ptq “ R2525ptq “ R2727ptq “ R4545ptq “ R4747ptq “ R5757ptq “ ´3C2.

R1212ptq “
´3
2 C3, R1313ptq “ R1414ptq “ R1515ptq “ R1616ptq “

´17
4 C3,

R1367ptq “ R1457ptq “ ´R1547ptq “ ´R1637ptq “ ´R3716ptq “ ´R4715ptq “

R5714ptq “ R6713ptq “
´3
4 C3, R3645ptq “ R4536ptq “

´C3

2 ,

S3 R1717ptq “ ´9C3, R1736ptq “ R1745ptq “ R3617ptq “ R4517ptq “
3
2 C3,

R2323ptq “ R2424ptq “ R2525ptq “ R2626ptq “ R3636ptq “ R4545ptq “ ´3C3,

R3456ptq “ ´R3546ptq “ ´R4635ptq “ R5634ptq “
C3

4 , R2727ptq “ ´4C3,

R3434ptq “ R3535ptq “ R3737ptq “ R4646ptq “ R4747ptq “ R5656ptq “

R5757ptq “ R6767ptq “
´9
4 C3.

R1234ptq “ R1256ptq “ ´R1423ptq “ ´R1625ptq “ ´R2314ptq “ ´R2516ptq “

R3412ptq “ R3456ptq “ ´R3546ptq “ ´R4635ptq “ R5612ptq “ R5634ptq “
C4

5 ,

R1367ptq “ ´R1547ptq “ ´R2467ptq “ R2647ptq “ ´R4715ptq “ R4726ptq “

R6713ptq “ ´R6724ptq “
´3
5 C4, R1313ptq “ R1515ptq “

´27
5 C4,

R1414ptq “ R1616ptq “ ´4C4, R1457ptq “ ´R1637ptq “
´4
5 C4,

S4 R1736ptq “ R1745ptq “ R3617ptq “ R4517ptq “
7
5 C4, R1212ptq “

´42
5 C4,

R2323ptq “ R2525ptq “
´24
5 C4, R2424ptq “ R2626ptq “

´17
5 C4,

R2746ptq “ R4627ptq “
´6
5 C4, R3434ptq “ R4646ptq “ R5656ptq “

´12
5 C4,

R3535ptq “ R3737ptq “ R5757ptq “
´16
5 C4, R3636ptq “ R4545ptq “ ´3C4,

R3645ptq “ R4536ptq “
´2
5 C4, R3716ptq “ ´R5714ptq “

4
5 C4,

R4747ptq “ R6767ptq “
´9
5 C4, R1717ptq “

´49
5 C4.

Table 4. Non-vanishing coefficients of the curvature of the metric gt induced by the
solutions of the LCP flow expresssed in the adapted basis txiu

7
i“1.
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Rpgtq

R1212ptq “ R1717ptq “ R2727ptq “
´25
5 C3, R1313ptq “ R2323ptq “ ´5C3,

R1256ptq “ ´R1625ptq “ ´R2516ptq “ R5612ptq “
C3

4 ,

R1414ptq “ R2424ptq “ R4545ptq “ R4646ptq “ R5656ptq “ R5757ptq “

R6767ptq “
´9
4 C3, R1515ptq “ R2626ptq “

´7
2 C3,

S5 R1457ptq “ ´R2467ptq “ R5714ptq “ ´R6724ptq “
´3
4 C3, R3434 “ ´2C3,

R1547ptq “ ´R2647ptq “ R4715ptq “ ´R4726ptq “
C3

2 , R3737 “ ´4C3,

R1745ptq “ ´R2746ptq “ R4517ptq “ ´R4627ptq “
5
4 C3, R4747 “ ´C3,

R1616ptq “ R2525ptq “
´15
4 C3, R3535ptq “ R3636ptq “ ´3C3.

R1234ptq “ R1256ptq “ R3412ptq “ R3456ptq “ R5612ptq “ R5634ptq “
C2

6 ,

R1313ptq “ R1414ptq “ R1515ptq “ R1616ptq “ R2323ptq “ R2424ptq “ R2525ptq “

R2626ptq “
´31
12 C2, R1212ptq “ R1717ptq “ R2727ptq “

´16
3 C2,

R1324ptq “ ´R1423ptq “ R1526ptq “ ´R1625ptq “ ´R2314ptq “ R2413ptq “ R2615ptq “

R3546ptq “ ´R3645ptq “ ´R4536ptq “ R4635ptq “
C2

12 ,

S6 R1367ptq “ R1457ptq “ ´R1547ptq “ ´R1637ptq “ R2357ptq “ ´R2467ptq “ ´R2537ptq “

R2647ptq “ ´R3716ptq “ ´R3725ptq “ ´R4715ptq “ R4726ptq “ R5714ptq “ R5723ptq “

R6713ptq “ ´R6724ptq “
´C2

3 ,

R1736ptq “ R1745ptq “ R2735ptq “ ´R2746ptq “ R3527ptq “ R3617ptq “ R4517ptq “

´R4627ptq “
2
3 C2, R3535ptq “ R3636ptq “ R4545ptq “ R4646ptq “

´19
12 C2,

R3434ptq “ R3737ptq “ R4747ptq “ R5656ptq “ R5757ptq “ R6767ptq “
´4
3 C2,

R1234ptq “ R1256ptq “ ´R1423ptq “ R1526ptq “ ´R2314ptq “ R2615ptq “ R3412ptq “

R3456ptq “ ´R3645ptq “ ´R4536ptq “ R5612ptq “ R5634ptq “
´18
5 C4,

R1313ptq “ R1616ptq “ R2424ptq “ R2525ptq “ R3535ptq “ R4646ptq “
´17
5 C4,

R1367ptq “ ´R1637ptq “ ´R2467ptq “ ´R2537ptq “ R2735ptq “ ´R2746ptq “ R3527ptq “

S7 ´R3716ptq “ ´R3725ptq “ ´R4627ptq “ R6713ptq “ ´R6724ptq “
´3
5 C4,

R1414ptq “ R1515ptq “ R1717ptq “ R4545ptq “ R4747ptq “ R5757ptq “
´36
5 C4,

R1736ptq “ R2357ptq “ R2647ptq “ R3617ptq “ R4726ptq “ R5723ptq “
6
5 C4,

R2323ptq “ R2626ptq “ R3636ptq “
´12
5 C4, R2727ptq “ R3737ptq “ R6767ptq “

´9
5 C4.

Table 5. Continuation of Table 4.
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