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RESUMEN 

Los MOF (“metal-organic frameworks”) con características excepcionales 

(superficie específica, capacidad de adsorción, tamizado molecular, flexibilidad, 

carácter orgánico-inorgánico y posibilidad de funcionalización) y los derivados del 

grafeno, con extraordinarias propiedades eléctricas, mecánicas y térmicas, se 

pueden considerar materiales avanzados y nanotecnológicos que son candidatos a 

mejorar las prestaciones de los materiales en la sociedad actual. 

Las tecnologías de membrana han surgido en los últimos años como técnicas de 

separación más eficientes desde el punto de vista energético y medioambiental que 

otros procesos de separación. Dentro de las tecnologías de membrana, la 

nanofiltración (con un tamaño de retención de hasta 2 nm) ha adquirido una gran 

relevancia para su aplicación tanto en medio acuoso como no acuoso (“organic 

solvent nanofiltration”, OSN) gracias a las ventajas que ofrece frente a otros 

procesos de separación más convencionales como la destilación o la ósmosis 

inversa.  

Las membranas más utilizadas en nanofiltración son las conocidas como 

membranas compuestas de película delgada, “thin film composite” (TFC), siendo 

las más investigadas las formadas por una fina capa de poliamida (PA) sintetizada 

por polimerización interfacial sobre un soporte de poliimida. Sin embargo, las 

membranas nanocompuestas de película delgada “thin film nanocomposite” (TFN) 

han surgido como competidoras importantes. Estas ofrecen mejoras en el 

rendimiento, aumentando el flujo de permeado (sin perjudicar al rechazo) gracias 

a la introducción de nanopartículas durante la síntesis de la capa fina selectiva. 

En este contexto, esta tesis doctoral tiene como finalidad progresar en este tipo 

de membranas con el empleo de MOF y derivados del grafeno de tal manera que 

optimicen los procesos de nanofiltración. En concreto, se pretende: a) desarrollar 

procesos de preparación de membranas TFC y TFN más respetuosos con el medio 

ambiente; b) preparar novedosas membranas TFN con MOF; c) funcionalizar el 

óxido de grafeno para hacerlo compatible con la poliamida en una membrana TFN; 

d) controlar el posicionamiento del MOF en una membrana TFN de poliamida. Las 

membranas preparadas se caracterizan mediante diversas técnicas como 

difracción de rayos X (XRD), microscopía electrónica de barrido (SEM) y de 

transmisión (TEM), espectroscopia infrarroja con transformada de Fourier y de 

reflexión total atenuada (FTIR-ATR), microscopía de fuerza atómica (AFM), entre 

otras. Finalmente, las membranas sintetizadas se van a aplicar a la nanofiltración 

para la recuperación de disolventes orgánicos y la eliminación de compuestos 

farmacéuticos del agua. A continuación, se describe brevemente lo realizado en 

esta tesis doctoral. 

La principal desventaja que ofrecen las membranas TFC y TFN es que el polímero 

necesario para la preparación del soporte es normalmente soluble en disolventes 

orgánicos tóxicos. Entre estos se incluyen la dimetilformamida (DMF), la 
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metilpirrolidona (NMP) o la dimetilacetamida (DMAc). A este aspecto se suma que 

el postratamiento al que se someten las membranas para mejorar su rendimiento 

se realiza con DMF.  

Actualmente, la preocupación general por el deterioro del medio ambiente y su 

legislación cada vez más restrictiva están derivando en el desarrollo e 

implantación de la llamada “química verde” (“green chemistry”), cuyos principios 

se centran en la reducción o eliminación de sustancias peligrosas en el diseño de 

productos y procesos químicos. Con el fin de desarrollar un proceso de fabricación 

de membranas más sostenible, en esta tesis se ha sustituido la DMF por otro 

disolvente menos tóxico como el DMSO en la preparación de la disolución de 

polímero (poliimida P84®) para el “casting”. Además, para comprobar la 

intercambiabilidad de ambos disolventes en el proceso de activación de las 

membranas, se han caracterizado membranas TFC postradas con ambos 

disolventes, observándose diferencias insignificantes. Lo mismo ocurre con los 

resultados obtenidos en la aplicación de las membranas en OSN, donde se han 

obtenido incluso flujos más elevados con la membrana TFC postratada con DMSO. 

Este efecto se ha relacionado con la mayor rugosidad  

Para ampliar el concepto de intercambiabilidad de disolventes, se han utilizado 

membranas TFN con ZIF-8 como relleno en OSN, observándose el mismo efecto 

que en las membranas TFC. En consecuencia, en el resto de la tesis se ha trabajado 

con DMSO. 

Como se ha comentado anteriormente, las membranas TFN ofrecen mejoras 

respecto a las TFC. En esta tesis, se han utilizado como relleno tres MOF: ZIF-8, 

UiO-66 y ZIF-93, y un derivado del grafeno, el rGO-ODA. En el caso de los MOF, los 

mejores resultados se obtienen usando como relleno UiO-66 y ZIF-93, con un flujo 

de 11 L·m-2·h-1·bar-1 para ambos MOF, 2.3 veces mayor que el obtenido con la 

membrana TFC, en la nanofiltración de “Sunset Yellow” en MeOH. Esta mejora en la 

permeabilidad está relacionada con la porosidad del MOF, el espesor de la capa y el 

carácter hidrófilo/hidrófobo de la membrana Cabe decir que con el UiO-66 el 

rechazo obtenido es algo menor debido a su mayor tamaño de poro y la peor 

compatibilidad de este con la poliamida (PA). Por otro lado, el uso del rGO-ODA 

como relleno ofrece mejoras en la nanofiltración consecutiva de tres disoluciones 

de colorantes en etanol: “Acridine Orange” (AO), “Sunset Yellow” (SY) y “Rose 

Bengal” (RB) gracias a la presencia simultánea de grupos polares y no apolares del 

rGO-ODA junto con la creación de huecos entre este y la PA. La mejora más 

importante fue la obtenida al utilizar un 0.06% (w/v) de relleno, pasando de 2.8, 

3.4 y 3.7 L·m-2·h-1·bar-1 para AO, SY y RB, respectivamente, con la membrana TFC a 

4.3, 4.6 y 6 L·m-2·h-1·bar-1 con la membrana TFN. El rechazo para estos dos últimos 

colorantes se mantuvo por encima del 98%, mientras que para el AO baja a un 

76%. El menor tamaño de este colorante junto con la posible creación de defectos 

durante la síntesis de la capa de PA debida a la presencia del relleno podrían 

explicar este menor rechazo.  
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Entre los factores que afectan al flujo de las membranas TFC y TFN, se encuentra 

el espesor de la capa selectiva, cuanto menor este, mayor aquel. Una de las 

dificultades en la síntesis de membranas TFN es mantener controlado dicho 

espesor, lo que conlleva a tener que utilizar partículas de tamaño nanométrico, las 

cuales poseen más tendencia a aglomerarse. La presencia de aglomerados durante 

la síntesis de la capa selectiva puede dar lugar a la creación de defectos en ella y, 

por lo tanto, a una disminución del rendimiento de la membrana. Como solución a 

este problema, en esta tesis se han fabricado membranas mediante dos técnicas 

que permiten controlar el posicionamiento de las nanopartículas: síntesis 

(cristalización) interfacial de MOF y aplicación de la técnica de Langmuir-Schaefer. 

La síntesis (cristalización) interfacial de MOF se basa en el mismo principio que 

la polimerización interfacial (IP): la reacción de dos reactivos en la interfase de dos 

disolventes inmiscibles, en concreto, de la sal metálica disuelta en agua con el 

ligando orgánico disuelto en octanol. Mediante esta técnica, se consiguieron 

sintetizar capas de dos MOF sobre el soporte de P84®: HKUST-1 y ZIF-93. A 

continuación, se sinterizó sobre la capa de MOF la capa selectiva de PA por 

polimerización interfacial (PA/HKUST-1 y PA/ZIF-93 BTFC (membranas 

compuestas bicapa de película delgada, en inglés “bilayered thin film composite”)). 

Estas membranas se aplicaron a la eliminación de microcontaminantes emergentes 

presentes en agua, un problema con efectos negativos no solo sobre el medio 

ambiente, sino también sobre la salud animal y humana. En particular, se estudió la 

eliminación de dos fármacos: diclofenaco y naproxeno. A modo de comparación, 

también se utilizaron para dicho fin membranas TFC y TFN usando como relleno 

HKUST-1 y ZIF-93. Las membranas con las que se obtuvieron los flujos más 

elevados, con rechazos por encima del 98 % para ambos fármacos, fueron las 

sintetizadas siguiendo la metodología de síntesis interfacial. La mejora más 

importante se obtuvo con la membrana PA/HKUST-1 BTFC con un flujo de 33.1 

L·m-2·h-1·bar-1 en la nanofiltración de diclofenaco, y de 24.9 L·m-2·h-1·bar-1 en la de 

naproxeno, correspondiente a un flujo 4.9 veces mayor respecto a la membrana 

TFC para el diclofenaco y 3.6 veces en el caso del naproxeno. La caracterización 

realizada indicó que estas mejoras de permeación están relacionadas con el 

espesor de la capa final, la porosidad del MOF, la hidrofilicidad de la membrana y la 

rugosidad de la misma. Además, se comprobó la estabilidad de esta membrana y la 

de la membrana TFC sometiendo a ambas a tres ciclos consecutivos de 

nanofiltración de diclofenaco en agua. La mayor hidrofilicidad de la membrana 

PA/HKUST-1 le proporciona propiedades anti-ensuciamiento, lo que se traduce en 

una menor disminución de flujo por ensuciamiento entre ciclo y ciclo en 

comparación con la membrana TFC. 

En el caso de la técnica Langmuir-Schaefer, reportada por primera vez con este 

trabajo para la fabricación de membranas compuestas para nanofiltración, primero 

se genera una monocapa de las nanopartículas de interés, en este caso del MOF 

MIL-101(Cr), sobre una superficie líquida. Posteriormente esta se deposita por 
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mecanismos de quimi o fisisorción, sobre el soporte polimérico. Una vez que se 

corroboró la correcta deposición de una monocapa de MIL-101(Cr) sobre el 

soporte mediante diferentes técnicas de caracterización, se sintetizó sobre ella una 

capa selectiva de PA. La membrana obtenida se aplicó a la nanofiltración de dos 

disoluciones diferentes: SY y RB en metanol. Con ambos colorantes, se produjo un 

aumento de flujo al usar estas membranas en comparación con la membrana TFC, 

pasando de 7.5 a 10.1 L·m-2·h-1·bar-1 con SY y de 6 a 9.5 L·m-2·h-1·bar-1 con RB. Esta 

mejora es debida al tamaño de poro del MIL-101(Cr), su hidrofilicidad y a la 

formación de una monocapa de MOF sin presencia de aglomerados. 

En conclusión, se han establecido procesos de preparación de membranas más 

respetuosos con el medio ambiente y progresado con novedosas membranas 

nanocompuestas de película delgada basadas en MOF o en derivados del grafeno 

que han sido más eficientes en la nanofiltración de disolventes orgánicos y 

disoluciones acuosas con fármacos. 
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Soy de las que piensan que la ciencia 

tiene una gran belleza. Un científico en 

su laboratorio no es sólo un técnico, 

también es un niño colocado ante  

fenómenos naturales que lo impresionan 

como un cuento de hadas. 

         Marie Curie 
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1.-Contexto, objetivos y estructuración de la memoria. 

Esta tesis doctoral titulada “Desarrollo de membranas nanocompuestas de 

película delgada basadas en materiales metal-orgánicos porosos y grafeno para su 

aplicación en nanofiltración”, se ha llevado a cabo en el grupo de investigación 

CREG (Catálisis, Separaciones Moleculares e Ingeniería de Reactores) que forma 

parte del Departamento de Ingeniería Química y Tecnologías del Medio Ambiente 

(IQTMA) y del Instituto Universitario de Investigación en Nanociencia de Aragón 

(INA, Universidad de Zaragoza) e Instituto de Ciencias Materiales de Aragón 

(ICMA, Universidad de Zaragoza-Centro Superior de Investigaciones Científicas). 

Desde principios de los años 90, el grupo CREG se ha dedicado al desarrollo y 

modificación de materiales porosos nanoestructurados (sílices, zeolitas, titano-

silicatos y MOF) para su aplicación en diversos campos como: separación de gases, 

reactores de membrana, pervaporación, catálisis heterogénea, encapsulación y 

liberación controlada de aditivos y nanofiltración.  

Desde 2005, el grupo ha centrado su investigación sobre membranas en el 

desarrollo y aplicación de las denominadas membranas híbridas utilizando 

primero como relleno materiales inorgánicos y en los últimos años MOF. Dichas 

investigaciones han dado como resultado las siguientes tesis doctorales, todas ellas 

codirigidas por los Dres. Carlos Téllez y Joaquín Coronas: 

 “Desarrollo de materiales laminares porosos para la preparación de 

membranas híbridas”. Patricia Gorgojo (2010). 

 “Membranas híbridas polímero-material nanoestructurado poroso para la 

separación de mezclas gaseosas”. Beatriz Zornoza (2011). 

 “Síntesis y aplicación de titanosilicatos y estañosilicatos laminares y 

deslaminados”. César Rubio (2012). 

 “Estudio estructural de materiales laminares y su aplicación en membranas 

mixtas material laminar-polímero”. Alejandro Galve (2013). 

 “Nanocomposite materials for membrane separations processes”. Daniel 

Sieffert (2013). 

 “Síntesis de materiales nanoestructurados porosos en presencia de cafeína 

con aplicación a la liberación controlada”. Nuria Liédana (2014). 

 “Nuevas estrategias de síntesis de MOFs y su aplicación como relleno en 

membranas poliméricas para separación de gases”. Beatriz Seoane (2014). 

 “Materiales laminares y porosos para su aplicación al desarrollo sostenible”. 

Sonia Castarlenas (2014). 

 “Desarrollo de materiales nanoestructurados porosos para su aplicación en 

procesos de separación mediante membranas híbridas de matriz 

polimérica”. Sara Sorribas (2014). 

 “Modelling study of vanadium bases alloys and crystalline porous materials 

for gas separation membranes”. Jenny Evtimova (2016) 
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 “Membranas continuas y soportadas de MOF para separación de mezclas 

gaseosas”. Fernando Cacho (2017). 

 “Polímeros de coordinación: Transformaciones cristalinas y separación de 

gases mediante membranas”. Adelaida Perea (2017). 

 “Synthesis and characterization of polyimide-based mixed matrix 

membranes for CO2/CH4 separation”. Zamidi Ahmad (2018). 

La novedad en esta tesis radica en que la aplicación de las membranas 

desarrolladas es en exclusiva la nanofiltración. Aunque la síntesis de membranas 

de película delgada para su uso en nanofiltración ya ha sido llevada a cabo en otra 

tesis del grupo, esta es la primera vez que se utiliza un derivado del óxido de 

grafeno como relleno o carga de las membranas. Además, se ha llevado a cabo 

también la síntesis de capas continuas de MOF sobre soportes poliméricos (ya 

utilizada en otra tesis con muy buenos resultados en la separación de gases) para 

su aplicación en la nanofiltración de disoluciones acuosas. 

La realización de esta tesis ha sido posible gracias a la “Ayuda para contratos 

predoctorales para la formación de doctores 2014” del Ministerio de Ciencia, 

Innovación y Universidades así como a los siguientes proyectos, a los que se 

agradece su financiación: 

 “Grupo de Investigación en Catálisis, Separaciones Moleculares e 

Ingeniería de Reactores (CREG)” (Diputación General de Aragón y Fondo 

Social Europeo).  

 “Desarrollo y aplicación de materiales porosos con armazón 

organometálico (MOFs)” (MAT2010-15870 del Ministerio de Economía y 

Competitividad (MINECO)).  

 “Innovaciones en MOFs para aplicaciones energética y 

medioambientalmente eficientes: nanofiltración y catálisis en 

biorefinerías” (MAT2013-40556-R del MINECO).  

 “Avances en membranas de fibra hueca basadas en MOFs y grafeno 

enfocadas a procesos eficientes” (MAT2016-77290-R del MINECO y del 

Fondo Europeo de Desarrollo Regional (FEDER)).  

Para la obtención de la Tesis con Mención Internacional a la que se opta con la 

presentación de esta tesis, y según la normativa de la Universidad de Zaragoza, es 

necesario realizar una estancia internacional de al menos tres meses de duración. 

Con el objetivo de mejorar además la calidad de esta tesis, se llevó a cabo una 

estancia de tres meses y medio (desde el 1 de septiembre hasta el 15 de diciembre 

de 2016) en “The University of Manchester” en la “School of Chemical Engineering 

& Analytical Science” y bajo la supervisión de la Dra. Patricia Gorgojo. Esta estancia 

fue financiada por el Ministerio de Ciencia, Innovación y Universidades a través de 

las “Ayudas a la movilidad predoctoral para la realización de estancias breves en 

centros de I+D”  
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Los resultados presentados detalladamente en esta memoria han dado lugar a las 

siguientes publicaciones que corresponden a los capítulos 4, 6 y 7, 

respectivamente: 

1.-L. Paseta, M. Navarro, J. Coronas, C. Téllez, “Greener Processes in the 

Preparation of Thin Film Nanocomposite Membranes with Diverse Metal-Organic 

Frameworks for Organic Solvent Nanofiltration”, Journal of Industrial and 

Engineering Chemistry, 2019, DOI: https://doi.org/10.1016/j.jiec.2019.04.057  

2.-L. Paseta, D. Antorán, J. Coronas, C. Téllez, “Polyamide/Metal-Organic 

Framework Bilayered Thin Film Composite Membranes for the Removal of 

Pharmaceutical Compounds from Water”, Industrial & Engineering Chemistry 

Research, 2019, 58, 4222-4230. DOI: 10.1021/acs.iecr.8b06017 

3.-M. Navarro, J. Benito, L. Paseta, I. Gascón, J. Coronas, C. Téllez, “Thin Film 

Nanocomposite Membrane with the Minimun Amount of MOF by the Langmuir-

Schaefer Technique for Nanofiltration”, ACS Applied Materials & Interfaces, 2018, 

10, 1278-1287. DOI: 10.1021/acsami.7b17477 

Asimismo, los resultados del capítulo 5 está en preparación para su publicación: 

1.-L. Paseta, J. M. Luque-Alled, P. Gorgojo, J. Coronas, C. Téllez, “GO-based Thin 

Film Nanocomposite Membranes for Organic Solvent Nanofiltration”.  

Finalmente se debe indicar que, aunque no está incluido de forma explícita en 

esta memoria, la doctoranda ha realizado investigaciones relacionadas con las 

membranas compuestas y nanocompuestas de poliamida que han dado lugar a las 

dos siguientes publicaciones: 

1.-J. Sánchez‐Laínez, L. Paseta, M. Navarro, B. Zornoza, C. Téllez, J. Coronas, 

“Ultrapermeable Thin Film ZIF-8/Polyamide Membrane for H2/CO2 Separation at 

High Temperature without Using Sweep Gas”, Advanced Materials Interfaces, 2018, 

5, 1800647. DOI: https://doi.org/10.1002/admi.201800647 

2.-L. Sarango, L. Paseta, M. Navarro, B. Zornoza, J. Coronas, “Controlled 

Deposition of MOFs by Dip-Coating in Thin Film Nanocomposite Membranes for 

Organic Solvent Nanofiltration”, Journal of Industrial and Engineering Chemistry., 

2018, 59, 8-16. DOI: https://doi.org/10.1016/j.jiec.2017.09.053 

1.1.- Contexto Científico 

La tecnología de membranas es una herramienta eficaz en la estrategia de 

implementación de la intensificación de procesos, cuyo objetivo es conseguir un 

crecimiento industrial sostenible a través de la reducción de los costes de 

producción, tamaño de equipos, energía consumida y generación de residuos.1 El 

desarrollo por Loeb y Sourirajan de las primeras membranas asimétricas en los 

años 60,2 la aparición de las membranas compuestas de película delgada de la 

mano de Cadotte,3 así como los avances en el empaquetado de membranas para 

conseguir altas relaciones área-volumen, permitieron que en los años 80 esta 

https://doi.org/10.1016/j.jiec.2019.04.057
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tecnología se implantase en numerosos procesos industriales para diversas 

aplicaciones: microfiltración, electrodiálisis, ultrafiltración y ósmosis inversa, entre 

otros más destacables.4 Desde entonces, la tecnología de membrana se ha 

convertido en un proceso clave en la separación tanto de gases como de líquidos 

gracias a las ventajas que ofrece frente a otros procesos de separación 

tradicionales como la destilación, la absorción o la extracción.5 

Dentro de estos procesos de tecnología de membrana se encuentra la 

nanofiltración, caracterizada por discriminar moléculas de entre 200 a 1000 Da de 

una disolución a través de la aplicación de presiones entre los 5 y los 40 bar. La 

nanofiltración se ha utilizado ampliamente en el tratamiento de disoluciones 

acuosas, convirtiéndose en un sustituto de la ósmosis inversa gracias a que se 

requieren menores presiones de operación para obtener un rendimiento similar.6 

Además, el desarrollo de membranas más estables a disolventes orgánicos ha 

permitido su uso en disoluciones no acuosas, abriendo un amplio campo de 

aplicaciones en la industria química. Este nuevo tipo de nanofiltración acuñado 

como “OSN”, de sus siglas en inglés “organic solvent nanofiltration”, ofrece la 

ventaja de poder llevar a cabo la separación con una menor necesidad de energía, 

frente a otros procesos de separación como la destilación, y su carácter compacto y 

modular, que permite su integración en sistemas híbridos, su instalación en un 

proceso continuo y su escalado de forma sencilla.7 

Las membranas más utilizadas en nanofiltración son las conocidas como tipo 

“thin film composite” (TFC), cuya estructura en capas (soporte y película delgada 

selectiva) ofrece la ventaja de optimizar de manera independiente cada una de 

ellas con el objetivo de maximizar el rendimiento de la membrana.3 Una de las 

técnicas para mejorar este rendimiento, es la introducción de nanopartículas en la 

capa selectiva, ampliamente utilizada tanto para la nanofiltración de disoluciones 

acuosas8 como de disolventes orgánicos.9-10 En esta tesis, se ha estudiado la 

introducción de un material basado en el grafeno: el rGO-ODA (en este caso en 

colaboración con el grupo de la Dra. Patricia Gorgojo de The University of 

Manchester, arriba mencionada) y diferentes sólidos porosos pertenecientes a la 

familia de los compuestos metal-orgánicos (MOF) para su aplicación en la 

nanofiltración de disolventes orgánicos. Además, se han desarrollado membranas 

tipo TFC en las que antes de la síntesis de la película delgada selectiva, se ha 

sintetizado una capa de MOF por síntesis interfacial para su aplicación en la 

eliminación de fármacos en agua. Por último, en colaboración con el Dr. Ignacio 

Gascón del grupo de investigación Platon de la Universidad de Zaragoza, se 

sintetizaron membranas mediante la aplicación de la técnica Langmuir-Schaefer 

con el objetivo de depositar una monocapa de nanopartículas de MOF sobre el 

soporte polimérico antes de la síntesis de la película delgada selectiva para su 

posterior aplicación OSN. 

Los MOF, son materiales porosos híbridos formados por iones o clústeres 

metálicos que se coordinan con ligandos orgánicos para formar redes cristalinas 
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uni-, di- o tridimensionales.11 Debido a sus características como son su elevada 

área superficial o la flexibilidad en cuanto a su síntesis que permite modificar por 

ejemplo su hidrofobicidad o su tamaño de poro cambiando el ligando orgánico, son 

materiales con un alto interés en la fabricación de membranas “thin film 

nanocomposite” (TFN), habiendo mostrado importantes mejoras en el rendimiento 

de las mismas en su aplicación a procesos de nanofiltración.9,12 Al igual que los 

MOF, otro material que ha despertado gran interés en su aplicación como relleno 

en las membranas TFN es el óxido de grafeno (GO),13 material consistente en una 

monocapa de átomos de carbono funcionalizados con diferentes grupos 

oxigenados unidos formando una estructura de panal de abeja.14  

Aunque como se ha comentado anteriormente, tanto las membranas TFC como 

las TFN ofrecen ventajas frente a otros procesos de separación, 

medioambientalmente hablando poseen una desventaja: los disolventes en los que 

suele ser soluble el polímero utilizado como soporte polimérico son muy tóxicos 

(dimetilformamida (DMF), dimetilacetamida (DMAc) o N-metilpirrolidona 

(NMP)).15 Además, el disolvente usado normalmente como agente activante en este 

tipo de membranas es DMF. Por ello, en esta tesis se ha sustituido tanto en la 

disolución precursora (para el “casting”) como en los postratamientos de 

activación la DMF por un disolvente menos tóxico16 como es el dimetilsulfoxido 

(DMSO) en la preparación de membranas TFC y TFN.  

1.2.-Objetivos 

Atendiendo a todo lo anterior, la finalidad de esta tesis es la fabricación de 

membranas compuestas de película delgada mejoradas mediante la introducción 

de rGO-ODA y de MOFs. Estas membranas encuentran aplicación en la 

nanofiltración de disoluciones acuosas y no acuosas utilizando como disolvente 

tanto en la disolución de “casting” como en los procesos de activación un 

disolvente menos tóxico como es el DMSO. Para la consecución de dicho propósito, 

se definen los siguientes objetivos parciales: 

 Comprobar la intercambiabilidad de la DMF por el DMSO en la fabricación 

de membranas TFC y TFN (usando en este caso un MOF modelo), tanto en 

la disolución de casting como en los postratamientos de activación. 

 Preparación de membranas TFN para su aplicación en la nanofiltración de 

disolventes orgánicos utilizando como rellenos ZIF-8, ZIF-93 y UiO-66. 

 Fabricación de membranas TFN utilizando como relleno rGO-ODA y 

estudio de la influencia del porcentaje de relleno añadido en el 

rendimiento de la membrana. 

 Estudio de la síntesis de capas continuas de los MOF ZIF-93 y HKUST-1 

sobre el soporte polimérico mediante síntesis interfacial y posterior 

fabricación de la película delgada selectiva mediante polimerización 

interfacial (membranas PA/MOF BTFC).  
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 Aplicación de las membranas de capa continua de MOF a la nanofiltración 

de disoluciones de fármacos en agua y estudio de su estabilidad. 

 Aplicación de la técnica de Langmuir-Schaefer (LS) para la preparación de 

monocapas de MIL-101 (Cr) sobre el soporte polimérico y posterior 

síntesis de la película delgada selectiva mediante polimerización 

interfacial (membranas LS-TFN). 

 Aplicación de las membranas sintetizadas mediante la técnica de 

Langmuir-Schaefer en la nanofiltración de disolventes orgánicos. 

 Caracterización de los materiales en polvo y de las membranas 

sintetizadas mediante diversas técnicas: análisis termogravimétrico 

(TGA), espectroscopia por transformada de Fourier-reflectancia total 

atenuada (FTIR-ATR), espectroscopia Raman, microscopía electrónica de 

barrido y de transmisión (SEM y TEM), espectroscopia fotoelectrónica 

emitida por rayos X (XPS), difracción de rayos X (XRD), ángulo de 

contacto, microscopía de fuerza atómica (AFM) y adsorción/desorción de 

gases. 

En la Figura 1.1 aparece un esquema del trabajo realizado en esta tesis doctoral 

que engloba tanto la síntesis de los materiales sólidos como la preparación de 

membranas utilizando dichos materiales como relleno para mejorar sus 

propiedades de separación. 

 

Figura 1.1: Esquema del trabajo realizado en esta tesis. 

Síntesis de 
materiales

Preparación 
de 

membranas
Nanofiltración

Caracterización Caracterización

• ZIF-8
• ZIF-93
• UiO-66
• HKUST-1
• MIL-101(Cr)
• rGO-ODA

• TGA
• XRD
• Adsorción 

de gases
• FTIR-ATR
• SEM
• Raman

• XRD
• FTIR-ATR
• SEM/TEM
• XPS
• AFM
• Ángulo de 

contacto
• Raman

Sustitución de 
DMF por DMSO

• TFC
• TFN
• PA/MOF BTFC
• LS-TFN

• Medio acuoso
• Medio no-acuoso
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1.3.-Estructuración de la memoria 

La memoria de la tesis consta, a parte del presente capítulo 1 “Contexto, 

objetivos y estructuración de la memoria”, de los detallados a continuación: 

 En el capítulo 2, “Introducción”, se hace una revisión de los MOF, del 

óxido de grafeno y de la tecnología de membranas. En el primer apartado, 

se hace una pequeña introducción sobre los materiales porosos para 

explicar más en concreto qué son los MOF y describir los utilizados en este 

trabajo. A continuación, se introducen el grafeno y el óxido de grafeno y 

sus derivados. Por último, en cuanto a la tecnología de membranas, se 

detallan los fundamentos de los procesos de separación, más en concreto 

aquellos relacionados con la nanofiltración. Además, se hace una revisión 

sobre el uso de nanopartículas en la fabricación de membranas híbridas. 

 En el capítulo 3, “Procedimiento experimental”, se detalla la síntesis de 

los MOF y el rGO-ODA utilizados en esta tesis, así como el procedimiento 

de preparación de los soportes poliméricos y la posterior fabricación de 

las membranas. Además, se describe el sistema utilizado para llevar a 

cabo la nanofiltración y las técnicas empleadas para caracterizar los 

materiales y membranas sintetizados.  

 En los capítulos 4, 5, 6 y 7 se exponen y discuten los resultados 

obtenidos. En el capítulo 4 se muestran los resultados referentes al 

estudio de intercambiabilidad del DMF por DMSO en la preparación de 

soportes poliméricos y activación de membranas TFC y TFN. Dicho 

estudio se realiza atendiendo tanto a las propiedades de las membranas 

como a su rendimiento en OSN. También se muestran los resultados 

obtenidos al utilizar como rellenos de las membranas TFN los MOF ZIF-8, 

ZIF-93 y UiO-66. El capítulo 5 se centra en la preparación de membranas 

TFN usando como relleno rGO-ODA para su aplicación en nanofiltración. 

Los capítulos 6 y 7 se centran en la preparación de membranas para su 

aplicación en nanofiltración en las que el MOF se incorpora a la misma 

como una capa sobre el soporte polimérico antes de la síntesis de la 

película delgada de poliamida. En el capítulo 6 esta capa se sintetiza 

mediante el método de síntesis interfacial y en el capítulo 7 mediante la 

técnica de Langmuir-Schaefer. Estos 4 capítulos y el siguiente (es decir, 

del 4 al 8) se encuentran redactados en inglés, de acuerdo a la normativa 

de la Universidad de Zaragoza para optar al título de Doctor con Mención 

Internacional.  

 En los capítulos 8 y 9, “Summary and conclusions” y “Conclusiones”, 

respectivamente, se presentan un resumen de la tesis y sus conclusiones.  

 El capítulo 10 contiene la bibliografía consultada a lo largo de estos años 

de trabajo y, en particular, en la redacción de esta memoria, y que se ha 

citado convenientemente en cada capítulo. Por último, un glosario que 
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recopila la nomenclatura y las abreviaturas empleadas a lo largo de la 

tesis. 
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2.-Introducción 

2.1.-Materiales metal-orgánicos porosos (MOF) 

Los sólidos porosos despiertan un gran interés científico gracias a que sus 

excepcionales propiedades, superficie específica y volumen de poros los convierte 

en materiales muy interesantes en diversas aplicaciones como la catálisis,17 la 

encapsulación,18 la adsorción19 o la separación,20 entre otras.21 

Dentro de estos sólidos se encuentran englobados los MOF de sus siglas en inglés 

“metal-organic frameworks”. Los MOF, son materiales porosos híbridos formados 

por la coordinación de iones o clústeres metálicos con ligandos orgánicos para 

formar redes cristalinas uni-, bi- o tridimensionales,11 también conocidos como 

“polímeros de coordinación”.22 Estos materiales fueron redescubiertos por Yaghi y 

cols.23 en los años 90 siendo el MOF-5 uno de los MOF más destacados. Este MOF, 

sintetizado por primera vez por Li y cols.24 en 1999, está formado por la unión del 

metal Zn coordinado tetraédricamente con los átomos de oxígeno del ligando 1,4-

bencenodicarboxilato (BDC) (Figura 2.1a) y su fórmula es Zn4O(BDC)3.  

 

 

Figura 2.1: Estructuras cristalinas del a) MOF-5 y b) HKUST-1, representadas con el software “Diamond” a 
partir del correspondiente archivo CIF.24-25 Los poliedros representan los clústeres metálicos de Zn (amarillo) 
y Cu (azul) mientras que en rojo y en gris se representan los átomos de oxígeno y carbono, respectivamente. 
Los átomos de hidrógeno se han omitido por claridad. 

Ese mismo año, Chui y cols.25 sintetizaron otro de los MOF más estudiados hasta 

la fecha, el HKUST-1 (Hong Kong University of Science and Technology-1), de 

fórmula Cu3(BTC)2, formado por la unión de dímeros de cobre con los átomos de 

oxígeno del ligando 1,3,5-bencenotricarboxilato (BTC) (Figura 2.1b). 

Posteriormente, en 2002, el grupo de Férey26 reportó la síntesis de una nueva 

familia de MOF basados en la unión de cationes trivalentes con ligandos tipo 

carboxilato denominados MIL-n (Materiaux de l’Institut Lavoisier). Dentro de esta 

familia se podrían destacar el MIL-53,27 MIL-88,28 MIL-10029 o MIL-101,30 entre 
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otros. Además, algunos MOF de esta familia como el MIL-53 o el MIL-88, presentan 

un comportamiento de “respiración” (“breathing”),31 consistente en un cambio 

reversible en los parámetros de celda, sin rotura de enlaces, debido a estímulos 

externos como la adsorción de moléculas32-33 o cambios de presión34-35 o de 

temperatura,36-37 dando lugar a grandes cambios en el tamaño de poro. Más 

adelante, en 2006, el grupo de Yaghi presentó una nueva subfamilia de MOF 

denominada ZIF (de sus siglas en inglés: “Zeolitic Imidazolate Frameworks”) 

caracterizada por el uso de imidazolatos como ligandos orgánicos y formar 

estructuras similares a las zeolitas,38 siendo el ZIF-8 uno de los más conocidos y 

estudiados (ver sección 2.1.1).  

Los MOF se caracterizan por poseer grandes volúmenes de poro y las áreas 

superficiales más altas conocidas hasta la fecha, siendo la superficie específica del 

DUT-60 con 7839 m2·g-1 el valor más alto jamás reportado.39 Esto los hace 

materiales muy interesantes para el almacenamiento de gases como el H2 o el 

CH4.40-41 Además, a diferencia de otros materiales porosos como las zeolitas, los 

MOF presentan una mayor flexibilidad en cuanto a su diseño al ser posible 

modificar la funcionalidad química y la forma y el tamaño de poro cambiando la 

conectividad del ion o clúster metálico y la naturaleza del ligando orgánico. Este 

“diseño” de los MOF se basa en los principios de la química reticular y fue 

reportado por primera vez por Yaghi y cols.,42 quienes sintetizaron una serie de 

MOF isorreticulares denominados IRMOF-n (“Isoreticular MOF-n”) basados en la 

topología del MOF-5 (Figura 2.2a) (que posee una estructura cúbica formada por 

clústeres octaédricos de Zn unidos por ligandos tereftalato (BDC)). Para dicho fin, 

utilizaron ligandos orgánicos con distinta funcionalidad y tamaño obteniendo un 

total de 16 MOF con la misma estructura cúbica del MOF-5 pero con distinto grupo 

funcional y tamaño de poro (desde 3.8 Å hasta 28.8 Å).43 En la Figura 2.2b,c,d se 

muestran las estructuras del IRMOF-3 (15.8 Å), IRMOF-8 (17.1 Å) e IRMOF-16 

(28.8 Å) como ejemplos de distinta funcionalización y tamaño de poro respecto al 

MOF-5 (12.6 Å). Este concepto de química reticular ofrece la posibilidad de adaptar 

el tamaño de poro y las propiedades del mismo según los requerimientos de su 

futura aplicación.44-45 Además, su carácter híbrido de naturaleza parcialmente 

orgánica hace que los MOF posean una buena compatibilidad con matrices 

poliméricas. 46 

Gracias a las propiedades anteriormente citadas, estos materiales son útiles en 

diversos campos como catálisis,47-48 adsorción,49-50 encapsulación,51-52 liberación 

controlada de fármacos53-54 o separación y almacenamiento de gases,55-56 entre 

otras. 

A pesar de las ventajas más arriba expuestas, también poseen algunas 

desventajas en comparación con los sólidos porosos inorgánicos como su baja 

estabilidad térmica debido a que la parte orgánica se degrada a temperaturas entre 

los 250-500 °C57 o el hecho de que algunos MOF como el MOF-5 poseen baja 

estabilidad química frente al agua o vapor de agua perdiendo su estructura 
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cristalina en presencia de esta.58 Además en muchas ocasiones debido a la 

porosidad del material, quedan retenidas en el interior de los poros moléculas de 

disolvente o ligando orgánico no reaccionado que es necesario evacuar para 

obtener el sólido poroso mediante un proceso denominado “activación”.59 Esta 

activación suele llevarse a cabo mediante tratamiento térmico o por intercambio 

con disolventes más volátiles que el utilizado en la síntesis y/o que permitan la 

disolución y extracción del ligando.60 

En los siguientes sub-apartados se describen los MOF con los que se ha trabajado 

en esta tesis doctoral. 

 

Figura 2.2: Ligando y estructura del MOF-5, IRMOF-3, IRMOF-8 e IRMOF-16 como ejemplos de química 
reticular. a) MOF-5, b) IRMOF-3 sintetizado mediante la funcionalización del BDC con un grupo amino, c) 
IRMOF-8 sintetizado mediante el ligando 2,6-naftalendicarboxilato (2,6-NDC) e d) IRMOF-16 sintetizado 
mediante el ligando terfenil dicarboxilato (TPDC). Las estructuras se han dibujado usando el software 
“Diamond 3.2” a partir del correspondiente archivo CIF.43 Los poliedros representan los clústeres metálicos de 
Zn (azul) mientras que en rojo y gris se representan los átomos de oxígeno y carbono, respectivamente. El 
hidrógeno se omite por claridad. 

2.1.1.-Zeolitic Imidazolate Frameworks (ZIF) 

Los ZIF fueron reportados por primera vez por Huang y cols.61 en el año 2006, 

aunque fue el grupo de Yaghi quien en ese mismo año los acuñó con el término ZIF. 

Estos MOF, de fórmula molecular M(Im)2, están formados por la unión de clústeres 

metálicos (normalmente obtenidos a partir de M=Zn2+ o Co2+) coordinados 

tetraédricamente a grupos imidazolato (Im) formando un ángulo de 145°, similar 

al que forman el silicio y el oxígeno en las zeolitas (Figura 2.3), por lo que poseen 

tipologías zeolíticas tipo sod, rho, cag, lta, entre otras, aunque con tamaños de 

poro mayores que las zeolitas correspondientes a dicha estructura. Además, esta 
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característica les confiere una mayor estabilidad térmica que la que cabría esperar 

atendiendo a su composición.38 Se debe notar que la identidad topológica de las 

zeolitas se identifica con códigos de tres letras en mayúsculas mientras que en el 

correspondiente ZIF se expresa mediante tres letras en minúscula.62 

 

Figura 2.3: Ángulo de enlace entre a) el metal y el ligando en los ZIFs y b) el oxígeno y el silicio en las 
zeolitas.38 

La aplicación del concepto de química reticular a estos materiales unido a la 

variedad existente de metales divalentes ha permitido el desarrollo de un gran 

número de estructuras de ZIF, sobre todo por parte del grupo de Yaghi.44,63 Por 

ejemplo, el ligando 2-metilimidazolato da lugar a dos ZIF con estructura sod: el 

ZIF-8 o el ZIF-67 si el metal es zinc o cobalto, respectivamente.  

Gracias a la excepcional estabilidad térmica y química anteriormente citada, su 

facilidad de síntesis incluso en agua64-65 sumado a las ventajas propias de los MOF 

como elevada porosidad y flexibilidad estructural, hacen de los ZIF materiales 

apropiados para diversas aplicaciones: membranas,56 encapsulación y liberación 

controlada de moléculas,66 catálisis,67-68 sensores,69 entre otras.70 

La Figura 2.4 muestra la estructura de los dos ZIF estudiados en esta tesis, los 

cuales se explican más en detalle a continuación. 

 

Figura 2.4: Estructura de a) ZIF-8 y b) ZIF-93, representadas con el software “Diamond” a partir del 
correspondiente archivo CIF.38,63 Los poliedros representan los clústeres metálicos de Zn (naranja) mientras 
que en rojo, gris y morado se representan los átomos de oxígeno, carbono y nitrógeno, respectivamente. El 
hidrógeno se omite por claridad. 

El ZIF-8, de fórmula molecular Zn(2-metilimidazolato)2, fue sintetizado por 

primera vez por Huang y cols.61 y a día de hoy es uno de los MOF más estudiados. 
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Como puede observarse en la Figura 2.4a, está formado por iones de Zn 

coordinados tetraédricamente a 4 átomos de nitrógeno presentes en las posiciones 

1 y 3 de las moléculas de 2-metilimidazolato, dando lugar a la topología zeolítica 

tipo sod. Posee un tamaño de poro de 11.6 Å accesible a través de una apertura de 

3.4 Å. Su superficie específica BET está en torno a 1600-1800 m2/g.38,71 Además, el 

ligando orgánico posee libertad para girar un cierto ángulo (lo que se conoce como 

“gate-opening”), permitiendo la encapsulación de moléculas en el interior de sus 

poros de mayor tamaño que el de la apertura de poro.66 

Dentro de las características de este MOF se encuentran su facilidad de síntesis 

(siendo posible sintetizarlo incluso en agua)64 y su elevada estabilidad térmica, 

(superior a 400 °C) así como química e hidrotermal (no pierde su estructura aun 

siendo expuesto durante un tiempo prolongado a benceno, metanol o agua 

hirviendo).38  

El ZIF-93 fue sintetizado por primera vez por el grupo de Yaghi en el año 2010,63 

quienes reportaron la síntesis de cinco ZIF isorreticulares con topología zeolítica 

tipo rho (ZIF-25, 71, 93, 96 y 97) utilizando como ligando distintos grupos 

imidazolato funcionalizados en sus posiciones 4 y 5, en el caso del ZIF-93, este 

ligando es el 4-metilimidazol-5-carbaldehido. Su estructura puede verse en la 

Figura 2.4b y al igual que el ZIF-8, está formada por iones Zn coordinados 

tetraédricamente a los átomos de nitrógeno del ligando orgánico.63 Posee un 

tamaño de poro de 15.8 Å accesible a través de aperturas de 3.7 Å72 y una 

superficie específica BET de unos 860 m2/g.63 Este pequeño tamaño de apertura 

hace de este MOF interesante para su aplicación en separación, sobre todo en 

mezclas CO2/CH4.73 Además, gracias a su gran volumen de poro (0.46 cm3/g), este 

MOF se ha estudiado para su aplicación en adsorción de CO2.63,74 A diferencia del 

ZIF-8, el ZIF-93 puede considerarse como hidrófilo gracias a la interacción del agua 

con los grupos polares del ligando. 

2.1.2.-MIL-n (Materiaux de l’Institut Lavoisier-n) 

Esta subfamilia de MOF fue descubierta por el grupo de Férey26 y al igual que los 

ZIFs, es una de las subfamilias de MOF más conocidas y estudiadas. Estos 

materiales se basan en cationes trivalentes (Fe3+, Cr3+, V3+, Al3+, In3+, entre otros) y 

ligandos tipo carboxilato aromático. Generalmente, el metal presenta coordinación 

octaédrica y clústeres metálicos unidimensionales como en el MIL-47, MIL-5327 o 

MIL-6875 o tipo trímero como en el MIL-8876, MIL-10029 o MIL-101.30  

Algunos MOF de esta familia (como el MIL-53 o el MIL-88), se caracterizan por 

poseer la capacidad de adaptar de forma reversible su volumen de poro a la 

molécula huésped presente en el mismo a través de un fenómeno denominado 

“breathing”. Este fenómeno, ha sido ampliamente estudiado en el MIL-53, del cual, 

dependiendo de la temperatura o de la molécula huésped se distinguen 3 

estructuras (Figura 2.5): MIL-53as (“as made”), MIL-53lt (“low temperature") y 

MIL-53ht (“high temperature").77En el caso de las configuraciones “low 
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temperatura” y “high temperatura”, también se las conoce por las nomenclaturas 

“narrow pore” y “large pore”, respectivamente.  

 

Figura 2.5: Fenómeno “breathing” del MIL-53. a) MIL-53as, donde los poros aparecen ocupados por el 
ligando orgánico b) MIL-53ht y c) MIL-53lt, con los poros ocupados por moléculas de agua. Adaptada de 
Loiseau y cols.77 con el permiso de John Wiley & Sons. En gris oscuro se representan los poliedros de aluminio 
y en gris claro y rojo los átomos de carbono y oxígeno, respectivamente. El hidrógeno se omite por claridad. 

Otro de los MIL-n más estudiados es el MIL-101, el cual se explica más en detalle 

a continuación puesto que ha sido uno de los MOFs utilizados en esta tesis. Este 

MOF fue reportado por primera vez por el grupo de Férey30 en 2005 y su fórmula 

molecular es M3O(BDC)3(H2O)(OH) donde M= Cr, Fe, V o Sc, en concreto, el 

utilizado en este trabajo ha sido el MIL-101(Cr). Su estructura consiste en 

trímeros de cromo coordinados octaédricamente con 4 átomos de oxígeno 

procedentes del dicarboxilato, un µ3-oxígeno (átomo de oxigeno conectado a tres 

centros metálicos) y un átomo de oxígeno perteneciente a una molécula de agua o 

grupo flúor terminal, dando lugar a dos tipos de cavidades diferentes (Figura 2.6). 

Una cavidad de 29 Å accesible a través de una ventana pentagonal de 12 Å y otra 

de 34 Å accesible a través de una apertura hexagonal de 16 Å. 

 

Figura 2.6: Estructura del MIL-101 (Cr) representada con el software “Diamond” a partir del 
correspondiente archivo CIF.30 En verde los poliedros de cromo y en gris y rojo los átomos de carbono y 
oxígeno respectivamente. El hidrógeno se omite por claridad. 

Este MOF, se caracteriza por tener una elevada superficie específica (4200 m2·g-

1), grandes volúmenes de poro (2.02 cm3·g-1) y una alta estabilidad química e 

hidrotermal, por lo que se ha estudiado su aplicación en adsorción de gases como 

a) b) c)
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H2,78 CO279-80 o CH4,79 adsorción de vapor de agua81 o compuestos orgánicos 

volátiles (COV)82 y encapsulación.83 Además, la existencia de centros metálicos 

insaturados lo hace atractivo en procesos catalíticos.84 

2.1.3.- UiO-66 (University of Oslo-66) 

El UiO-66, pertenece a una serie isorreticular de MOF basados en circonio 

completada por el UiO-67 y el UiO-68, en los que se utiliza como ligando orgánico 

tereftalato (BDC), 4,4-bifenildicarboxílato (BPDC) y terfenil dicarboxilato (TPDC), 

respectivamente, y que fue reportada por Cavka y cols. por primera vez en 2008.85 

La estructura de este MOF, de fórmula Zr6O4(OH)4(BDC)6, consiste en nodos 

Zr6O4(OH)4, en los que cada átomo de circonio está unido a 8 átomos de oxígeno, 

unidos a su vez entre sí por 12 grupos carboxilato procedentes del BDC, dando 

como resultado ventanas triangulares de 6 Å que conectan dos tipos de cavidades: 

octaédricas de 11 Å y tetraédricas de 8 Å (Figura 2.7).  

 

Figura 2.7: Estructura del UiO-66 representada con el software “Diamond” a partir del correspondiente 
archivo CIF.86 En amarillo, gris y rojo los poliedros de zirconio, carbono y oxígeno respectivamente. El 
hidrógeno se omite por claridad. 

Esta coordinación de los átomos de circonio hace que la estructura sea muy 

estable sumado a la propia estabilidad del metal, proporcionan a este MOF una alta 

estabilidad térmica (hasta 500 °C) así como química, siendo estable tanto en agua 

hirviendo como en disolventes orgánicos (acetona, dimetilformamida o benceno). 

Además, presenta una alta resistencia mecánica al mantener la cristalinidad a 

presiones superiores a 9000 atm.85 Estas propiedades lo convierten en un material 

muy interesante en aplicaciones como la separación o adsorción de gases87-88 o la 

eliminación de contaminantes en agua.89 
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2.1.4.- HKUST-1 (Hong Kong University of Science and Technology-1) 

El HKUST-1,25 también conocido como MOF-199,90 fue como se ha indicado junto 

con el MOF-5, uno de los primeros MOF reportados. Sintetizado por primera vez 

por Chui y cols.25 y de fórmula molecular Cu3(BTC)2(H2O)3, su estructura consta de 

clústeres formados por dímeros de cobre coordinados a 4 grupos carboxilato 

procedentes del ácido trimésico y completados por dos moléculas de agua (Figura 

2.8), dando lugar a una estructura centrada en las caras con poros 

unidimensionales de 9 Å.  

 

Figura 2.8: Estructura del HKUST-1, representada con el software “Diamond” a partir del correspondiente 
archivo CIF.25 En azul se representan los poliedros de cobre y gris y rojo los átomos de carbono y oxígeno, 
respectivamente. El hidrógeno se omite por claridad. 

La presencia de moléculas de agua coordinadas al clúster permite que tras un 

tratamiento térmico se creen centros metálicos insaturados, convirtiéndolo en un 

sólido muy interesante en procesos catalíticos,91 como en la oxidación de ácido 

transferúlico para la obtención de vainilla,92 la cianosililación de aldehídos y 

cetonas93 o la oxidación de CO94 y como catalizador ácido de Lewis.95 Además, 

estos centros metálicos activos Cu2+ favorecen la interacción con otras moléculas 

ofreciendo interesantes propiedades adsorbentes aplicables tanto al 

almacenamiento de H2 o CO296 como en la separación de gases.46  

2.2.- Grafeno, óxido de grafeno (GO) y derivados 

Desde su descubrimiento en 2004 por Geim y Novoselov,97 el grafeno se ha 

convertido en uno de los materiales que más interés suscita entre los científicos y 

la sociedad en general,98 gracias a sus excepcionales propiedades como su elevada 

conductividad eléctrica y térmica o su alta resistencia, elasticidad y dureza.99 Este 

material consiste en la unión de átomos de carbono con hibridación sp2 dando 

lugar a una estructura en forma de panal de abeja (Figura 2.9a). Existen tres 
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métodos para su obtención: crecimiento epitaxial,100-101 exfoliación mecánica97,102 

o en fase líquida103-104 de grafito o reducción de óxido de grafeno.105-106  

 

Figura 2.9: Estructura de a) grafeno y b) óxido de grafeno. Se han dibujado con el software ChemSketch. 

El óxido de grafeno (GO), posee una estructura similar a la del grafeno, pero 

decorada covalentemente por grupos funcionales que contienen oxígeno, 

principalmente hidroxilos, epóxidos y carboxilos, por lo que presenta tanto 

carbonos con hibridación sp2 como sp3 (Figura 2.9b). Aunque el interés en el 

estudio de este material es bastante reciente, su historia se remonta al siglo XIX, 

cuando el químico Brodie107 obtuvo óxido de grafito mediante el tratamiento de 

grafito con ácido nítrico y clorato de potasio cuando trataba de descubrir la 

estructura de este último.  

La forma más común de sintetizar óxido de grafeno es mediante el método de 

Hummers,108 el cual puede verse en la Figura 2.10.  

 

Figura 2.10: Síntesis de GO mediante el método de Hummers. 

Este material, a parte de su función como materia prima para la obtención de 

grafeno, se ha estudiado para su uso en numerosas aplicaciones como sensores,109 

catálisis,110 almacenamiento de energía111 o biomedicina.112 

Gracias a la hidrofilicidad de los grupos oxigenados presentes en su estructura, el 

GO se dispersa bien en agua y en algunos disolventes polares como 

dimetilformamida o tetrahidrofurano, pero no en disolventes no polares, lo que 

puede limitar su campo de aplicación.113 Una de las opciones para mejorar esta 

dispersabilidad es funcionalizar el GO con alquilaminas114-115 y/o reducirlo para 

obtener el llamado rGO,116 procedimiento ya utilizado por ejemplo para el uso de 

GO como relleno en la preparación de membranas mixtas.117 
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2.3.- Tecnología de membranas 

Una membrana, se define como una barrera semipermeable capaz de separar 

selectivamente una corriente de alimentación en dos corrientes de salida: retenido 

(parte de la alimentación rechazada por la membrana) y permeado (parte de la 

alimentación que pasa a través de la membrana), gracias a la aplicación de una 

fuerza impulsora (p. ej: diferencia de potencial eléctrico o un gradiente de presión 

o concentración) (Figura 2.11).118 

 

Figura 2.11: Representación del funcionamiento de una membrana. En azul se muestran las moléculas de 
disolvente y en morado las de soluto. 

Las membranas pueden clasificarse de acuerdo a distintos criterios, aunque los 

más habituales son atendiendo a su naturaleza y a su estructura. En la Figura 2.12 

se muestra una clasificación general según dichos criterios. 

 

Figura 2.12: Clasificación de los diferentes tipos de membranas atendiendo a su naturaleza y estructura. 118 
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A nivel industrial, las membranas más utilizadas en cuanto a su naturaleza son 

las membranas poliméricas debido a su menor precio y mayor facilidad de 

procesado en comparación con las membranas inorgánicas.7 En cuanto a su 

estructura, las membranas que más interés despiertan a nivel industrial, sin 

olvidar las membranas planas en sus módulos en espiral, son las denominadas 

fibras huecas gracias a su mayor relación área superficial/volumen que permite 

maximizar el flujo y minimizar el tamaño de la instalación.119 

Otra de las formas de clasificar las membranas es atendiendo a su aplicación. En 

este caso, se diferencian según se apliquen a fase líquida o gaseosa, a la fuerza 

impulsora necesaria y/o al diámetro efectivo de las especies a separar.120-121 En la 

¡Error! No se encuentra el origen de la referencia. se muestra dicha 

lasificación.  

Tabla 2.1: Procesos de separación de membranas. Modificado de Ho y Sirkar.121 

Proceso de 
separación 

Fase 
Fuerza 

impulsora 

Tamaño 
sustancias 
retenidas 

Aplicaciones 

Separación de 
gases 

Gas Concentración < 1 nm 
Purificación de 

gases 

Pervaporación Líquido/vapor Concentración < 1 nm 

Deshidratación de 
disolventes y 
separación de 
compuestos 

orgánicos 

Diálisis Líquido Concentración < 2 nm 

Separación de 
micro-solutos y 

sales de 
soluciones 

macromoleculares 

Electrodiálisis Líquido 
Potencial 
eléctrico 

< 2 nm 

Separación de 
iones del 

agua y solutos no 
iónicos 

Electrofiltración Líquido 
Potencial 
eléctrico 

< 1 nm 
Separación de 

especies iónicas 

Ósmosis inversa Líquido 
Presión 

(>40 bar) 
0.1-1 nm 

Desalinización de 
agua de mar 

Nanofiltración Líquido 
Presión 

(5-40 bar) 
< 2 nm 

Separación de 
compuestos 

orgánicos 
pequeños e iones 

multivalentes 
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Ultrafiltración Líquido 
Presión 

(1-5 bar) 
2-100 nm 

Separación de 
soluciones 

macromoleculares 

Microfiltración Líquido 
Presión 

(< 1 bar) 
> 100 nm 

Clarificación y 
esterilización de 

soluciones 

Destilación con 
membranas 

Líquido/vapor 
Diferencia de 

presión de 
vapor 

10-100 nm 
Separación de H2O 

de solutos no 
volátiles 

La operación de separación más usada es la destilación, que consume entre el 

10% y el 15% de toda la energía producida en el mundo.122 Es por esto que es de 

vital importancia desarrollar nuevos métodos más eficaces de separación. En este 

sentido, la tecnología de membranas puede jugar un papel muy importante en la 

reducción del impacto ambiental y los costes de los procesos industriales. De 

hecho, se la puede considerar una herramienta para implementar la denominada 

estrategia de intensificación de procesos cuyo objetivo es el diseño y desarrollo de 

procesos industriales más sostenibles a través de la reducción de costes de 

producción, tamaño de equipos, energía consumida y generación de residuos.1 Las 

ventajas del uso de los procesos de membrana ya han sido corroboradas en 

campos como la desalinización de agua de mar, en la que este tipo de procesos han 

demostrado ser hasta 10 veces más eficientes energéticamente que los procesos 

térmicos.123 

2.3.1.- Mecanismos de transporte en procesos de separación de 

membrana 

Como se ha comentado anteriormente, el paso de las moléculas a través de la 

membrana se debe tanto a las condiciones de presión y temperatura de trabajo, 

como a la porosidad de la misma y a las propiedades de las moléculas a separar 

(peso molecular, diámetro cinético y entalpía de adsorción). En las membranas 

híbridas (que es el tipo de membrana que se ha utilizado en esta tesis), el proceso 

de separación se explica según dos modelos: el denominado “disolución-difusión” y 

el de “flujo a través de los poros”. Según el primero de ellos que ocurre en el 

polímero denso, las moléculas son primero adsorbidas por la membrana, después 

difunden a través de ellas debido a la existencia de un gradiente (ya sea de presión, 

concentración o eléctrico) y se desorben en la zona de permeado. La selectividad 

de este mecanismo viene determinada por dos factores: la solubilidad, es decir, la 

afinidad entre el polímero y las moléculas a separar; y la difusividad, que viene 

determinada tanto por el tamaño y la forma de las moléculas a separar como por la 

movilidad de las cadenas poliméricas.124 

En el caso del mecanismo de “flujo a través de los poros”, las moléculas son 

transportadas a través de los poros de la membrana impulsadas por generalmente 

un gradiente de presión o de concentración. La selectividad de la membrana 
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habitualmente viene determinada por un fenómeno de exclusión de tamaño, es 

decir, permearan mayormente a través de la membrana aquellas moléculas cuyo 

tamaño sea inferior al tamaño de poro de la membrana y/o posean una forma 

compatible con este.125 En ocasiones las interacciones entre la superficie del poro y 

las moléculas ejercen influencia el flujo a lo largo del poro.  

2.3.2- Nanofiltración 

La nanofiltración, es un proceso de membrana en fase líquida en el que la 

separación tiene lugar debido a un gradiente de presión que suele variar entre 5 y 

40 bar. Puede ser capaz de retener moléculas en el rango de 1-2 nm.126 El término 

nanofiltración se utilizó por primera vez en 1970, cuando se desarrollaron 

membranas de ósmosis inversa con las que se obtenían flujos razonables de agua 

operando a una presión inferior a la necesaria en ósmosis inversa,127 si bien no fue 

hasta 1984 cuando FilmTec Corporation lo acuñó en términos comerciales para 

describir una nueva línea comercial de membranas con características entre la 

ósmosis inversa y la ultrafiltración.126 La nanofiltración se ha utilizado 

ampliamente en procesos de tratamiento de aguas, convirtiéndose en una sustituta 

de la ósmosis inversa gracias a que es necesaria una menor presión de trabajo para 

obtener un flujo similar con un alto rechazo, lo que se traduce en un menor 

consumo energético.128 Dentro de estos procesos de tratamiento de aguas, la 

nanofiltración se ha mostrado como una solución para la eliminación de los 

denominados “microcontaminantes” (dentro de los cuales se engloban algunos de 

los fármacos que pueden encontrarse en las aguas), cuya eliminación por parte de 

las plantas depuradoras ha mostrado no ser efectiva al detectarse su presencia en 

los flujos de salida de estas.129-130 

Esta técnica posee un amplio campo de aplicaciones. En la industria alimentaria 

su uso es muy común. En el sector lácteo, se utiliza por ejemplo para concentrar el 

suero de la leche (una sustancia muy valorada nutricionalmente) en la fabricación 

de queso y caseína o para recuperar el ácido láctico de los caldos de fermentación, 

o en la industria de bebidas alcohólicas, la nanofiltración permite controlar el 

grado alcohólico en vinos sin modificar su sabor y sin perder los compuestos 

aromáticos volátiles característicos del vino como sucede en los procesos basados 

en calor.131  

En el caso de la industria del cuero, la nanofiltración permite la recuperación del 

cromo (utilizado en forma de sales para tratar las pieles y evitar su putrefacción) 

para su posterior reutilización,132 o en la industria textil (gran consumidora de 

agua), la eliminación de colorantes de las aguas residuales para la reutilización de 

la misma y consiguiente disminución de la cantidad de agua demandada por este 

tipo de industria.133 De hecho, el mercado de las membranas de nanofiltración 

estaba valorado en 565 millones de $ en el 2016 y se espera que alcance los 813 

millones de $ en el 2023.134 
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PARÁMETROS QUE DEFINEN EL RENDIMIENTO DE UNA MEMBRANA DE 

NANOFILTRACIÓN 

El rendimiento de una membrana de nanofiltración suele determinarse de 

acuerdo a dos parámetros: flujo (o caudal) de permeado y rechazo (o selectividad). 

El flujo (F) (ecuación 2.1) se define como el volumen de líquido (V, L) que 

atraviesa la membrana por unidad de área (A, m2) y por unidad de tiempo (t, h). 

Para facilitar la comparación entre caudales en procesos de separación con 

membranas llevados a cabo a distinta presión, se define el parámetro permeación 

(P) (ecuación 2.2), que normaliza el caudal en relación al gradiente de presión 

aplicada (Δp, bar) 

   (Ecuación 2.1) 

 

  (Ecuación 2.2) 

El rechazo (R), es una medida de la selectividad de la membrana hacia cierto 

soluto y se puede calcular de acuerdo a la ecuación 2.3, donde Cp es la 

concentración de soluto en el permeado y CR la concentración de soluto en el 

retenido.  

 (Ecuación 2.3) 

Otro parámetro para expresar la capacidad de separación de una membrana es el 

corte de peso molecular, MWCO (“molecular weight cut-off”), definido como el 

peso molecular mínimo con el que se obtiene una retención de al menos un 90%. 

2.3.2.1.- Nanofiltración de disolventes orgánicos (OSN) 

Como se ha comentado anteriormente, la nanofiltración se ha sido utilizado 

ampliamente en separaciones en medio acuoso, si bien el desarrollo de membranas 

más estables a disolventes orgánicos llevado a cabo durante los últimos años, ha 

despertado el interés para su aplicación en medio no-acuoso, dando lugar a la 

denominada nanofiltración de disolventes orgánicos u “OSN” de sus siglas en inglés 

“organic solvent nanofiltration”.135  

Esta tecnología presenta diversas ventajas frente a otros procesos de separación 

más tradicionales como la destilación, la evaporación o la cristalización. Una de 

ellas es que la temperatura a la que tiene lugar la separación es menor que en 

dichos procesos tradicionales, lo que conlleva una menor degradación de los 

compuestos, minimiza el que se produzcan reacciones paralelas y conlleva un 

menor consumo energético, lo que se traduce en un ahorro económico. Además, su 

carácter modular facilita su instalación en un proceso en continuo, formar parte de 

un sistema híbrido junto a otros procesos (pervaporación, extracción,…) y su 

escalado.7,126 
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La nanofiltración de disolventes orgánicos es aplicable a numerosos campos: 

alimentación, petroquímica, biotecnología, industria farmacéutica, entre otros.7,136 

Ya se ha implantado en algunos procesos industriales como en el proceso Max-

Dewax desarrollado por Exxon Mobile para recuperación de disolventes de 

desparafinado en el refino de aceites lubricantes,137 la recuperación de 

catalizadores homogéneos en la reacción de hidroformilación de alquenos para la 

obtención de aldehídos,136 o en la industria farmacéutica en la concentración, 

recuperación y purificación de principios activos farmacéuticos como método 

alternativo a otros más tradicionales que requieren altas temperaturas, lo que 

puede causar la degradación del principio activo además de impedir la 

recuperación del disolvente orgánico.138-139 

2.3.2.2.- Ensuciamiento (“fouling”) 

Como se ha comentado anteriormente, la nanofiltración (ya sea en medio acuoso 

o no acuoso) ofrece ventajas frente a otros procesos de separación como la 

destilación o la evaporación, pero también posee una desventaja importante: el 

ensuciamiento o “fouling” en inglés. Este ensuciamiento, causado por la deposición 

de moléculas disueltas o en suspensión sobre la superficie de la membrana e 

incluso en el interior de sus poros, provoca una disminución del flujo a su través y 

por lo tanto, una reducción de su vida útil y la necesidad de su limpieza o 

sustitución de forma regular, incrementando los costes de operación.140-141  

Este ensuciamiento, se produce a través de complejas interacciones entre la 

superficie de la membrana y el soluto disuelto en la alimentación. El grado de este 

ensuciamiento depende de varios factores, como por ejemplo de las propiedades 

de la superficie de la membrana (rugosidad, carga, hidrofilicidad) o del soluto 

disuelto (solubilidad, difusividad, carga, tamaño),142 considerándose en el caso de 

la nanofiltración de moléculas orgánicas (como es el caso de esta tesis) el carácter 

hidrófilo/hidrófobo de la superficie de la membrana como uno de los más 

importantes. Las membranas hidrófobas interaccionan mejor con las moléculas 

orgánicas, lo que las hace más propensas a ensuciarse.143  

Una de las herramientas que puede resultar útil para evaluar el ensuciamiento es 

a través de los parámetros de solubilidad de Hansen (HSP).144 Estos parámetros se 

han aplicado en la industria de recubrimientos para conocer la solubilidad de un 

polímero en cierto disolvente, y se basan en la idea de “lo semejante disuelve a lo 

semejante”. Su uso se ha extendido como medio para evaluar o estimar la afinidad 

existente entre disolventes, polímeros, aditivos o sustratos entre otros.144-145 Este 

grado de afinidad viene determinado por el ratio Ra que se calcula como (ecuación 

2.4): 

 (Ecuación 2.4) 

Donde δD está relacionado con las interacciones de London o dispersión, δp con 

las interacciones polares, δh con las interacciones por puente de hidrógeno y 1 y 2 
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hacen referencia a los dos componentes cuya afinidad quiere conocerse.146 A 

menor valor de este parámetro, mayor afinidad existe entre los dos componentes 

en estudio. Trasladando este concepto al ensuciamiento, mayor afinidad entre la 

superficie de la membrana y el soluto disuelto y, por lo tanto, mayor tendencia al 

ensuciamiento.  

2.3.2.3.- Tipos de membranas para nanofiltración 

La selección de materiales para la fabricación de membranas con excelentes 

propiedades en nanofiltración se hace en base a que posean ciertas características: 

capacidad para formar películas, estabilidad térmica y química, disponibilidad 

comercial, precio y afinidad química por los componentes de la alimentación. Los 

materiales para la fabricación de membranas de nanofiltración pueden ser de 

naturaleza orgánica (polímeros) o inorgánica (cerámica).7,147 Aunque las 

membranas inorgánicas poseen mejores propiedades químicas y térmicas que las 

poliméricas, además de no sufrir compactación bajo presión ni hinchamiento en 

contacto con disolventes, estas últimas son las más utilizadas tanto a nivel de 

investigación como industrial debido a que son más baratas, más dúctiles y 

flexibles, menos frágiles y más fáciles de escalar.7 

MEMBRANAS ASIMÉTRICAS (ISA, “integrally skinned asymmetric”) 

Las membranas asimétricas consisten en una capa delgada selectiva soportada 

sobre otra más porosa (Figura 2.13). La composición, porosidad y tamaño de poro 

cambia a lo largo del espesor de la membrana. La metodología de síntesis más 

común en este tipo de membranas es la inversión de fases desarrollada por Loeb y 

Sourirajan a principios de los años 60 del siglo pasado.2 Esta técnica consiste en la 

precipitación controlada de una disolución polimérica por inmersión en un 

disolvente en el que el polímero es poco soluble (normalmente agua). El agua hace 

precipitar rápidamente el polímero en la superficie de la membrana formando una 

capa densa y selectiva. Esta capa densa ralentiza la entrada de agua a la membrana 

provocando una precipitación más lenta del resto de la disolución polimérica, 

dando lugar así a una subestructura más porosa.118 

El espesor de la capa densa, que varía entre 0.1 y 1 µm, así como la distribución 

de poros a lo largo de la membrana depende de parámetros como el tipo de 

polímero, su concentración en la disolución de casting, la adición de co-disolventes 

o aditivos a la misma o las condiciones a las que se lleva a cabo el casting.7 
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Figura 2.13: Imagen SEM de la vista transversal de una membrana asimétrica de poliimida (obtenida en la 
presente tesis). 

Debido a su bajo coste y su alta selectividad y permeabilidad, estas membranas 

son muy utilizadas en ósmosis inversa (RO), ultrafiltración (UF) o nanofiltración 

(NF) así como de soporte en membranas compuestas.7,148  

MEMBRANAS COMPUESTAS DE PELÍCULA DELGADA (TFC, “thin film 

composite”) 

Las membranas TFC consisten en una capa fina selectiva depositada sobre un 

soporte poroso de distinto material obtenido normalmente por inversión de fases. 

La capa fina es la responsable de la separación a nivel molecular mientras que el 

soporte poroso es el encargado habitualmente de proporcionar estabilidad 

mecánica a la membrana y permitir la formación de una capa superior libre de 

defectos. En muchas ocasiones, este soporte poroso se apoya sobre un sustrato, 

normalmente polipropileno, que proporciona al conjunto una resistencia mecánica 

extra tanto en la manipulación durante las síntesis y los postratamiento como para 

soportar la presión aplicada durante el proceso de nanofiltración. Gracias a esta 

estructura jerarquizada, cada capa puede optimizarse de forma independiente 

para maximizar el rendimiento global de la membrana.126,148 

 

Figura 2. 14: Estructura de una membrana TFC. Adaptado de Hermans y cols.149 

La formación de la capa fina selectiva puede realizarse mediante diversos 

métodos: “dip-coating”, “spray coating”, “spin coating”, polimerización interfacial, 

polimerización in-situ o polimerización por plasma.148 De entre todas ellas, la 

polimerización interfacial es la técnica más utilizada en la fabricación de 

membranas TFC para nanofiltración. Es por esto que existen numerosos trabajos 

que estudian el efecto que diferentes parámetros tienen en el rendimiento de las 

membranas de nanofiltración.150-152 

La polimerización interfacial (IP) fue desarrollada por Cadotte a mediados de 

1980 y consiste en la formación de una capa ultrafina sobre un soporte poroso 

mediante la reacción de polimerización in-situ entre dos monómeros reactivos 

100 µm
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(diamina y acilo de cloruro) en la interfase de dos disolventes inmiscibles.3 El 

proceso es como sigue (Figura 2.15). El soporte se impregna primero en una 

disolución acuosa que contiene la amina. Tras eliminar el exceso de agua, el 

soporte se pone en contacto con la fase orgánica que contiene el cloruro de acilo, 

momento en el que produce la rápida reacción entre los dos monómeros y se 

forma la película delgada selectiva de poliamida (PA). Tan pronto como se forma la 

capa de PA, esta actúa de barrera al transporte de los monómeros limitando así el 

espesor de la capa fina a unos 100-300 nm. 

 

Figura 2.15: Proceso de polimerización interfacial. Adaptada de Zargar et al.153 con el permiso de Elsevier. 

El soporte, aparte de proporcionar estabilidad mecánica, juega un papel crucial 

en el proceso de IP pues sirve como reservorio para uno de los monómeros y 

define la interfaz en la que la reacción de IP tendrá lugar.7 Es por ello por lo que su 

elección no es trivial (sobre todo si se va a aplicar a OSN) y existen numerosos 

estudios sobre el efecto que tiene tanto en la formación de la PA como en la 

eficiencia de la membrana.154-157 

Las condiciones de polimerización también poseen un gran efecto sobre la 

eficiencia de la membrana. Por ejemplo, el uso de una amina alifática o aromática o 

el cloruro de acilo utilizado varían las propiedades de la película formada y, por 

tanto, también las propiedades permeoselectivas de la membrana. 158-159 Por otro 

lado, el aumento de la concentración y/o el tiempo de reacción dan como resultado 

una película más gruesa y densa que aumenta la selectividad pero disminuye el 

flujo.150,160 

Desde su descubrimiento en los años 80, las membranas TFC son las más 

utilizadas a nivel industrial ya que ofrece entre otras ventajas una gran flexibilidad 

de diseño al ser posible optimizar independientemente cada capa con la elección 
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adecuada del soporte, los monómeros y las condiciones de IP para obtener 

membranas con altos flujos sin sacrificar la selectividad.3 

MEMBRANAS NANOCOMPUESTAS DE PELÍCULA DELGADA (TFN, “thin film 

nanocomposite”) 

Las membranas TFN (Figura 2.16), fueron reportadas por primera vez por Jeong 

y cols. en el año 2007, quienes con el objetivo de mejorar el rendimiento de las 

membranas TFC aplicadas a ósmosis inversa, introdujeron nanopartículas de 

zeolita NaA durante el proceso de IP, obteniendo un aumento de flujo en 

comparación con las membranas TFC mientras el rechazo se mantenía en valores 

similares.161 Así pues, en líneas generales, las membranas TFN se fabrican 

mediante la adición de nanopartículas porosas a la fase orgánica con el objetivo de 

que estas queden embebidas en la capa de PA durante la IP.  

 

Figura 2.16: Representación de una membrana TFN en la que los círculos verdes representan las 
nanopartículas embebidas en la capa de PA. 

Este mismo grupo, realizó también un estudio sobre la influencia que tenía el 

tamaño de la zeolita utilizada en el rendimiento de la membrana. Observaron, que 

con las membranas fabricadas con las zeolitas de menor tamaño, se obtenían los 

flujos y los rechazos más elevados.162 

Desde su descubrimiento, numerosos trabajos han reportado el uso de 

membranas TFN tanto para la nanofiltración en medio acuosos como para la 

nanofiltración de disolventes orgánicos, utilizando diferentes tipos de 

nanopartículas, de las cuales pueden verse algunos ejemplos en la Tabla 2.2. 

Recientemente, estas membranas se han usado con éxito en la separación de 

mezclas de gases.56 

Lee y cols. fueron los primeros en reportar el uso de membranas TFN para 

nanofiltración en el año 2008.10 Para ello, prepararon membranas utilizando como 

relleno TiO2 y estudiaron la influencia que distintas concentraciones de partículas 

tenía sobre el funcionamiento de la membrana. Observaron que el mejor 

rendimiento se obtenía cuando se utilizaba un 5 % en peso con un flujo de 9.1 L·m-

2·h-1 y un rechazo de MgSO4 del 95 % trabajando a una presión de 0.6 MPa.  

En el caso de su uso para la nanofiltración de disolventes orgánicos, fueron 

Sorribas y cols.9 los primeros en utilizar membranas TFN mediante la 

incorporación a la capa de PA de MOF con distinta hidrofilicidad: ZIF-8, MIL-
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53(Al), NH2-MIL-53(Al) y MIL-101(Cr). En la nanofiltración de oligómeros de 

estireno dispersos en MeOH y tetrahidrofurano (THF), encontraron que los 

mejores resultados para ambos disolventes se obtenían con el MIL-101 (Cr), con 

un incremento de flujo en comparación con las membranas TFC de 1.5 a 3.9 L·m-

2·h-1 en el caso del MeOH y de un 1.7 a 11.1 L·m-2·h-1 para el THF mientras que el 

rechazo se mantenía en valores superiores al 90 % (MWCO inferior a 232 y 295 

g·mol-1 para MeOH y THF, respectivamente). 

Tabla 2.2: Nanopartículas utilizadas en la preparación de membranas TFN. 

Nanopartícula Soporte Monómeros Aplicación Ref. 

TiO2 Polietersulfona MPD+TMC NF acuosa 10 

ZIF-8 

MIL-53 

NH2-MIL-53(Al) 

MIL-101(Cr) 

Poliimida P84® MPD+TMC OSN 9 

GO Polisulfona MPD+TMC NF acuosa 13 

Plata Polietersulfona MPD+TMC NF acuosa 163 

Zeolitas Polisulfona PIP+TMC NF acuosa 164 

Amino-nitruro 
de boro 

Poliestersulfona PIP+TMC NF acuosa 165 

MIL-68 

MIL-101(Cr) 

ZIF-11 

Poliimida P84® MPD+TMC OSN 144 

Nanotubos de 
carbono 

multicapa 
(MWCNT) 

Polisulfona PIP+TMC NF acuosa 166 

SiO2 Polietersulfona PIP+TMC NF acuosa 167 

UZM-5 Polieterimida MPD+TMC OSN 168 

TiO2 
Poliimida 

Matrimid® 
EDA+IPC OSN 169 

MPD: m-fenilendiamina, TMC: Cloruro de trimesoilo, PIP: Pipericina, EDA: Etilendiamina, IPC: 
cloruro de isoftaloilo 

PROCEDIMIENTOS DE DEPOSICIÓN CONTROLADA DEL MOF 

Una de las dificultades en la síntesis de membranas TFN es mantener el pequeño 

espesor de la capa selectiva tras la incorporación de las partículas. Esto conlleva a 

tener que utilizar partículas de tamaño nanométrico con más tendencia a 



 

2.-Introducción 

   33 

 

aglomerarse. Estos aglomerados pueden crear defectos no selectivos en la capa de 

poliamida produciendo una reducción en el rendimiento de la membrana.  

Como solución a este problema, se han desarrollado diferentes técnicas para 

controlar el posicionamiento del MOF sobre la superficie de la membrana. A 

continuación se detallan algunos de ellos. 

 Crecimiento in-situ. En esta técnica, el soporte se introduce en una 

disolución que contiene disueltos los precursores del MOF (metal y 

ligando orgánico) y se deja un tiempo de tal forma que la síntesis del MOF 

tiene lugar en presencia del soporte. Una vez transcurrido este tiempo, el 

soporte se lava para eliminar cualquier exceso de reactivo. Esta técnica 

fue utilizada por Campbell y cols.170 en la síntesis de HKUST-1 sobre 

soportes de P84® para la nanofiltración de oligómeros de estireno en 

acetona, consiguiendo una mejora de rechazo pero una disminución del 

flujo en comparación con membranas mixtas de P84® y HKUST-1. 

 “Dip-coating”. Este consiste en la inmersión y posterior extracción del 

soporte polimérico en una disolución preparada a priori que contiene el 

MOF en suspensión con el objetivo de que este se adhiera a la superficie 

del soporte. Sarango y cols.171 fabricaron membranas compuestas de ZIF-8 

y ZIF-67 mediante esta técnica sobre cuya superficie sintetizaron 

posteriormente una capa de PA por IP. Con la aplicación de estas 

membranas a la nanofiltración de Sunset Yellow en MeOH consiguieron un 

incremento de flujo del 150 % respecto a las membranas TFC 

manteniendo el mismo rechazo. 

 Síntesis interfacial. Esta técnica se basa en el mismo principio que la 

polimerización interfacial. La capa de MOF se forma mediante la reacción 

in situ del metal y el ligando orgánico en la interfase de dos líquidos 

inmiscibles. Normalmente, el metal se disuelve en la fase acuosa y el 

ligando en la fase orgánica. Li y cols.172 estudiaron la influencia que 

distintos parámetros (tiempo de reacción, ratio entre los reactivos,…) 

tenían sobre el rendimiento de una membrana compuesta de ZIF-8 

sintetizado por síntesis interfacial en la nanofiltración de Rose Bengal en 

agua. Esta técnica ha sido una de las utilizadas en el desarrollo de esta 

tesis y su procedimiento experimental se explicará con más detalle en el 

Capítulo 3. 

 “Layer-by-layer”. La técnica “layer-by-layer” se podría definir como la 

aplicación de ciclos de la técnica de crecimiento in-situ entre los cuales la 

superficie de la membrana se lava con un disolvente para eliminar el 

exceso de reactivos. Esta técnica fue la elegida por Wang y cols.173 para la 

síntesis de ZIF-8 sobre soportes de polisulfona. Fabricaron membranas 

sintetizando de una a cuatro capas de ZIF-8 y finalmente sintetizaban una 

capa de PA por IP. Al aplicar estas membranas a la nanofiltración de Rojo 

Congo en agua, observaron que la membrana con mejor rendimiento 
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flujo/rechazo era la que tenía 3 capas de ZIF-8, con un flujo de 20.1 kg·m-

2·h-1 y un rechazo del 99.8%. La membrana con la que obtuvieron el flujo 

más alto fue la de 4 capas de ZIF-8 con un flujo de 27.1 kg·m-2·h-1 y un 

buen rechazo, un 99.2%. 

 “Langmuir-Blodgett”. La aplicación de esta técnica en la fabricación de 

membranas compuestas para nanofiltración se reporta por primera vez 

con la realización de este trabajo. Esta técnica consiste en la deposición de 

una monocapa de material presente en la superficie de un líquido sobre 

un sustrato sólido.174-175 Esta deposición se produce mediante 

mecanismos de quimi o fisisorción y ofrece un preciso control sobre el 

posicionamiento del material a nivel molecular. El contacto del sustrato 

sólido con la monocapa puede realizarse de manera vertical (Langmuir-

Blodgett) u horizontal (Langmuir-Schaefer).176-177 En la Figura 2.17 se 

muestra un esquema de esta técnica.178 El procedimiento experimental de 

esta técnica se explicará con más detalle en el Capítulo 3. 

 

Figura 2.17: Esquema de deposición de monocapas por Langmuir. a) Deposición vertical (Langmuir-
Blodgett) y b) Deposición horizontal (Langmuir-Schaefer). Adaptado de Ariga y cols.178 con el permiso de 
John Wiley and Sons. 
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3.-Procedimiento experimental 

3.1.-Síntesis de materiales 

3.1.1.-Síntesis de MOF 

3.1.1.1.-ZIF-8 

Las nanopartículas de ZIF-8 se sintetizaron siguiendo el procedimiento descrito 

por Liédana y cols.66 Para ello primero se preparan dos disoluciones. Una de ellas 

disolviendo 0.95 g de Zn(NO3)2·6H2O (Scharlau, reagent grade) en 20 mL de MeOH 

(Scharlab, HPLC) y otra mediante la disolución de 3.09 g de 2-metilimidazol 

(Sigma-Aldrich, 99%) en una mezcla de 20 mL de MeOH y 20 mL de agua destilada. 

Una vez preparadas ambas disoluciones, la primera se vierte sobre la segunda y se 

deja en agitación durante 2 horas a temperatura ambiente. Después, las 

nanopartículas de ZIF-8 se recuperan por centrifugación (Beckman Coulter Allegra 

X-15R), se lavan dos veces con EtOH y se dejan secar a temperatura ambiente. 

3.1.1.2.-ZIF-93 

Esta síntesis se basa en la llevada a cabo por Liu y cols.179. Se preparan en primer 

lugar dos disoluciones: la primera disolviendo 0.882 g de Zn(NO3)2·6H2O en 60 mL 

de MeOH y la segunda disolviendo 2.610 g de 4,5-metilcarboxilimidazol 

(Maybridge, 99%) en 60 mL de MeOH. Después, la primera se vierte sobre la 

segunda y la disolución final se deja en agitación a temperatura ambiente durante 

20 minutos. Finalmente, el producto se recupera por centrifugación, se lava tres 

veces con EtOH y se deja secar al ambiente.  

3.1.1.3.-MIL-101(Cr) 

Este MOF se sintetizó siguiendo el procedimiento reportado por Sorribas y cols.9 

en el que 0.7 g de CrCl3·6H2O (Sigma-Aldrich, >98%) y 0.45 g de ácido tereftálico 

(Sigma-Aldrich, 98%) se añaden a 26 mL de agua. Entonces, esta disolución se 

vierte en un autoclave HF100 de teflón modificado (PTFE-TFM). La síntesis se lleva 

a cabo en microondas (Multiwave 3000, Anton-Paar) a 180 °C durante 30 minutos. 

El producto obtenido se recupera por centrifugación y se lava varias veces con 

agua. Posteriormente, el sólido obtenido se activa lavándolo con DMF (Scharlab, 

99.5%) a 120 °C durante una noche para eliminar el ligando orgánico ocluido en 

los poros. Por último, se pone a reflujo con MeOH durante 12 horas para eliminar 

la DMF, se lava con MeOH y se seca en estufa. 

3.1.1.4.-UiO-66 

El UiO-66 nanométrico se sintetizó según la síntesis reportada por Hou y cols.180. 

Primero, 0.4 g de ZrCl4 (Sigma-Aldrich, >95%) se disuelven en 100 mL de DMF 

mediante sonicación (JP Selecta, ultrasons HD) a temperatura ambiente. Entonces, 

se añaden 0.28 g de ácido tereftálico y 0.13 mL de agua. Una vez todo está bien 
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disuelto, la disolución se vierte en un autoclave de teflón donde tiene lugar la 

reacción a 120 °C durante 24 horas. El sólido obtenido se recupera por 

centrifugación y se lava mediante 3 ciclos de centrifugación y sonicación con DMF 

y otro con MeOH. Finalmente, las nanopartículas de UiO-66 se activan en estufa a 

300 °C durante 3 horas, con una rampa de calentamiento de 15 °C·min-1.  

3.1.1.5.-HKUST-1 

La síntesis del HKUST-1 se basa en la reportada por Wee y cols.181. En esta 

síntesis, 1.2 g de Cu(NO3)2·2.5H2O (Alfa Aesar, 98%) y 0.6 g de ácido tricarboxílico 

(Alfa Aesar, 98%) se disuelven en 25 mL de EtOH. Esta disolución se deja bajo 

agitación durante 24 horas a temperatura ambiente. El sólido obtenido se recupera 

por centrifugación, se lava dos veces mediante centrifugación con agua y una con 

EtOH y finalmente se seca a temperatura ambiente durante toda la noche. 

3.1.2.-Síntesis de rGO-ODA 

Para la síntesis de rGO-ODA, primero se lleva a cabo la síntesis de GO mediante el 

método modificado de Hummers reportado por Rourke y cols.182 que comienza con 

la disolución de 4.5 g de KNO3 (Alfa Aesar, 99%) en 169 mL de ácido sulfúrico 

concentrado (H2SO4, Sigma-Aldrich, 95-98%). Entonces, se añaden 5 g de grafito 

(NGS Naturegraphit GmbH) y se deja la mezcla bajo agitación durante 2 horas. La 

mezcla se enfría en baño de hielo y se mantiene en este mientras 22.5 g de KMnO4 

(Alfa Aesar, 99%) son añadidos gradualmente durante 70 minutos. Esta mezcla se 

deja en agitación durante 3 días y 4 días más sin agitación. Después de este tiempo, 

550 mL de H2SO4 al 5% en peso en agua se añade poco a poco durante 1 hora y se 

deja en agitación 3 horas más. Tras este tiempo, 15 g de peróxido de hidrógeno 

(H2O2, Sigma-Aldrich, 30%vol.) se añaden gota a gota y se deja en agitación 

durante 24 horas. Posteriormente, se adicionan 550 mL de una disolución acuosa 

que contiene un 3% en peso de H2SO4 y un 0.5% en peso de H2O2 y la mezcla se 

deja agitando 3 días y se centrifuga a 8,000 rpm durante 20 minutos descartando 

el supernadante y recuperando un líquido viscoso de color negro amarillento. Este 

líquido viscoso se dispersa en 500 mL de una disolución acuosa que contiene un 

3% en peso de H2SO4 y un 0.5% en peso de H2O2 mediante agitación vigorosa 

durante 5-10 min. Este paso se repite 12 veces hasta que desaparece el color 

brillante característico. Después, la mezcla se lava cinco veces con 500 mL de agua 

(en cada lavado). Finalmente, el GO se seca a vacío a temperatura ambiente.  

Una vez obtenido el GO, este se funcionaliza con octadecilamina (ODA, Sigma-

Aldrich, 99%) y se reduce siguiendo el procedimiento descrito por Hou y cols.,183 

para ello la disolución de GO obtenida (1.45 mg·mL-1) se diluye primero con agua 

destilada hasta obtener una concentración de 1 mg·mL-1 y se pone en agitación 

durante 1 hora. Mientras tanto, se prepara una disolución de ODA de 1.5 mmol en 

20 mL de EtOH, que se añade a la disolución de GO. La disolución resultante se deja 

en agitación durante 24 horas a 60 °C. Después, 220 µL de hidracina 
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monohidratada (Sigma-Aldrich, 98%) diluida en 10 mL de agua se añaden a esta y 

se agita durante dos horas más a 90 °C. Finalmente, la disolución obtenida se filtra, 

se lava varias veces con agua, EtOH y hexano (Scharlab, extra puro) y se dispersa 

en 150 mL de hexano. 

3.2.-Preparación de membranas 

3.2.1.-Preparación del soporte 

Como se ha comentado en la sección 2.3.2.3, la función de soporte es ofrecer una 

superficie sobre la que sintetizar la capa selectiva, por lo que no es selectivo en el 

rango de la nanofiltración. Uno de los polímeros más utilizados en la fabricación de 

soportes porosos para NF con disolventes orgánicos son las poliimidas gracias a la 

estabilidad que ofrecen en un amplio rango de disolventes tras someterlas a un 

proceso de entrecruzamiento (“cross-linking”).184-185 

En esta tesis, se ha utilizado la co-poliamida “Lenzing P84” (Figura 3.1) como 

soporte en todas las membranas fabricadas y para su entrecruzamiento se ha 

utilizado una solución de 1,6-hexanodiamina (HDA) en isopropanol con el objetivo 

de mejorar su estabilidad a los disolventes orgánicos utilizados tanto en la síntesis 

(hexano, DMF y DMSO) como en la nanofiltración (MeOH y EtOH). El uso de HDA 

en la etapa de entrecruzamiento ya ha sido reportado en otros trabajos con 

resultados satisfactorios.9,185 

 

Figura 3.1: Estructura química de la copoliimida P84®. Reproducido de Li y cols.186 con el permiso de 
Elsevier. 

Normalmente, el disolvente utilizado tanto en la preparación de la disolución de 

casting como en el postratamiento de las membranas TFC y TFN es DMF.9,144 En 

esta tesis, se ha sustituido la DMF tanto en la disolución de casting como en los 

postratamientos, por un disolvente menos tóxico: el DMSO, cuyo uso ya fue 

reportado por Soroko y cols.15 en la síntesis de membranas TFC y por Solomon y 

cols. en la etapa de postratamiento de las mismas.187 

El soporte se preparó siguiendo los siguientes pasos (ver Figura 3.2). Primero se 

prepara una disolución del 24% en peso de P84® (HP polymer GmbH) en DMSO 

(Scharlab, 99.5%) y se deja agitando toda la noche. Después, se deja reposar hasta 

que desaparecen las burbujas de aire formadas y se realiza el casting sobre una 

lámina de polipropileno (PP) pegada con un celo a un vidrio. El casting se realiza 
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mediante un aplicador de película motorizado (Elcometer 4340 Automatic Film 

Applicator) a una velocidad de 0.04 m·s-1 y un espesor de 250 µm. Inmediatamente 

después del casting, la membrana se introduce en un baño de agua destilada a 23 

°C en el que tiene lugar la precipitación por inversión de fases. Tras 10 minutos, la 

membrana se transfiere a otro baño de agua donde se deja durante 1 hora. 

Seguidamente, las membranas se enrollan y se introducen en dos baños 

consecutivos de isopropanol (IPA, Scharlab, 99.5%) de una hora cada uno para 

eliminar cualquier residuo de agua o DMSO. Luego, se lleva a cabo la etapa de 

entrecruzamiento sumergiendo los soportes en una disolución de 120 g·L-1 de 

hexanodiamina (HDA, Sigma-Aldrich, 98%) en IPA a temperatura ambiente 

durante 16 horas. Seguidamente, los soportes se someten a cuatro lavados 

consecutivos de una hora cada uno de IPA para eliminar cualquier resto de HDA. 

Por último, se introducen en un baño de polietilenglicol (PEG, Scharlab, “synthesis 

grade”) en IPA en proporción 3:2 en volumen en agitación durante toda la noche. 

Este tratamiento, aparte de evitar su fractura una vez secas, evita el colapso de los 

poros así como la formación de PA en el interior de los mismos durante la 

polimerización interfacial.187 Finalmente, se secan con un papel y se guardan.  

 

Figura 3.2: Esquema de la preparación del soporte de copoliimida P84®. 

3.2.2.-Síntesis de membranas de película delgada (TFC y TFN) 

Una vez preparados los soportes entrecruzados de P84®, se procede a la síntesis 

de las membranas de película delgada. En este apartado se detallará la síntesis de 

las membranas denominadas TFC (“thin film composite”) y las conocidas como 

TFN (“thin film nanocomposite”) en las que se introducen nanopartículas en la 

película delgada. 

La síntesis de la película delgada sobre el soporte de P84® se lleva a cabo 

mediante la técnica conocida como polimerización interfacial (IP, “interfacial 

polymerization”). En esta, como se ha comentado en la introducción, la reacción 

entre los dos monómeros (diamina y cloruro de acilo) se produce “in-situ” en la 

interfase de dos líquidos inmiscibles (agua y hexano) (Figura 3.3). 

DMSO P84

Casting Inmersión de fases Lavados con IPA
Entrecruzamiento con HDA

P84 entrecruzado

PP
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Figura 3.3: Esquema de la reacción de polimerización entre el TMC y la MPD. 

El procedimiento de síntesis de la película fina es como sigue (Figura 3.4). 

Primero se preparan dos disoluciones: por un lado, una disolución acuosa del 2% 

(peso/vol.) de m-fenilendiamina (MPD, Sigma-Aldrich, 99%) y por otro lado, una 

disolución orgánica del 0.1% (peso/vol.) de cloruro de trimesoilo (TMC, Sigma-

Aldrich, 98%) en hexano. Se recorta una sección circular de 60.8 cm2 del soporte 

entrecruzado de P84® y se coloca en un soporte de vidrio porta-membranas. 

Después, se vierten sobre este 30 mL de la disolución acuosa de MPD y se deja 

durante 2 minutos. Entonces, se retira y se seca la membrana con papel secante 

para eliminar cualquier gota que pudiera dificultar la formación de la película de 

PA. Después, se añaden 30 mL de la disolución orgánica de TMC y se deja 

reaccionar durante 1 minuto, tiempo tras el cual se añaden unos 10 mL de hexano 

para frenar la reacción. Seguidamente, la membrana se aclara con otros 10 mL de 

hexano para eliminar cualquier resto de TMC no reaccionado y luego con 10 mL de 

agua destilada para eliminar el hexano. Finalmente, la membrana se guarda en 

agua destilada. En el caso de las membranas TFN, previamente a la IP, se dispersa 

en la fase orgánica un 0.2% (peso/vol.) de nanopartículas (MOF o rGO-ODA) y se 

sigue el mismo procedimiento descrito anteriormente. La dispersión se realiza 

mediante ciclos de sonicación y agitación para romper posibles aglomeraciones 

que dificulten la formación de una capa homogénea y sin defectos de PA.  

 

Figura 3.4: Esquema de la preparación de membranas de película delgada TFC. 

3.2.3.-Síntesis de membranas PA/MOF 

En este tipo de membranas, el MOF se hace crecer encima del soporte polimérico 

mediante la técnica conocida como “síntesis interfacial” (ver sección 2.3.2.3 
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apartado “procedimientos de deposición controlada del MOF”), que sigue el mismo 

principio que la IP: la reacción in-situ de dos reactivos en la interfase de dos 

líquidos inmiscibles (Figura 3.5). Esta técnica se ha aplicado con dos MOF: el 

HKUST-1 y el ZIF-93. 

 

Figura 3.5: Formación de la película del MOF por síntesis interfacial. 

3.2.3.1.-Membrana HKUST-1/PA 

Esta síntesis se realizó siguiendo un procedimiento similar al reportado por 

Campbell y cols.188 Primero, se recorta un disco de 60.8 cm2 del soporte 

entrecruzado de P84® y se coloca en un soporte de vidrio porta-membranas. Sobre 

este, se vierte una disolución de 3.5 g de Cu(NO3)2·2.5H2O en 50 mL de agua 

destilada que se deja durante una noche. Tras este tiempo, se retira el exceso de 

disolución y se seca la membrana con un trozo de papel secante. Entonces, se 

vierte una disolución de 0.85 g de ácido trimésico disuelto en una mezcla de 50 mL 

de octanol (Alfa Aesar, 99%) y 15 mL de metanol. Tras 1 minuto de reacción, se 

retira el sobrenadante y la membrana se lava con metanol y se deja secar al 

ambiente. Por último, se sintetiza la película delgada de poliamida sobre la 

superficie de la membrana mediante el proceso de polimerización interfacial 

descrito anteriormente. 

3.2.3.2.-Membrana ZIF-93/PA 

En este caso, la metodología seguida fue la misma que en el caso del HKUST-1 con 

la diferencia de que, la fase acuosa era una disolución de 2.23 g de Zn(NO3)2·6H2O 

en 50 L de agua destilada y la fase orgánica consistía en una disolución de 1.65 g de 

4,5-metilcarboxilimidazol y 1.02 g de formiato de sodio (Sigma-Aldrich, 99%) en 

una mezcla de 40 mL de metanol y 20 mL de octanol. El tiempo de reacción 

también fue de 1 minuto. 

3.2.4.-Síntesis de membranas mediante Langmuir-Schaefer 

La síntesis de este tipo de membrana se realizó en colaboración con el grupo de 

investigación Platon de la Universidad de Zaragoza, quienes fueron los encargados 

de la deposición de una monocapa de MIL-101 (Cr) sobre el soporte entrecruzado 

de P84® mediante la técnica de Langmuir-Schaefer (LS).  
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La síntesis de la monocapa se llevó a cabo en una cuba de Langmuir (Figura 3.6) 

de Teflón KSV-NIMA modelo KN 2003 de dimensiones 580x145 mm2 (1) equipada 

con dos barreras móviles (2) que se encargan de comprimir la monocapa, acoplada 

a una balanza Wilhelmy (3) para la determinación de la presión superficial. 

Además, esta cuba posee un brazo de transferencia (5) al que se puede acoplar una 

pinza, en el caso de que la deposición vaya a ser vertical (Langmuir-Blodgett), o 

una ventosa conectada a una bomba de vacío si va a ser horizontal, como es el caso 

aquí tratado(Langmuir-Schaefer). La función de la cuba, es alojar la subfase 

(normalmente agua o una disolución acuosa) en la que se deposita la disolución 

que contiene el material que va a formar la película. 

 

Figura 3.6: Imagen de la cuba KSV-INMA KN 2003. 

El primer paso, es la preparación de la disolución de nanopartículas, en concreto, 

del MOF MIL-101(Cr). Este MOF, se dispersa en una mezcla de cloroformo 

(Panreac, >99%) y MeOH (Sigma-Aldrich, >99.9 %) en proporción 4:1 en volumen 

para obtener una disolución de concentración 0.2 mg/mL de nanopartículas. Para 

reducir la aglomeración de las nanopartículas en la película, se añadió un 1% en 

peso de ácido behénico (CH3(CH2)2OCOOH, Sigma-Aldrich, 99%) y cuya cantidad se 

calculó como sigue (Ecuación 3.1): 

  (Ecuación 3.1) 

Esta disolución se deja en agitación 24 horas para asegurar la completa mezcla 

de los componentes y se sonica durante 5 minutos antes de su uso. Para la 

formación de la película, 2 mL de dicha suspensión se dispersan gota a gota sobre 

la subfase acuosa. Entonces, se deja evaporar el disolvente durante 15 minutos y se 

inicia la compresión de la película a través del movimiento de las barreras móviles 

a una velocidad constante de 6 cm2/min hasta que se alcanza una presión 

superficial de 12 mN·min-1. En ese momento, la película se transfiere por contacto 

directo sobre el soporte entrecruzado de P84® a una velocidad de transferencia de 

1 cm/min (membrana LS). Por último, se sintetiza una película delgada de PA por 

1
2

3

4
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IP sobre la membrana obtenida (membrana LS-TFN). En la Figura 3.7 se muestra 

un esquema del proceso. 

 

Figura 3.7: Esquema de preparación de una membrana LS-TFN 

3.2.5.-Postratamiento de las membranas 

Antes de su aplicación en nanofiltración, todas las membranas sintetizadas 

fueron sometidas a dos postratamientos. El primero de ellos consiste en un baño 

en DMSO o DMF durante 10 minutos y el segundo en un filtrado de 10 minutos con 

DMSO o DMF. La aplicación de estos postratamientos ya se ha reportado con 

anterioridad, dando como resultado una mejora en el rendimiento de las 

membranas al incrementar el flujo obtenido por las mismas gracias a la 

eliminación de pequeños fragmentos de PA que pudieran quedar en la superficie 

de la membrana y bloquear los poros. 9,187 

3.3.-Caracterización de los materiales 

3.3.1.-Técnicas de caracterización 

3.3.1.1.-Difracción de rayos X (XRD, “X-Ray Diffraction”) 

La difracción de rayos X (XRD), es una técnica analítica que permite obtener 

información de las fases cristalográficas presentes en la muestra, así como de la 

presencia de impurezas. Consiste en hacer incidir un haz de rayos X colimado 

sobre la muestra con diferentes ángulos 2θ, el cual produce un espectro de 

difracción. La longitud de onda de los rayos X es del mismo orden que las 

distancias interatómicas, que actúan como redes de difracción. Mediante la 

aplicación de la ley de Bragg (Ecuación 3.2), se puede determinar la distancia entre 

los planos de la red cristalina. 

  (Ecuación 3.2) 

Membrana LS
Soporte P84®

30 mL
H2O+MPD 
(2% w/v)

30 mL
hexano+TMC
(0.1% w/v)

Película 
PA

Membrana LS

Membrana LS-TFN
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Donde n es un número entero, λ es la longitud de onda de los rayos X empleada, d 

la distancia entre planos de la red cristalina y θ el ángulo entre los rayos incidentes 

y los planos de dispersión. 

En la información que proporciona esta técnica de análisis, pueden distinguirse 

dos aspectos diferenciados. Por una parte, la geometría de las direcciones de 

difracción, que está condicionada únicamente por el tamaño y la forma de la 

celdilla elemental del cristal. Conociendo estas direcciones es posible averiguar el 

sistema cristalino y las dimensiones de la celdilla. Por otra parte, las intensidades 

de los rayos difractados están íntimamente relacionadas con la naturaleza de los 

átomos y con las posiciones que éstos ocupan en la red cristalina, por lo cual su 

medida constituye un procedimiento para obtener información tridimensional 

sobre la estructura interna del cristal. 

Los análisis se llevaron a cabo con un difractómetro Empyrean perteneciente al 

Instituto Universitario de Investigación en Nanociencia de Aragón (INA). El equipo 

está provisto de un ánodo de cobre con un monocromador de germanio para 

seleccionar la radiación Cuα, con λ=1.5406 Å. Los datos se recogen en un rango 2θ 

de 2.5 a 40° y una velocidad de 0.01°/s. 

3.3.1.2.-Espectroscopia 

ESPECTROSCOPIA INFRARROJA CON TRANSFORMADA DE FOURIER Y DE 

REFLEXIÓN TOTAL ATENUADA (FTIR-ATR, “FOURIER TRANSFORM 

INFRARED SPECTROSCOPY-ATTENUATED TOTAL REFLECTION”)) 

La espectroscopia infrarroja con transformada de Fourier (FTIR) es una técnica 

de análisis que permite identificar compuestos químicos a partir de la naturaleza 

de los átomos y los enlaces que los constituyen. El infrarrojo medio (de 4.000 a 400 

cm-1, aproximadamente) es usado para el estudio de las vibraciones fundamentales 

y la estructura rotacional vibracional, al absorber los enlaces químicos la energía 

de la radiación infrarroja que atraviesa la muestra. 

Cuando un rayo de luz infrarroja atraviesa la muestra, se registra la cantidad de 

energía absorbida para cada valor de longitud de onda y mediante la Transformada 

de Fourier se puede estudiar las vibraciones fundamentales y la estructura 

rotacional vibracional. Estos datos permiten obtener un espectro de transmitancia 

o absorbancia, que recoge las longitudes de onda (expresada en su inversa, número 

de onda) donde la muestra absorbe el infrarrojo y permite una interpretación de 

los enlaces presentes. 

Otro de los modos utilizados es el de reflexión total atenuada, ATR (“Attenuated 

Total Reflection”), en el que la luz infrarroja atraviesa un cristal de alto índice de 

refracción que está en contacto con la muestra antes de atravesarla y vuelve al 

cristal. Este es el modo que se aplicó a todas las muestras, tanto a las de polvo 

como a las membranas. 
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Las medidas se llevaron a cabo en un espectrómetro Bruker Vertex 70, ubicado 

en el INA, equipado con un detector de sulfato de triglicina deuterado (DTGS) y un 

accesorio ATR Golden Gate de diamante. Los análisis se realizaron en un rango de 

número de onda de 600-4000 cm-1 con una resolución de 4 cm-1.  

ESPECTROSCOPIA RAMAN 

La espectroscopia Raman se utiliza principalmente para el estudio de los modos 

vibracionales y rotatorios de las moléculas. Consiste en iluminar la muestra con un 

rayo láser. La luz del punto iluminado se recoge con una lente y se envía al detector 

a través de un monocromador. 

Es una técnica complementaria a la espectroscopia infrarroja por lo que también 

sirve para identificar moléculas según sus grupos funcionales. En el caso de 

materiales carbonosos, como el GO utilizado en esta tesis, sirve para identificar 

desórdenes estructurales a partir de la abundancia de enlaces sp2 y sp3 en la 

muestra, así como para interpretar cambios originados en la estructura debidos a 

funcionalizaciones o tratamientos físicos. 

Esta técnica se fundamenta en la dispersión inelástica de la luz por parte de un 

material. Cuando un haz de luz monocromática de frecuencia ν0 incide sobre un 

material, la mayoría de la luz dispersada presenta la misma frecuencia que la luz 

incidente, pero hay una pequeña fracción que se dispersa inelásticamente, 

presentando ligeros cambios de frecuencia que son característicos de cada 

material e independientes de la frecuencia del haz de luz incidente.  

Las medidas se llevaron a cabo en un microscopio Raman confocal Witec 

Alpha300 R con espectrómetro UHTS300 ubicado en el INA. Las medidas se 

realizaron a una longitud de onda λ=488 nm y una potencia de trabajo entre 1-4 

mW. 

ESPECTROSCOPIA FOTOELECTRÓNICA EMITIDA POR RAYOS X (XPS, “X‐

RAY PHOTOELECTRON SPECTROSCOPY”) 

La espectroscopia fotoelectrónica de Rayos X (XPS) es una técnica analítica que 

permite determinar tanto la composición química (cualitativa y cuantitativamente) 

como el estado químico de los elementos de la superficie de un material. 

Esta técnica se basa en el efecto fotoeléctrico, en el cual, la incidencia de un fotón 

hν sobre los átomos situados más superficialmente provoca la emisión de 

fotoelectrones con una energía de ligadura determinada, que es característica de 

cada elemento. 

Esta técnica, permitió determinar la composición de la superficie de la membrana 

LS-MIL-101(Cr) y las membranas TFN de ZIF-8, ZIF-93 y UiO-66. Estos análisis se 

llevaron a cabo mediante un espectrómetro Kratos AXIS ultra DLD ubicado en las 

instalaciones del INA, empleando una radiación de excitación monocromática AlKα 

de 18486.6 eV. Antes de las medidas, la superficie se limpió mediante el 
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bombardeo de iones Ar+. Para realizar el perfil de concentraciones de MOF, la 

muestra se fue puliendo con un haz de iones Ar+ (3 keV, 5 mA), tomando datos 

cada hora. Los datos se procesaron con el software Casa XPS. 

ESPECTROSCOPIA ULTRAVIOLETA VISIBLE (UV-VIS) 

La espectroscopia UV-Vis se emplea normalmente en la determinación 

cuantitativa de soluciones de iones metálicos y compuestos orgánicos muy 

conjugados. 

Esta técnica emplea radiación electromagnética en la región del ultravioleta-

visible en el que las moléculas pueden absorber esta radiación provocando la 

promoción de un electrón a un estado excitado. 

El instrumento empleado, llamado espectrofotómetro UV-Vis, mide la intensidad 

de la luz que pasa a través de la muestra (I) y la compara con la intensidad antes de 

atravesar la muestra (I0). Esta fracción de radiación que ha logrado traspasar la 

muestra (I/I0) se denomina transmitancia (T) y se relación con la absorbancia 

mediante la siguiente expresión: . 

En términos prácticos, se suele utilizar la absorbancia, por estar linealmente 

relacionada con la concentración por la Ley de Beer-Lambert: 

  Ecuación 3.3 

Donde ε es una constante conocida como absortividad molar o coeficiente de 

extinción, L es la longitud de ruta a través de la muestra y c la concentración de las 

especies absorbentes. Es decir, gracias a la medida de la absorbancia de una 

muestra es posible calcular la concentración de una sustancia en la misma. 

Mediante esta técnica, se cuantificó la concentración tanto en el retenido como en 

el permeado de los colorantes utilizados en OSN. 

Los análisis se llevaron a cabo con un espectrofotómetro V-670 Jasco 

perteneciente al Departamento de Ingeniería Química y Tecnologías del Medio 

Ambiente. Este equipo consta de doble haz y un monocromador de manera que se 

puede medir en la región de longitud de onda comprendida entre 190 y 2700 nm. 

CROMATOGRAFÍA LÍQUIDA DE ALTA EFICACIA (HPLC, “HIGH‐

PERFORMANCE LIQUID CHROMATOGRAPHY”) 

La cromatografía líquida de alta eficacia (HPLC) se utiliza para separar y 

cuantificar los componentes de una mezcla. Esta separación se basa en los 

diferentes tipos de interacciones químicas y físicas que se dan entre los 

compuestos con la fase móvil y la fase estacionaria, lo que hace que estos se 

detecten a distintos tiempos.  

Mediante esta técnica se cuantificó la concentración de diclofenaco o naproxeno 

presente en el retenido y el permeado tras el proceso de nanofiltración en medio 

acuoso. El análisis se llevó a cabo en un equipo de HPLC Water 2487 Isocratic con 
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un detector UV/Vis fijado a una longitud de onda de 284 nm y equipado con una 

columna C18 SunFire (4.6x250 mm, 5 µm), perteneciente al CREG. Como fase 

móvil, se utilizó una mezcla de acetonitrilo (Scharlab, HPLC grade) y disolución 

acuosa de trietilamina (TEA, Sigma-Aldrich ≥99%) al 0.2% en proporción 60:40 

(v/v) a pH=2.75 ajustado con ácido fosfórico al 85% (Acros Organics, ACS grade). 

3.3.1.3.- Análisis termogravimétrico (TGA, “Thermogravimetric Analysis”) 

El análisis termogravimétrico (TGA), permite medir de manera continua la 

variación de peso de una muestra frente al tiempo o la temperatura, eligiendo una 

atmósfera específica (N2 o aire), cuando se le aplica un programa de temperatura 

controlada. Esta técnica permite determinar la composición de materiales, 

predecir su estabilidad térmica o determinar la cinética de una reacción cuando la 

curva TG describe un proceso bien definido. 

Este análisis se utilizó para comprobar la correcta activación de los MOF 

sintetizados, esto es, si los poros estaban libres de disolvente y ligando orgánico. El 

equipo utilizado fue un Mettler Toledo TGA/DSC 1 SF/755 perteneciente al CREG. 

Las muestras se colocaron en crisoles de alúmina de 70 μl de capacidad y se 

trataron con una rampa de 10 °C/min de 35 a 700 °C en aire con un flujo de 80 cm3 

(STP)/min. 

3.3.1.4.-Microscopía 

MICROSCOPÍA ELECTRÓNICA DE BARRIDO (SEM, “SCANNING ELECTRON 

MICROSCOPY”) 

La microscopía electrónica de barrido (SEM), es una técnica que se basa en la 

obtención de imágenes gracias al bombardeo de un haz de electrones sobre la 

muestra. El equipo cuenta con un dispositivo (filamento) que genera un haz de 

electrones para iluminar la muestra y con diferentes detectores se recogen 

después los electrones generados de la interacción con la superficie de la misma 

para crear una imagen que refleja las características superficiales de la misma, 

pudiendo proporcionar información de las formas y texturas de sus constituyentes. 

Las imágenes fueron tomadas con el microscopio electrónico de barrido FEI 

Inspect F20 del Laboratorio de Microscopías Avanzadas (LMA) de la Universidad 

de Zaragoza. Este equipo puede generar imágenes de electrones secundarios y de 

electrones retrodispersados acelerados con tensiones de 0.2 a 40 kV, además de 

tener una resolución máxima de 3.5 nm. Las muestras se recubrieron previamente 

con una fina capa de oro/platino para hacerlas conductoras. Con esta técnica se 

caracterizaron tanto los materiales en polvo sintetizados como las membranas 

fabricadas. Para visualizar las secciones transversales de las membranas, estas se 

fracturan en seco después de su inmersión en nitrógeno líquido. 

A este microscopio, se le puede acoplar una fuente de iones de Ga+ conocida 

como haz de iones focalizado (FIB, “Focus Ion Beam”). Este haz de iones destruye 
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parte de la muestra cuando impacta sobre la superficie de la misma, lo que permite 

cortar la muestra con gran precisión. Esta técnica se empleó para la fabricación de 

lamelas de determinadas membranas para su caracterización mediante STEM. El 

equipo utilizado fue un Cryogenic Dual Beam Nova 200 del LMA. 

MICROSCOPÍA ELECTRÓNICA DE TRANSMISIÓN (TEM, “TRANSMISSION 

ELECTRON MICROSCOPY”) 

En la microscopía electrónica de trasmisión, también se utiliza un haz de 

electrones, pero con la diferencia de que en este caso el detector se encuentra 

debajo de la muestra y la imagen se forma a partir de los electrones que atraviesan 

la misma. Es por ello por lo que la muestra debe ser ultrafina. 

Esta técnica se empleó para comprobar la dispersión de los materiales 

embebidos en la capa de poliamida. Para ello, un trozo de PA con nanopartículas se 

separó del soporte de poliimida y se colocó sobre una rejilla de cobre con 

recubrimiento de película de carbono. Las imágenes fueron tomadas con un 

microscopio electrónico de transmisión modelo FEI TECNAI T20 perteneciente al 

LMA de la Universidad de Zaragoza. Este microscopio opera a 200 kV con una 

resolución punto a punto de 2.4 Å. 

Con el mismo microscopio se puede llevar a cabo la difracción de electrones, que 

permite identificar la estructura que tiene la muestra y que fue utilizada en el caso 

de los MOF para comprobar su cristalinidad. 

También se obtuvieron imágenes de microscopía electrónica de transmisión de 

barrido (STEM, “Scanning transmission electron microscopy”) de una lamela para 

observar la interfaz poliimida/MIL-101(Cr)/poliamida. Para este propósito se 

utilizó una estación de soporte criogénico en un microscopio FEI Tecnai F30 

operado a 300 kV. Esta lamela fue preparada mediante Dual-Beam.  

MICROSCOPÍA DE SONDA LOCAL DE FUERZA ATÓMICA (AFM, “ATOMIC 

FORCE MICROSCOPY”) 

La microscopia de fuerza atómica es una técnica de estudio superficial. En ella, 

una sonda puntiaguda (cantiléver) rastrea la superficie de la muestra registrando 

las fuerzas de interacción que hay entre la punta y la muestra cuando están muy 

próximas obteniéndose así una imagen de la topografía de la muestra con una 

elevada resolución. 

Esta técnica se utilizó para calcular la rugosidad de algunas de las membranas 

fabricadas. Esta rugosidad se puede caracterizar mediante la determinación de dos 

parámetros: la rugosidad media (Ra) y la rugosidad media cuadrática (RMS). La 

definición de ambos es la siguiente: 

 (Ecuación 3.4) 

  (Ecuación 3.5) 
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Donde n es el número de puntos que se tiene en cuenta para el cálculo e y es la 

desviación de la media del punto i. 

El equipo usado fue un Veeco Multimode 8 perteneciente al LMA. Las medidas se 

tomaron al aire en modo “tapping” con una velocidad de barrido de 1 Hz y una 

frecuencia de oscilación de 300 Hz. 

3.3.1.5.-Adsorción de nitrógeno 

La adsorción de gases es una técnica de análisis que proporciona información 

sobre las propiedades texturales de un sólido como su superficie específica y su 

volumen y tamaño de poros. 

Esta técnica se basa en la fisisorción de un gas, en este caso N2, aunque se pueden 

utilizar otros gases como CO2 o Argón. Al ponerse en contacto el gas con la 

superficie de un sólido, se produce un equilibrio entre las moléculas adsorbidas y 

las moléculas en fase gaseosa, que depende de la presión del gas y de la 

temperatura. La relación entre las moléculas adsorbidas y la presión a temperatura 

constante se puede recoger en una isoterma de adsorción. La superficie específica, 

así como el volumen y distribución de tamaño de poros, pueden obtenerse a partir 

del análisis adecuado de estas isotermas de adsorción, para lo cual se han 

desarrollado diversos métodos. 

Esta técnica se empleó para conocer la superficie específica y volumen de poros 

de los MOF sintetizados mediante el método BET (“Brunauer-Emmett-Teller”). 

Para ello se utilizó un equipo Micromeritics Tristar 3000 perteneciente al CREG. 

Antes del análisis, los MOF se desgasificaron a 200 °C durante 8 horas con una 

rampa de calentamiento de 10 °C/min. 

3.3.1.6.-Ángulo de contacto 

El ángulo de contacto mide el ángulo que forma un líquido (en este caso agua 

destilada) al entrar en contacto con un sólido. En este trabajo, se utilizó para 

estudiar el cambio de hifrofilicidad/hidrofobicidad de las membranas tras la 

incorporación tanto de los MOF como del rGO-ODA. Las medidas se llevaron a cabo 

en un equipo Krüss DSA 10 MK2 a 20 °C perteneciente al CREG. 

3.3.1.7.-Contenido en gel (“gel content”) 

El contenido en gel proporciona una medida de la estabilidad química que un 

polímero posee en un disolvente y a su vez, una estimación del grado de 

entrecruzamiento del mismo. A mayor contenido en gel, mayor estabilidad del 

polímero en dicho disolvente y mayor es su grado de entrecruzamiento. En esta 

tesis se utilizó para comprobar si existían diferencias entre el postratamiento de 

las membranas con DMF o con DMSO. Para ello, se sumergió una membrana en 

cada disolvente durante 2 semanas, tiempo tras el cual se retiró de este y se secó a 

conciencia con un papel absorbente. El contenido en gel (GC) se calculó como 

sigue:  
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  (Ecuación 3.6) 

Donde Mwet es el peso de la membrana tras las dos semanas y Mdry es el peso 

inicial de la membrana. 

3.3.2.-Nanofiltración 

En este apartado se describe el sistema de nanofiltración utilizado en la medición 

de todas las membranas sintetizadas en este trabajo, en concreto, se midieron en 

un sistema en discontinuo o “dead-end”. En este tipo de configuración, la 

alimentación se hace pasar a través de la membrana ejerciendo una presión 

perpendicular a ella. Ambos sistemas de nanofiltración, el utilizado durante la 

estancia en The University of Manchester y en la Universidad de Zaragoza son 

análogos.  

Dependiendo del tipo de membrana, esta se evaluó en medio acuoso con 

fármacos y/o en OSN con colorantes. En la  

Tabla 3.1 se muestra el/los disolvente/s y el/los soluto/s empleados en cada 

caso. El tamaño de estos solutos es el siguiente: 

 Naranja de acridina o “Acridine Orange” (AO, Sigma-Aldrich, 55%): 265 

Da. 

 Amarillo atardecer o “Sunset Yellow” (SY, Sigma-Aldrich, 90%): 452 Da. 

 Rosa de Bengala o “Rose Bengal” (RB, Sigma-Aldrich, 95%): 1017 Da. 

 Diclofenaco (DCL, TCI, 98%): 296 Da. 

 Naproxeno (NAP, Fluorochem, 98%): 230 Da. 

En el caso de los colorantes (AO, SY y RB) la concentración de la alimentación fue 

de 20 mg/L y para los fármacos se utilizó una concentración de 1 mg/L. 

Tabla 3.1: Relación de disolventes y solutos empleados en la evaluación de cada tipo de membrana 
preparada. 

Membrana Disolvente Soluto 

TFC 

Agua 
Diclofenaco 

Naproxeno 

EtOH 

“Acridine Orange” 

“Sunset Yellow” 

“Rose Bengal” 

MeOH “Sunset Yellow” 

TFN ZIF-93 
Agua 

Diclofenaco 

Naproxeno 

MeOH “Sunset Yellow” 

TFN ZIF-8 MeOH “Sunset Yellow” 
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Membrana Disolvente Soluto 

TFN UiO-66 MeOH “Sunset Yellow” 

TFN HKUST-1 Agua 
Diclofenaco 

Naproxeno 

TFN rGO-ODA EtOH 

“Acridine Orange” 

“Sunset Yellow” 

“Rose Bengal” 

PA/ZIF-93 BTFC Agua 
Diclofenaco 

Naproxeno 

PA/HKUST-1BTFC Agua 
Diclofenaco 

Naproxeno 

En la Figura 3.8 se muestra el sistema experimental de nanofiltración y el módulo 

empleados. El módulo utilizado es de acero inoxidable de la marca Sterlitech 

modelo HP4750. El área efectiva de la membrana (que se corta en discos de 14 

cm2) es de 12 cm2 y el volumen de alimentación es de 250 mL. Todos los 

experimentos se llevan a cabo a 20 bar y 23 °C. 

Una vez colocada la membrana en el módulo, este se coloca sobre una placa 

agitadora para evitar la precipitación del soluto disuelto en la alimentación, se abre 

la válvula de entrada de gas (1) y después, con la válvula reguladora de presión (2) 

se incremente suavemente la presión hasta alcanzar los 20 bar de trabajo.El 

permeado se recoge en un matraz aforado de 250 mL (3) y de forma periódica con 

la ayuda de una probeta, se toman medidas hasta alcanzar valores estables en el 

caudal obtenido. Este valor será el que se utilizará para calcular el caudal de 

permeado (ecuación 2.2). Una vez estabilizado el flujo, se recoge una muestra de 

permeado y otra de retenido para su análisis. En el caso de los colorantes, se 

recogen 3 mL de permeado y de retenido que se dejan evaporar en la campana y se 

reemplazan por 3 mL de agua destilada. Estas muestras se analizan en el UV-Vis a 

la máxima longitud de onda del colorante en cuestión: 291 nm para el AO, 480 nm 

para el SY y 546 nm para el RB. Mientras en el caso de los fármacos, se recoge 1 mL 

de permeado y de retenido y se analizan en el HPLC bajo las condiciones descritas 

en el apartado 3.3.1.2. El cálculo del porcentaje de retenido se realiza aplicando la 

ecuación 2.3. 
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Figura 3.8: Sistema experimental de nanofiltración (izquierda) y módulo (derecha) empleados en la 
Universidad de Zaragoza. 
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4.1.-MOFs CHARACTERIZATION 

4.2.-COMPARISON OF TFC MEMBRANES POST-

TREATED USING DMF OR DMSO 

4.3.-CHARACTERIZATION OF THE TFN MEMBRANES 

4.4.-TFN MEMBRANE PERFORMANCE 

 

 

Adapted from L. Paseta, M. Navarro, J. Coronas and C. Téllez, “Greener Processes in 

the Preparation of Thin Film Nanocomposite Membranes with Diverse Metal-

Organic Frameworks for Organic Solvent Nanofiltration”, J. Ind. Eng. Chem., 2019, 

DOI: https://doi.org/10.1016/j.jiec.2019.04.057 
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4.-Greener processes in the preparation of  thin film 
nanocomposite membranes with diverse pore size-
MOFs for organic solvent nanofiltration 

Nanofiltration is a membrane separation process for liquids characterized by an 

operating pressure difference ranging from 5 to 40 bar and a molecular weight cut-

off (MWCO) between 200 and 1000 Da.189 While this technique has been widely 

used in water treatment processes,190-192 it has recently received much attention 

for its application with organic solvents, the so-called organic solvent 

nanofiltration (OSN) process, with important economic, environmental and safety 

benefits.139,189  

The most competitive membranes in OSN are the so-called thin film composite 

(TFC) membranes, first developed by Cadotte.3 Although, thin film nanocomposite 

membranes (TFN, i.e. including fillers in the TFC membrane), first developed by 

Jeong et al. 161 for reverse osmosis, have also been widely used for OSN8,139 

obtaining an improvement in permeance without sacrificing rejection in 

comparison with TFC membranes. Nowadays several different nanoparticles are 

also used as fillers, namely TiO2,169,193-194 MCM-41 silica,195 graphene oxide196 and a 

limited range of metal-organic frameworks (MOFs).9,144,197 The foregoing is related 

to the tendency of modification and improvement of the thin film membrane as 

well as the synthesis and applications related to the MOF.198-200 

The main drawback in the fabrication of TFN membranes is that the polymer 

necessary to prepare the support is usually soluble in highly toxic organic solvents, 

such as N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) or N,N-

dimethylacetamide (DMAc).201 Moreover, in the case of TFC and MOF-TFN 

membranes, DMF is commonly used in the post-treatment as an activating solvent 

(either by bath, filtration or a combination of both treatments).144,187,202 In recent 

years, the principles of Green Chemistry are implanting 203 focusing on resource 

efficiency, nontoxicity and the environmentally friendly profile of solvents, and on 

the overall life cycle assessment of the product or process 204. 

Solvent selection guides, in particular Sanofi's,205 provide relevant information 

and rankings of commonly used solvents based on several features that must be 

considered when designing a “green” membrane. Health issues of solvents (acute, 

long-term and single target organ toxicity) are evaluated by REACH (Registration, 

Evaluation, Authorisation and Restriction of Chemical substances) and, in 

particular, DMF, DMAc and NMP are classified as substances of very high concern 

(SVHC) in a list that is updated twice a year.206 Given other disadvantages of DMF 

such as corrosivity, a melting point at 18 °C and the formation of dimethylsulfide, 

REACH has proposed DMSO as an advisable substitute because of its low toxicity 

for human health. In turn, Sanofi classified DMSO as “substitution advisable” in 

contrast with DMF classified as “substitution requested”.  
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However, very few publications have presented strategies for reducing the 

impact of membrane production. Of these, da Silva Burgal et al.207 used poly(ether 

ether ketone), a chemical resistant polymer that does not require cross-linking and 

dissolves in solvents that can be easily neutralized by water. Hua et al.208 carried 

out the synthesis of the selective layer using water as the reaction medium instead 

of hexane. Figoli et al.209 described many successful cases were DMSO was applied 

for the preparation of membranes. In particular, Soroko et al.15 developed a new 

route to synthesize TFC OSN membranes using DMSO as a polyimide (PI) solvent 

instead of DMF and Solomon et al.187 used DMSO as the activating solvent for TFC 

membrane post-treatment instead of DMF. DMSO and DMF are considered to be 

interchangeable because of their similar Hansen solubility parameters and ability 

to dissolve both polyimide and polyamide.209 Furthermore, DMSO is the most 

environmentally friendly solvent among other PI diluents (DMF and NMP) in terms 

of its emissions and resource use. All these solvents were produced through the 

“methanol route”. Capello et al.210 showed their Life Cycle Assessment and energy 

profiles, obtained by the Cumulative Primary Energy Demand (CED). DMF is 

produced in two steps requiring between 50 and 100 MJ-eq per kg of product. NMP 

requires four production steps and between 100 and 150 MJ-eq per kg of product. 

In contrast, DMSO is produced in only one step and causes the lowest CED with 

less than 50 MJ-eq per kg of product.  

The aim of this section is the design of a greener processes for both TFC and 

MOF-TFN membranes preparation by the use of DMSO, a greener solvent than 

traditional ones, both to dissolve the polymer and to activate the membrane. In 

addition, continuing with the development of MOFs as fillers in TFN membranes, 

ZIF-8 and two other MOFs that to date have not been used as fillers in OSN: ZIF-93 

and UiO-66 have been incorporated. These MOFs (whose structure and 

composition appear in Figure 4.1) differ in their pore size and hydrophilicity and 

provide the membrane with different performances in OSN application 
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Figure 4.1: a) Building blocks of UiO-66 with the Zr6O4(OH)4 clusters in green and chemical structure of the 
terephthalic acid, b) Building blocks of ZIF-93 with the ZnN4 tetrahedra in green and chemical structure of the 
4-methyl-5-imidazolecarboxaldehyde linker and c) Building blocks of ZIF-8 with the ZnN4 tetrahedra in green 
and chemical structure of the 2-methylimidazole linker. Oxygen, nitrogen and carbon atoms are in red, blue 
and black, respectively. These structures were made with Diamond 3.2 using the corresponding CIF files.38,74,86 
d, e, f) TEM images of d) UiO-66, e) ZIF-93 and f) ZIF-8. 

4.1.-MOFs characterization 

The XRD patterns of the MOFs prepared in this work (Figure 4.2) reveal their 

purity and crystalline structure after comparing them with the simulated ZIF-8, 

ZIF-93 and UiO-66 XRD patterns. Figure 4.1a-c shows the structure of these MOFs 

and their corresponding organic linker 

a) b) c)

d) e) f)
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Figure 4.2: XRD patterns of UiO-66, ZIF-93 and ZIF-8 nanoparticles synthesized in this work compared with 
the simulated patterns. The simulated patterns were obtained using the corresponding CIF files.38,63,86 

The nanosized MOF crystals showed the expected morphology (Figure 4.1d-f and 

Figure 4.3) as described in the literature 179-180,211 and were obtained with a 

narrow particle size distribution, ranging from 48 to 127 nm with a small standard 

deviation (9-18 nm) (Table 4.1). The order of particle size was UiO-66 (48 nm) < 

ZIF-93 (67 nm) < ZIF-8 (127 nm). 

 

Figure 4.3: SEM images of MOF nanoparticles: a) ZIF-8; b) ZIF-93 and c) UIO-66. 

Table 4.1: Particle size determined from the SEM images and BET area of the UiO-66, ZIF-93 and ZIF-8 
synthesized in this work. The pore size (nm) is indicated as a reference. 

MOF 
Particle 

Size (nm) 

BET specific 

surface area 

(m2·g-1) 

Window aperture/cavity 

diameter(Å)38,72,85,212 

UiO-66 48 ±9 971 ±13 6/7.5-12 

ZIF-93 67 ±13 737 ±11 3.7/15.8 

ZIF-8 127 ±18 1287 ±40 3.4/11.8 

Thermogravimetric analyses in air atmosphere (Figure 4.4a) confirm that the 

MOF nanoparticles were correctly activated and neither the solvent nor unreacted 

linkers were inside the pores. The stability of the MOFs was in the order ZIF-93, 
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ZIF-8 and UiO-66 with the maximum mass loss rate of the polymer degradation at 

393, 471 and 547 °C, respectively. Their BET specific surface areas (Table 1) were 

737, 971 and 1287 m2 g-1 for ZIF-93, UiO-66 and ZIF-8, respectively. These values 

are in good agreement with the literature for UiO-66213 and ZIF-8.214 In the case of 

ZIF-93, the reported BET surface area in the literature was slightly higher (864-

891 m2·g-1),74 which probably corresponds to larger ZIF-93 crystals. Moreover, 

their uptake curves correspond to type I isotherms, typical of microporous 

materials (Figure 4.4b), and at high relative pressure the nitrogen uptake is due to 

capillary condensation between the nanoparticles. 

 

 

Figure 4.4: a) Weight loss curves and weight loss rate in air atmosphere of UiO-66, ZIF-93 and ZIF-8 
nanoparticles and b) N2  adsorption – desorption isotherms of the synthesized MOF nanoparticles. 

4.2.-Comparison of TFC membranes post-treated using DMF 

and DMSO 

TFC membranes were subjected to two different post-treatment procedures: 

10 min in a solvent bath and after this 10 min of solvent filtration, using in both 

cases activating solvents with similar Hildebrand solubility parameters to the 

polyamide top layer, namely DMF and DMSO (23 (MPa)1/2, 24.8 (MPa)1/2 and 26.6 

(MPa)1/2 for PA, DMF and DMSO respectively).187 The efficiency of these post-

treatments in increasing the solvent permeance during OSN has been extensively 

demonstrated.9,144,187,202 Upon exposure to these solvents, low weight polyamide 

fragments are supposed to dissolve unblocking flux pathways. DMSO has been 

proved to be an excellent alternative to DMF to elaborate and activate TFC 

membranes in an environmentally friendly manner,15,215 as their analogous 

interaction, according to the HSP calculations between them (similar Ra value) and 

polyimide (during P84® casting) or polyamide (during bath and filtration post-

treatments) (see Table 4.2). 
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Table 4.2: Hansen parameter differences (Ra) calculated as described in Hansen,145,216 obtained by using 
HSP of each solvent and either PA or P84®. 

 δD δp δH Raa-
solvent/PI 

Raa-
solvent/PA 

DMSO 18.4 16.4 10.2 4.2 5.1 

DMF 17.4 13.7 11.3 3.3 4.0 

P84® 17.5 13.3 8.0   

PA 18.0 11.9 7.9   

a Calculated according to Ra2 = 4(δD1 - δD2)2 + (δP1 - δP2)2 + (δH1 - δH2)2 where δD1, δP1 and δH1 and δD2, δP2 and 
δH2 are sets of parameters corresponding to PA or P84® hexane and activating solvent, respectively. 

The SEM micrographs of the surface of TFC membranes post-treated with a 10 

min DMF bath reveal the characteristic ridge and valley morphology of the 

polyamide layer (Figure 4.5a) while the membranes post-treated using DMSO 

show the polyamide layer with a slightly more nodular structure (Figure 4.5b). In 

any case, the polyamide layer was well formed and a difference in the post-

treatment influence of the two solvents was not visible to the naked eye. 

 

Figure 4.5: SEM of the surface of the TFC membranes post-treated using a) DMF as activating solvent; b) 
DMSO as activating solvent. 

Upon analysing their surface roughness, the AFM results (2D and 3D images 

(see Figure 4.6), and Ra and RMS values) of four different areas of the TFC 

membranes show a smoother surface when post-treated with DMF than with 

DMSO. The RMS roughness for the TFC-DMF membrane is found to be 26.6±1.8 µm 

while the RMS value for the TFC-DMSO is slightly higher and shows a greater 

deviation, 39.9±7.7 µm. However, the difference in their surface roughness did not 

provoke a difference in their hydrophobic properties, as the contact angle 

measurements (Table 4.3) were reported to be 76±3° for both TFC membranes. 

Furthermore, the gel content parameters of the PI network post-treated with DMF 

or DMSO are very similar: 91.1±1.3 and 92.2±2.1, respectively. The similar 

hydrophobicity and gel content parameters for both PI supports are related to a 

similar cross-linking density of the polymer network. As has been noted, there is 

not significant difference between the post-treatments performed by DMF or 

DMSO for activating TFC membranes. 
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Figure 4.6: 3D (a, c) and 2D (b, d) AFM images of the surface of TFC membranes with a DMF (a, b) or DMSO 
(c, d) bath post-treatment and e) Ra, RMS and gel content values 

Table 4.3: Contact angle measurements. 

Membrane Contact angle (°) 

TFC DMF 76 ± 3 

TFC DMSO 76 ± 3 

TFN-ZIF-93 64 ± 4 

TFN-ZIF-8 78 ± 2 

TFN-UiO-66 65 ± 3 

When DMF was used as the “activating” solvent (TFC DMF), the permeance and 

the rejection obtained after the bath post-treatment were 2.5 L·m-2·h-1·bar-1 and 

91.3%, respectively, and after filtration post-treatment 4.4 L·m-2·h-1·bar-1 and 97%. 

Whereas using DMSO (TFC DMSO), these values were 3.7 L·m-2·h-1·bar-1 and 91.7% 

after the bath treatment and 4.7 L·m-2·h-1·bar-1 and 97.1% after filtration post-

treatment (Figure 4.7). As can be seen, the permeances and rejections obtained 

using DMF or DMSO as the activating solvent are similar, even a bit better for 

DMSO which may be related to its slightly higher roughness. Accordingly, either 
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solvent can be used as an activating solvent, which is consistent with the results 

obtained by Solomon et al,187 and which shows that a greener way to synthesize 

TFC is possible.  

 

Figure 4.7: Performance of TFC membranes post-treated with DMF or DMSO in the nanofiltration of 
MeOH+SY, before (BF) and after (AF) filtration post-treatment. 

4.3.-Characterization of TFN membranes 

ZIF-8, ZIF-93 and UiO-66 nanoparticles were used as fillers to prepare the TFN 

membranes. Surface and cross-section SEM micrographs of all the TFN membranes 

prepared are represented in Figure 4.8. Nodular and ridge-and-valley 

morphologies from the polyamide layer are clearly seen but the dispersed fillers 

are difficult to differentiate. In addition, the thickness of the thin polyamide-MOF 

layer cannot be inferred from the cross-section images. 
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Figure 4.8: a-c) Surface SEM micrographs and d-f) cross-section SEM micrographs of the TFN membranes: 

a) and d) TFN-ZIF-93; b) and e) TFN-UiO-66; c) and f) TFN-ZIF-8. 

In order to determine the polyamide-MOF layer thickness, samples prepared ad 

hoc for each MOF was observed by SEM (Figure 4.9). In the case of ZIF-8, the 

thickness of this layer was around 100 nm (Figure 4.9a), what it is in good 

agreement with the observed by Sánchez-Laínez et al.,56 whereas for both ZIF-93 

and UiO-66 (Figure 4.9b,c) with smaller particle size, the thickness were around 35 

nm. For a TFC membrane prepared in a similar way the thickness was 

approximately 50 nm.56 

 

Figure 4.9: SEM images of the PA+MOF layer for the MOF. a) ZIF-8; b) ZIF-93 and c) UiO-66. 

TEM images (Figure 4.10a, c, e) of the PA samples prepared ad hoc show how 

MOF nanoparticles (NPs) are dispersed inside the thin PA layer, maintaining their 

morphology. We can infer a similar distribution of the MOF nanoparticles in the 

TFN-ZIF-8 and TFN-UiO-66 membranes, although a lower coverage can be 

observed in the case of the TFN-ZIF-93 membrane.  
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Figure 4.10: a, c, e) TEM images of the PA thin film with the MOFs embedded and b, d, f) Electron 
diffraction patterns of the MOFs from the previous images, indexed according to the crystal structure of: a, b) 
ZIF-8;38 c, d) ZIF-9374 and e, f) UiO-66.86 The planes observed correspond to the MOF structure in each case. 
The diffraction spots are pointed with colored arrows. 

XRD patterns of the TFN membranes (Figure 4.11) did not reveal the presence of 

the MOF NPs after the IP process to form the PA thin layer because they could not 

diffract with sufficient intensity for their reflections to be detected, due to their low 

content in the composites.  

 

Figure 4.11 XRD patterns of MOF and TFN and TFC membranes. 

Therefore, the verification of the maintenance of the crystal structure of the three 

MOFs embedded in the PA layer after the interfacial polymerization process was 

performed by applying electron diffraction to the PA plus MOF samples mounted 
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on TEM grids, as seen in Figure 4.10a, c, and e. ¡Error! No se encuentra el origen 

de la referencia.b shows the electron diffraction pattern of ZIF-8, with the spots 

indexed as the (310), (420), (510) and (440) diffractions (d-spacings of 5.4, 3.8, 3.3 

and 3.0 Å, respectively). In addition, ¡Error! No se encuentra el origen de la 

referencia.d shows the electron diffraction pattern of ZIF-93, with the spots 

indexed as the (024), (037) and (048) diffractions (d-spacings of 6.5, 3.8 and 3.2 Å, 

respectively). Finally, ¡Error! No se encuentra el origen de la referencia.f 

displays the electron diffraction pattern of UiO-66, with the spots indexed as the 

(111), (222) and (333) diffractions (d-spacings of 11.9, 5.9 and 3.9 Å, respectively). 

The intensity of these spots was weak since the energy of the beam quickly 

degraded the samples and MOF NPs were included inside the amorphous PA thin 

film. Therefore, the crystal structure of MOF NPs seems to be maintained after the 

interfacial polymerization process. 

FTIR and XPS analyses were conducted in order to provide information about the 

compositional elements and functional groups of the polyamide surface. ATR-FTIR 

spectra of the cross-linked asymmetric P84® support, TFC and TFNs are shown in 

Figure 4.12. The peaks at 1378 cm-1 and 1731 cm-1 in Figure 4.12a, marked with 

asterisks, correspond to the C-N and C=O bonds, respectively, of the cross-linked 

P84® support187 These peaks are substantially less intense in the TFC spectrum 

because the polyamide thin film had been properly formed. In consequence, new 

peaks that correspond to amide functionalities187 and polyamide layer formation 

appear at 1639 cm-1 (amide I, C=O stretching vibration), 1537 cm-1 (amide II, C-N 

stretching) and 1465 cm-1 and 1405 cm-1 (amide functionalities). In the case of the 

ATR-FTIR spectra of the TFN membranes, the subtraction of the TFC spectrum 

allowed us to highlight the MOF NPs presence, while maintaining the polyamide 

characteristic peaks. This indicates that the polyamide thin film was formed in the 

presence of MOF nanoparticles. Characteristic absorption bands of the UiO-66 are 

highlighted in the ATR-FTIR spectra (1398 cm-1 due to the stretching mode of the 

carboxylate group, 744 cm-1 to the C-H bending and 663 cm-1 to the Zr-µ3-O 

stretching) (Figure 4.12b) and can be clearly seen in the TFN-UiO-66 sample, 

especially after the TFC subtraction. In the case of ZIF-93 samples (Figure 4.12c), 

typical peaks for ZIF-93 (1633–1658 cm-1, aldehyde group) were observed in 

addition to other stretch bands of the ZIF-93. Regarding the ZIF-8 samples (Figure 

4.12d), the C=N band for ZIF-8 at 1580 cm−1 is well pronounced even in the TFN-

ZIF-8 sample. These findings reveal the presence of MOF NPs in all the TFN 

membranes. 
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Figure 4.12: ATR-FTIR spectra of the MOFs synthesized in this work, cross-linked P84® support, TFC 
membranes, TFN membranes and TFN membranes after subtraction of the TFC membrane spectrum. a) P84® 
and TFC membrane comparison, b) UiO-66 samples, c) ZIF-93 samples and d) ZIF-8 samples. 

The chemical composition of the membrane surface (about 10 nm deep, where 

only polyamide and MOF NPs are located) was further characterized by XPS to 

confirm the existence of MOF NPs and quantify their abundance in the TFN 

membranes (Table 4.4). UiO-66, ZIF-93 and ZIF-8 concentrations in the top PA 

layer are 17.7%, 6.0% and 18%, respectively, being representative data of the 

entire membrane surface as the area of XPS analysis is 700 × 300 µm under the 

previously described conditions.  

Moreover, when the surface of the TFN membranes was analysed by XPS, the 

oxygen (O 1s), nitrogen (N 1s) and carbon (C 1s) peaks from the PA thin layer were 

registered. After correcting the presence of MOFs, differences in the C/N and O/N 

ratios were found which reflect various degrees of cross-linking of the PA layer.197 

A high degree of cross-linking in the PA layer could be a requisite to increase dye 

rejection.151 It is noteworthy that the C/N and O/N ratios in the case of the TFN-

ZIF-8 membrane (after subtracting element contribution from UiO-66, ZIF-93 and 

ZIF-8) are the highest, indicating a lower degree of cross-linking of the PA layer. 

The size of the ZIF-8 crystals (127 ±18 nm) may have been the reason for the 

existence of voids between the MOF NPs and PA layer that could have reduced the 

external cross-linking degree of the TFN-ZIF-8 membrane. Nonetheless, these 
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superficial defects were with no effect on the OSN performance, as will be 

explained in due course. 

Table 4.4: C/N and O/N ratios, and MOF content (%) of the surface of the TFN membranes estimated from 
the atomic concentrations of C, N, O and metal (Zn or Zr) obtained by XPS analysis. 

TFN 
membrane 

Metal 
(%)a 

C/Nb C/Nc O/Nb O/Nc MOF content 
(%)d 

UiO-66 0.88 8.2 7.4 2.0 1.4 17.7 

ZIF-93 0.28 7.2 7.7 1.0 1.0 6.0 

ZIF-8 1.11 8.5 15.2 1.9 3.9 18.0 

aMetal atomic concentration obtained by XPS. 

bElement overall atomic ratio obtained directly with values from XPS. 

cCorrected C/N and O/N ratio, excluding element concentrations from UiO-66, ZIF-93 and ZIF-8, based on 
chemical structure of UiO-66 (Zr6O4(OH)4(C8 H4 O4)6), ZIF-93 (ZnC10H10N4O2), and ZIF-8 (ZnC8H12N4). 

dMOF contents were estimated from composition of metals. 

Combining XPS analysis and Ar+ ion sputtering enables an in-depth profile study 

to be carried out of the metal concentration and, therefore, of the distribution of 

MOF NPs along the PA thin film. It is important to note that because of the 

coexistence of different TFN components (polyamide, polyimide and MOF NPs), the 

number of etching cycles cannot be translated into layer thickness. Figure 4.13 

shows the atomic percentage of Zn or Zr obtained after applying successive etching 

cycles from the surface of each TFN membrane until the metal composition started 

to decrease and the PA-PI interface presumably approached. ZIF-8 with the highest 

nanoparticle size (127 ±18 nm) is located mainly at the top part of the PA layer, 

whereas UiO-66 NPs, with a lower nanoparticle size (48 ±9 nm), goes deeper into 

the PA layer. TEM images (¡Error! No se encuentra el origen de la referencia.a 

and 11e) indicate that UiO-66 and ZIF-8 are both well dispersed in the PA thin 

layer. However, the TFN-ZIF-93 membrane recorded the lowest MOF content 

(Table 4.4) and ZIF-93 NPs (67 ±13 nm) is located mainly at the surface of the PA 

layer. As ¡Error! No se encuentra el origen de la referencia.c shows, ZIF-93 NPs 

are heterogeneously distributed and this could explain the low MOF content in the 

surface of the TFN membrane and within the PA layer. 
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Figure 4.13: Atomic percentage of metal (Zn or Zr) along an in-depth profile study (etching cycles in 
seconds) from the surface of each TFN membrane (TFN-UiO-66, TFN-ZIF-93 and TFN-ZIF-8). 

Interactions between MOF (using the linker)145 and PA can be considered in 

terms of Hansen solubility parameters (HSP) distance (Ra) (Table 4.5). The lowest 

Ra values calculated for MOF linker-PA layer correspond to ZIF-93 which suggests 

a good interaction between the PA layer and this MOF.  

Table 4.5: Hansen solubility parameter distance (Ra) calculated as described in Hansen,216 obtained by 
using HSP of each solvent and PA. 

 δD 

(MPa0.5) 

δP 

(MPa0.5) 

δH 

(MPa0.5) 

Ra – PA/ 

Linkerd 

Polyamide (PA) 18.0 11.9 7.9 - 

UiO-66 linkera 20.0 7.2 12.8 7.9 

ZIF-93 linkerb 18.8 10.7 9.7 2.7 

ZIF-8 linkerc 19.1 16.3 10.4 5.5 

aBenzene-1,4-dicarboxylic acid 

b4-methyl-5-imidazolecarboxaldehyde 

c2-methylimidazole 

dCalculated according to Ra2 = 4(δD1 - δD2)2 + (δP1 - δP2)2 + (δH1 - δH2)2 where δD1, δP1 and δH1 and δD2, δP2 and 
δH2 are sets of parameters corresponding to PA and MOF linker, respectively. 

Table 4.3 shows the contact angle of the TFC and TFN membranes. When 

hydrophobic ZIF-8 is used as the filler, the contact angle slightly increases in 

comparison to TFC whereas if UiO-66 or ZIF-93 are added (both are hydrophilic) 

the contact angle decreases. This trend was also observed by Sorribas et al.9 who 

prepared TFN membranes using MOFs with different hydrophilic/hydrophobic 
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properties as fillers and saw how the membranes acquired the same character as 

the MOF added. 

4.4.-TFN membrane performance 

To check the interchangeability of DMF and DMSO in the post-treatments 

following the preparation of TFNs, TFN membranes using ZIF-8 as a filler (which is 

usually used as a model MOF) were tested with both solvents obtaining the results 

shown in Table 4.6. 

Table 4.6: Permeances and rejections before (BF) and after (AF) the filtration post-treatment in the 
nanofiltration of SY+MeOH. Nanofiltration conditions: 20 bar and 23 °C. 

 Activating 
solvent 

Permeance 
(L·m-2·h-1·bar-1) 

Rejection 
(%) 

BF AF BF AF 

TFC DMSO 3.7 ± 0.2 4.7 ± 0.2 91.7±1.
1 

97.1±0.
3 

TFN ZIF-93 DMSO 7.0±0.5 11.0±0.
6 

91.5±0.
1 

93.1±4.
6 

TFN UiO-66 DMSO 8.5±0.9 11.0±0.
7 

83±5.7 87.9±3.
6 

TFN ZIF-8 DMSO 5.0±0.2 8.5±0.3 91.6±0.
3 

93.8±2.
6 

TFN ZIF-8 DMF DMF 4.1±0.3 6.7±0.9 94.7±1.
7 

95.2±3.
2 

As an example, after post-treatment of the TFN ZIF-8 membrane by filtration 

with DMF, the permeance obtained was 6.7 L·m-2·h-1·bar-1 whereas in the case of 

using DMSO this permeance was 8.5 L·m-2·h-1·bar-1. As in the case of the TFC 

membranes, the results obtained with both solvents were similar, being slightly 

better when DMSO was used as the activating solvent, thus demonstrating that 

DMSO is a greener substitute for DMF. 

After checking that both solvents are interchangeable, MOF-TFN membranes 

using UiO-66, ZIF-8 and ZIF-93 as fillers were activated using DMSO. Figure 4.14 

and Table 4.6 shows the permeances and the rejections obtained before and after 

the DMSO filtration post-treatment. As can be seen, for all the membranes, both 

were higher after the filtration post-treatment. This is consistent with the findings 

reported in previous works.144 

On the other hand, as reported in previous works, the addition of fillers inside 

the thin film9,144 increases the permeance of TFN in comparison with TFC 

membranes. Thanks to the small size of the MOFs, the thickness of the polyamide 

layer is nanometric and besides, the porosity of the MOF improves the permeances 

of the TFN membranes whereas the rejection is almost the same. The highest 

permeance is obtained when either UiO-66 or ZIF-93 is used as a filler, being 
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11±0.7 L m-2 h-1 bar-1 and 11±0.6 L m-2 h-1 bar-1, respectively (Table 4.6). In the 

case of UiO-66 the rejection is worse, an effect than can be explained taking into 

account that this MOF has the biggest pore size and also the worst interaction with 

PA in terms of the Hansen parameters. This would be compatible with a higher 

amount of microdefects in UiO-66 based TFN membranes as compared with those 

obtained from ZIF-8 and ZIF-93 (see Table 4.5). In the case of ZIF-8, the permeance 

is improved in comparison with TFC but it is not as high as with the other fillers. As 

can be seen in Table 4.3, the introduction of ZIF-8 makes the membrane more 

hydrophobic which favors membrane fouling and thus a decrease in the 

permeance.217 Besides, the thickness, as seen by SEM (Figure 4.9), is greater than 

those corresponding to the other two MOF TFN membranes. 

 

Figure 4.14: Performance of TFC and TFN membranes in the nanofiltration of MeOH+SY, before (BF)(grey) 
and after (AF) (purple) filtration post-treatment with DMSO. Nanofiltration conditions: 20 bar and 20 °C. 

Several studies have reported the fabrication of TFN membranes for OSN using 

different kinds of nanoparticles as fillers. Table 4.7 summarizes the OSN 

performance of different TFN membranes reported in literature. For example, 

Sorribas et al.9 fabricated TFN membranes using four MOFs with different 

hydrophilic/hydrophobic character as filler for the nanofiltration of polystyrene 

oligomers in MeOH, obtaining the highest permeance enhancement (160%) when 

MIL-101(Cr) was used as filler maintaining the rejection over 90%. Guo et al.218 

added UiO-66-NH2 into the PA layer and applied the synthesized membrane in the 

nanofiltration of tetracycline in methanol. They obtained a permeance 

enhancement of 94% and a rejection over 99%. In our work the permeance 

enhancements achieved are similar to those corresponding to other MOFs in the 

literature and there are higher permeance enhancements when carbon-based 

materials are used (CNT219 and GO220). In any event, it should be taken in account 
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that the comparison between them is difficult due to both the nanofiltrated solutes 

and the membrane polymers used are not the same. 

 

Table 4.7: OSN performance of TFN membranes with different fillers. 

Nanoparticlea Polymerb Feedc 
Permeance 

(L·m-2·h-1·bar-1) 

Permeance 

enhancementd 

(%) 

Rejection 

(%) 
Ref. 

ZIF-8 

P84® PS+MeOH 

2.1 40 99.5 

9 

MIL-53(Al) 1.9 27 99.9 

NH2-MIL-

53(Al) 
1.8 20 99.8 

MIL-101(Cr) 3.9 160 98.5 

MIL-68 

P84® SY+MeOH 

4.4 16 93.8 

144 MIL-101(Cr) 4.6 21 95 

ZIF-11 6.2 63 91.5 

UiO-66-NH2 Matrimid® TC+MeOH 20 94 99 218 

Functionalized 

TiO2 
Matrimid® 

BTB+MeOH 123.3 1 90 
169 

CV+MeOH 124.2 0 93 

CNT PES 
BBR+MeOH 6.3 320 91 

219 
SO+MeOH 7.2 380 71 

GO PAN RB+MeOH 15.3 920 98.5 220 

Functionalized 

SiO2 
PAN PEG+EtOH 3.1 72 86 221 

ZIF-8 

P84® SY+MeOH 

8.5 81 95.2 

This 

work 
ZIF-93 11 134 93.1 

UiO-66 11 134 97.9 

aCNT: carbon nanotubes; GO: Graphene oxide 

bPES: polyethersulfone; PAN: polyacrylonitrile. 

cPS: polystyrene (450 g·mol-1); SY: Sunset Yellow (452 g·mol-1); TC: tetracycline (444 g·mol-1); BTB: 
bromothymol Blue (624 g·mol-1); CV: Crystal Violet (408 g·mol-1); BBR: Brilliant Blue R (826 g·mol-1); Safranin 
O: (351 g·mol-1); RB: Rose Bengal (1017 g·mol-1); PEG: polyethylene glycol (450 g·mol-1) 

dThe permeance enhancement was calculated as follows:  

To study the effect of a sequence of different pure solvent filtrations on the 

performance of the synthesized membranes, TFC, TFN-UiO-66 and TFN-ZIF-8 

membranes post-treated with DMSO were submitted to 30 min of nanofiltration 

experiments at 20 bar of feed pressure, using first distilled water, then methanol, 

THF, acetone, and finally distilled water again (Figure 4.15). Two TFC membranes 

and one TFN membrane of each type were used for the permeance calculations.  
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Solvent permeances through the TFC and TFN membranes follow the same 

pattern: waterinitial>acetone>waterfinal>methanol>THF. Nanofiltration performance 

thorough TFC and TFN membranes is a result of complex membrane-solvent 

interactions.144,222-223 Viscosity, surface tension, permittivity, solvent-selective 

layer polymer (PA) interactions (estimated by HSP comparison) and the kinetic 

diameter of the solvent (see Table 4.8) are highly significant parameters in the 

permeance of different solvents. Due to the fact that polarity is considered a 

relevant parameter,222-223 THF, a non-polar solvent with good interaction with PA 

(see Ra value in Table 4.8), should have shown the highest flow. However, THF 

permeance is the lowest of all of them, explained by its larger kinetic diameter that 

is also reported as an important factor.223 In the same way, in general high 

permeance was obtained for water because of its small kinetic diameter, in spite of 

its high viscosity, surface tension, and especially high relative permittivity and Ra 

values. 

Table 4.8: Relative permittivity, related to molecule polarity. Hansen parameter differences (Ra) calculated 
as described in Hansen,145,216 obtained by using HSP of each solvent and either PA or P84. µ: viscosity; ϒ: 
surface tension; ε: relative permittivity. 

 Hansen parameters  

Solvent δD δp δH Ra -
solvent/PI 

Ra-
solvent/PA 

µ 
(cP)222-

225 

ϒ 
(mN/m)222-

223,226 

ε227 Kinetic 
diameter 
(Å)228-231 

H2O 15.5 16.0 42.3 34.6 35.0 0.9 72.8 78.4 2.7 

MeOH 14.7 12.3 22.3 15.4 15.8 0.5 22.1 33.0 3.6 

THF 16.8 5.7 8.0 7.7 6.6 0.5 25.0 7.5 6.3 

Acetone 15.5 10.4 7.0 5.0 5.3 0.3 23.3 21.0 4.6 

P84® 17.5 13.3 8.0       

PA 18.0 11.9 7.9       

Interestingly, the methanol permeance of each type of membrane did not reach 

the high values obtained after applying methanol and SY filtration (Table 4.6). 

Furthermore, the water permeance during the second filtration cycle was not as 

high as during the first cycle in any of the cases. This is probably due to the fact 

that the duration of the methanol experiment was not long enough to remove the 

water from the membrane pores (and the same happened when a new solvent is 

used regarding the previous solvent). Thus, higher solvent permeances would be 

expected in these experiments if every solvent was filtrated alone.  

Acetone permeance has been reported to be the highest in similar experiments144 

because of its low relative permittivity, good interaction with PA (see Ra value in 

Table 4.8) and small kinetic diameter. In fact, if the effect of the first cycle of water 

filtration had not been considered, the acetone permeance would have been the 

highest. Therefore, solvent-membrane interaction and the kinetic diameters of 

solvents are significant factors that cannot be ruled out, as Echaide et al.144 

previously reported. 
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As shown in Figure 4.15, in general permeances were higher with TFN than with 

TFC membranes. The effect of the presence of MOF fillers in the membranes was 

significant when filtering acetone, although it was also relevant when filtering THF 

with TFN-UiO-66 membranes. The big pores of UiO-66 boost the THF flow, as 

opposed to ZIF-8. Besides, when water was fed during the first cycle (when the 

membranes were unaltered), the permeance with UiO-66 was higher than with 

ZIF-8. According to Darvishmanesh et al.222, hydrophilic membranes tend to show 

higher affinity and permeances to water, and the addition of UiO-66 fillers made 

the thin film more hydrophilic (see contact angle measurements, Table 4.3). On the 

other hand, in the second water cycle carried out after the nanofiltration of THF, 

the flow was greater in the ZIF-8 due to the blockage of the THF molecules that had 

not been eliminated in the exchange of one solvent to another.  

 

Figure 4.15: Effect of pure solvent in OSN using TFC (green), TFN-UiO-66 (orange) and TFN-ZIF-8 (brown) 
membranes after bath and filtration post-treatment with DMSO. Nanofiltration conditions: 20 bar amd 20 °C. 
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5.-GO-based thin film nanocomposite membranes for 
organic solvent nanofiltration 

The term “nanofiltration” (NF) was first used in 1984126 and according to the 

pore size of species that can be rejected it lies between ultrafiltration (UF) and 

reverse osmosis (RO). It has been widely used in water treatment,190-192 replacing 

in some cases RO processes as it also shows high rejections but lower pressures 

are needed to obtain similar fluxes. This translates into a lower energy demand.232 

In recent years, this pressure-driven process has attracted widespread interest for 

its application in molecular separations in organic media (coined as organic 

solvent nanofiltration, i.e. OSN) thanks to the economical, safety and 

environmental advantages it offers233 in comparison with more traditional 

separation process like distillation. Besides, it has been already implemented in 

some industrial process like the Max-Dewax process developed by Exxon Mobile 

for solvent lubricant dewaxing, the recovery of homogeneous hydroformylation 

catalysts used in the production of aldehydes136 and the extraction of rosmarinic 

acid (biological active) from rosemary.234  

Thin film composite (TFC) membranes, first developed by Cadotte3 in the 80’s, 

are the membranes called to replace the commonly ISA (integrally skinned 

asymmetric) membranes used in both aqueous NF and OSN. These TFC 

membranes consist of an asymmetric polymeric support (usually fabricated by 

phase inversion) on a non-woven support that gives it mechanical stability coated 

with a selective thin film layer that is usually synthesized by interfacial 

polymerization (IP) or by dip coating. This two-step process offers the advantage 

of optimizing each layer independently depending on the application 

requirements.235 

In 2007, Jeong et al.161 with the aim of improving the performance of polyamide 

TFC membranes in RO, introduced zeolite NaA nanoparticles during the interfacial 

polymerization reaction; obtaining an increase in water permeance without 

sacrificing rejection in comparison with bare TFC membranes was obtained. Since 

then, these membranes known as “thin film nanocomposite” (TFN) have been 

synthesized using different nanoparticles as fillers: TiO2,169,194 MCM-41 silica,195 

graphene oxide (GO),196 and metal-organic frameworks (MOF)144,197 and used in 

numerous investigations, both in RO and NF.  

Generally derived from the exfoliation of oxidized graphite, graphene oxide (GO) 

is an atom thick material with a two dimensional (2D) structure composed by sp2 

carbon atoms bonded forming a hexagonal honeycomb framework.14 Thanks to its 

extraordinary thermal, mechanical, optical and electrical properties,236 GO has 

become an interesting material in diverse fields such as sensors,109 catalysts,110 

energy storage,111 separations237 and biomedical applications.112 GO and GO-

derivatives have been widely used as filler in the fabrication of gas237-239 and 

liquid240-241 phase separation membranes. Regarding liquid phase applications, 
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TFN membranes containing graphene derivatives have been mainly produced for 

aqueous applications (RO NF, and hydrophilic pervaporation). and pervaporation 

(PV). Chae et al.240 fabricated TFN membranes using GO as filler and obtained 

membranes with better antifouling properties and higher water fluxes in RO. Song 

et al.242 observed similar results besides a better chlorine resistance by the use of 

GO quantum dots as filler. Wang et al.243 used ZIF-8/GO hybrid nanosheets as 

fillers in the fabrication of antimicrobial TFN membranes which shown an 

important antimicrobial activity enhancement. Ma et al.244 synthesized TFN 

membranes using GO functionalized with poly(sulfobetaine methacrylate) and 

applied them in nanofiltration obtaining an increment in water flux besides and 

enhancement in the antimicrobial activity and antifouling properties in 

comparison with TFC membranes. Xue et al.245 improved the flux and the chlorine 

resistance of TFC membrane in the nanofiltration of salts in water with the 

fabrication of TFN membranes using GO-ODA as filler. There are very few studies 

on the use of graphene-based fillers in thin film composite membranes for 

organophilic filtrations. Very recently Alberto et al.246 developed TFN membranes 

for n-butanol/water separation by PV embedding GO-derivatives into a high free 

volume thin film polymer matrix, which led to an enhancement in the separation 

performance as compared to the bare TFC membranes. In any event, to the best of 

our knowledge, the current work is the first dealing with the use of octadecylamine 

(ODA)-functionalized GO for polyamide OSN TFN membranes. 

This section deals the synthesis of polyamide (PA) TFN membranes using 

reduced alkyl-functionalized GO nanofillers. The functionalization of GO with 

octadecylamine (ODA) is expected to lead to graphene-based nanofillers which are 

more hydrophobic than GO and thus, better dispersed in the organic phase of the 

IP reaction. The performance of the developed TFN membranes for NF of alcoholic 

solutions containing dyes of increasing molecular weights (Acridine Orange, 

Sunset Yellow and Rose Bengal) is evaluated. The functionalized nature of the rGO 

nanoparticles introduced into the hydrophilic PA layer is expected to increase the 

permeance of organic solvents through the TFN membranes.   

5.1.-Characterization of rGO-ODA 

The nanoparticles used as fillers for the preparation of TFN membranes are 

usually added to the organic phase prior to the interfacial polymerization.9,144,196 In 

consequence, it is necessary to have a good dispersion of the rGO-ODA nanofillers 

in the n-hexane phase to minimize the formation of agglomerates during the PA 

formation. GO is highly dispersible in water and in some polar solvents but 

unfortunately not in non-polar solvents like n-hexane.113 Some strategies to 

improve its dispersibility in non-polar solvents include its reduction116 or 

functionalization with alkylamines.114 In this work, GO was functionalized with 

ODA and further reduced to obtain rGO-ODA (Figure 5.1b) that was used as filler. 

To confirm this functionalization, further characterization was carried out. 



  

5.-GO-based thin film nanocomposite membranes for organic solvent 

nanofiltration 

   81 

 

ATR-FTIR was performed in order to verify the GO functionalization. Figure 5.1a 

shows the spectra of the GO, GO-ODA and rGO-ODA. The typical peaks of GO appear 

at 1029 cm-1, 1173 cm-1, 1621 cm-1, 1728 cm-1 and 3220 cm-1 related to alkoxy C-O 

stretching, epoxy C-O stretching, C=C stretching, C=O carboxyl stretching and O-H 

stretching, respectively. In the case of GO-ODA and rGO-ODA, two new peaks 

appear at 2916 cm-1 and 2848 cm-1 corresponding to the alkyl C-H stretching. 

Another new peak is shown at 1564 cm-1 due to the N-H stretching, and a final 

peak at 1466 cm-1 corresponding to the C-N stretch of the amide, indicating the 

formation of C-N-C bonds between the alkylamine and GO.115 

 

Figure 5.1: a) ATR-FTIR spectra of GO, GO-ODA and rGO-ODA and b) schema of the functionalization and 
reduction of GO: 

Figure 5.2 exhibits the XRD patterns of GO and rGO-ODA. The peak at 10.8° of GO 

indicates an interlayer spacing of 0.8 nm, which is in concordance with other 

results reported in literature.247 In contrast, GO-ODA and rGO-ODA show main 

peaks at 4.4° and 5.2°, respectively, which correspond to interlayer spacings of 2 

nm and 1.7 nm, according to Bragg’s law. These enlargements indicate that the 

alkyl chains of ODA were intercalated into the GO gallery spaces, in agreement with 

its functionalization. In addition, GO-ODA and rGO-ODA patterns have a less 

intense and broad peak at around 21.4° that suggests that the samples are poorly 

ordered along the stacking direction.248 
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Figure 5.2: XRD patterns of GO, GO-ODA and rGO-ODA powder samples. 

Figure 5.3 shows the Raman spectra of GO, GO-ODA and rGO-ODA. The three 

spectra exhibit two noticeable peaks at ≈1350 cm-1 and ≈1600 cm-1, corresponding 

to the so-called D and G bands, respectively. The ratio between the intensities of D 

and G bands (ID/IG) expresses the sp3/sp2 carbon ratio, that is to say, the degree of 

structural disorder. This ratio is 0.96 for both GO and GO-ODA whereas in the case 

of rGO-ODA is 0.98. The same ratio of ID/IG for GO and GO-ODA indicates that the 

functionalization with ODA has been carried out by the substitution of the existing 

oxygen-containing functionalities in GO. In the case of rGO-ODA, this ratio should 

decrease for the reduction of GO-ODA although in our case increases. Analogous 

results were reported by Stankovich et al.249 and Xu et al.250 They justified this 

decrease considering that new graphitic domains were created smaller in size than 

those present of GO but more numerous. 

 

Figure 5.3: Raman spectra of GO and rGO-ODA. 
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GO, GO-ODA and rGO-ODA were also characterized by TGA. Figure 5.4a shows the 

thermogravimetry curves obtained for both materials. In the GO curve three 

weight losses can be seen: up to 130 °C due to the evaporation of absorbed water 

in the GO sheet, from 130 °C to 500 °C owing to the decomposition of the labile 

oxygen-containing functional groups and finally from 500 °C to 550 °C due to the 

combustion of the carbon skeleton.247 In the case of GO-ODA and rGO-ODA the step 

due to the trapped water is almost nonexistent, indicative of the hydrophobic 

character of the material. As Lin et al. reported,251 the existence of two main weight 

losses are due to the physically bonded ODA (150-180 °C) and the covalent bonded 

ODA (180-500 °C). For the prepared samples in our work, a first main weight loss 

takes place in the range of 180-440 °C, indicating the presence of both, physically 

and covalent bonded ODA and a second weight loss occurs between 440 °C and 

650 °C, which could be attributed to the contribution of both, the decomposition of 

covalent bonded ODA and the combustion of the carbon skeleton. In Figure 5.4b, 

SEM image of the synthesized rGO-ODA can be seen where it is possible to see its 

sheet type morphology. 

 

Figure 5.4: a) TGA curves for GO, GO-ODA and rGO-ODA and b) SEM image of rGO-ODA. 

5.2.-Membrane Characterization 

rGO-ODA was used as filler in the preparation of TFN membranes using two 

different concentrations in the organic phase for the interfacial polymerization: 

0.03% (w/v) and 0.06% (w/v). The membranes synthesized are summarized in 

the following table (Table 5.1). 

Table 5.1: % content of rGO-ODA and contact angle of the synthesized membranes. 

Membrane % rGO-ODA (w/v) Contact angle (°) 

TFC 0 70±1 
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Figure 5.5a shows the XRD patterns of the synthesized membranes and rGO-ODA. 

In the case of the TFN membranes, no peaks belonging to rGO-ODA were 

detectable. This could be due to the low quantity of rGO-ODA present in the PA 

layer, not enough to be able to diffract and be detected. 

 

Figure 5.5: a) XRD pattern and b) ATR-FTIR spectra of the synthesized rGO-ODA powder, the TFC 
membrane and TFN membranes prepared in this work. 

The ATR-FTIR spectra of the rGO-ODA, TFC membrane and TFN membranes 

appear in Figure 5.5b. For TFN membranes, two peaks appear at 2926 cm-1 and 

2855 cm-1 which are nearly at the same wavenumbers corresponding to the two 

characteristic peaks present in the TFC membrane. This makes difficult to assign 

those absorbances to the presence of rGO-ODA in the TFN membranes. 

In order to corroborate the presence of rGO-ODA into the polyamide layer, 

Raman spectroscopy was carried out over a piece of PA+rGO-ODA detached during 

IP synthesis of the TFN with 0.06% (w/v) of rGO-ODA. As Figure 5.6 exhibits, PA 

does not show peaks between 800 and 2000 cm-1. However, the introduction of 

rGO-ODA in the TFN membrane gave rise two perceptible peaks (the D and G 

bands above mentioned) belonging to rGO-ODA, confirming its presence in the PA 

film. 
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Figure 5.6: Raman spectra of rGO-ODA, PA+0.06%(w/v)rGO-ODA and PA. 

SEM images of the TFN membranes are shown in Figure 5.7a,b. The membrane 

surface shows a typical “ring-like” morphology indicating the PA thin layer has 

been correctly synthesized. Besides, no agglomerates are visible to the naked eye, 

what suggests that the filler was well dispersed during the synthesis of the thin PA 

layer.9,144 

 

Figure 5.7: a,b) SEM images of TFN membranes with 0.03% (w/v) of rGO-ODA (a) and 0.06 % (w/v) of rGO-
ODA (b), c,d,e) TEM  images of the PA Thin Film with the rGO-ODA embedded and f) SAED pattern of e).  

Figure 5.7c,d,e shows TEM images of the PA+rGO-ODA top layer where it is 

possible to distinguish how the flakes of rGO-ODA, maintaining their high aspect 
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ratio, are well integrated into the PA layer synthesized by IP. . Selected area 

electron diffraction (SAED) was used to investigate the presence of rGO-ODA flakes 

in the thin PA layer. As shown in Figure 6f, clear diffraction spots confirm the 

crystalline structure of the rGO-ODA flakes. The 6-fold pattern is consistent with a 

hexagonal lattice and the spots have been labelled accordingly using the Miller 

(hkl) indices, equivalent to the graphite reflections.252-253 They correspond to (1 -1 

0)-, (0 -1 1)-, (-1 1 0)-type reflections and (2-1-1)-, (1-21)-, (-1-12)-, (-211)-type 

reflections, with a d-spacing of 4.76 ± 0.03 Å and 2.66 ± 0.01 Å of mean value, 

respectively. These reflections are distinctive of the reduced graphene oxide 

features of rGO-ODA.254 The increment of the interlayer spacing from the 

intercalation of ODA molecules has not been detected in the SAED pattern. 

The hydrophobic/hydrophilic character of the synthesized membranes was 

evaluated by water contact angle. Table 5.1 depicts the results obtained for the TFC 

membrane and for the TFN membranes using 0.03 % (w/v) and 0.06 % (w/v) of 

rGO-ODA. With the introduction of the rGO-ODA the contact angle of the 

membranes increased, indicating that the TFN membranes are more hydrophobic 

than the TFC. As Alberto et al. reported,246 this is due to the fact that rGO-ODA is 

hydrophobic, which has been also confirmed in this work by TGA. 

5.3.-Membrane performance 

The performance of the synthesized membranes was evaluated using ethanolic 

solutions of three dyes with distinct molecular weight as solutes: Acridine Orange 

(AO, 265 g·mol-1), Sunset Yellow (SY, 452 g·mol-1) and Rose Bengal (RB, 1017 

g·mol-1). The experiments were carried out feeding the membranes with three 

consecutive solutions of AO, SY and RB dissolved in ethanol. 

 

Figure 5.8: OSN performance. Columns are permeance values, while symbols are rejections. Nanofiltrations 
were carried out at 20 °C and 20 bar. The error bars correspond to the standard deviation of the three 
membranes analyzed. 
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Figure 5.8 shows the OSN performance obtained. As can be seen, the permeance 

for each of the three filtrations with the three types of dyes is always higher for the 

TFN than for the bare TFC membrane. As previously reported,255 the interlayer 

space present in the rGO-ODA may provide additional pathways for the passage of 

the solvent, thus producing an increase in the permeance. The higher the 

concentration of rGO-ODA, the more pathways are added and the higher the 

permeance. This phenomenon is in agreement with the trend reported in 

literature, where several studies have demonstrated that the addition of fillers 

during the synthesis of the PA layer improve the membrane performance.9-10,144,195 

The highest permeance was achieved when the highest concentration of rGO-ODA, 

0.06% (w/v), was used, increasing from 2.8 L m-2 h-1 bar-1 for the bare TFC 

membrane to 4.3 L m-2 h-1 bar-1 for the TFN (a 54% of improvement) when the 

ethanol solution containing AO was filtered, from 3.4 L m-2 h-1 bar-1 to 4.6 L m-2 h-1 

bar-1 for SY (an improvement of 35 %) and from 3.7 L m-2 h-1 bar-1 to 5.0 L m-2 h-1 

bar-1 for RB (a 35% of improvement) (see  

Table 5.2). This increase might be a consequence of the higher hydrophobicity of 

the membrane when the nanofillers are introduced in the PA layer (see Table 5.1) 

in addition to the formation of additional pathways along the gallery spaces of non-

totally exfoliated rGO sheets. As seen before, the d-spacing for rGO-ODA is 1.7 nm, 

far above the kinetic diameter of ethanol (0.45 nm). It is true that these gallery 

spaces in rGO-ODA may be partially filled with ODA molecules but they, as the 

surfactant that are, can provide simultaneously polar (the amine groups) and non-

polar (the aliphatic chains) groups as in the parent GO-ODA (in this case with 

additional non-reacted oxygenated groups not yet reduced as in rGO-ODA) but 

with a less polar character, since the polarity of an amide group is higher than of an 

amine group. In any event, this simultaneous presence of polar and non-polar 

groups would facilitate the transport of ethanol by jumping across the rGO-ODA 

galleries between sites of different polarity. In addition, small gaps between the 

alkyl-functionalized rGO nanosheets and the PA, as suggested by a slightly lower 

rejection of the smallest dye, AO, for the TNF membranes, may contribute to the 

ethanol transport. 

In fact, it is possible to see in Figure 5.8 and more clearly in  

Table 5.2, that the rejection in TFN membranes is a bit lower than in TFC 

membrane. This can be due to the fact that the introduction of rGO-ODA, which is a 

laminar material, may hinder the formation of an homogeneous thin PA layer, 

creating defects that allow the dye pass though.196 
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Table 5.2: Permeances and rejection using as solute AO, SY or RB. Standard deviations correspond the 
measurement of three membranes. 

  Permeance 
(L·m-2·h-1·bar-1) 

Rejection 
(%) 

TFC AO 2.8±0.4 92.7±4.9 

SY 3.4±0.1 99.9±0.1 

RB 3.7±0.2 99.7±0.3 

0.03% rGO-ODA AO 3.9±0.4 84.7±7.1 

SY 4.4±0.4 99.4±0.7 

RB 4.7±0.5 99.1±0.9 

0.06% rGO-ODA AO 4.3±0.7 76.8±2.3 

SY 4.6±0.4 98.6±0.6 

RB 5.0±0.7 98.1±0.1 

As can be seen in Table 5.3, several studies have reported the use of different 

kind of membranes for its application in OSN. Due to the materials used and the 

nanofiltrated solutes and solvents are not the same, it is difficult to compare them. 
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Table 5.3: Performance of different membranes applied in OSN. 

Commercial 
name 

Membrane 
typea 

Support 
materialb 

Filler Feedc 
Permeance   

(L·m-2·h-1·bar-1) 
Rejection 

(%) 
Ref. 

n/a 
Crosslinked 

ISA 
P84® n/a PS+MeOH 0.83 85 185 

UTC-20 TFC PSF n/a 

OII+MeOH 1.9 94.0 

224 

SO+MeOH 2.1 94.0 

SB+MeOH 1.8 79.0 

MPF-40 n.s PDMS n/a 

OII+MeOH 0.21 88.0 

SO+MeOH 0.29 92.0 

SB+MeOH 0.19 85.0 

MPF-60 n.s PDMS n/a 

OII+MeOH 0.21 94.0 

SO+MeOH 0.20 92.0 

SB+MeOH 0.13 81.0 

Desal-5 TFC PSF n/a 

OII+MeOH 7 31.0 

SO+MeOH 5.9 38.0 

SB+MeOH 6.3 28.0 

Desal-DK TFC PSF n/a 
OII+MeOH 1.6 54.0 
SO+MeOH 1.1 60.0 

SB+MeOH 0.9 49.0 

n/a 
Crosslinked 

ISA 
PEEK n/a RB+IPA 0.12 88.0 256 

n/a TFN P84® 

MIL-53(Al) 

PS+MeOH 

1.9 100.0 

9 
NH2-MIL-

53(Al) 
1.8 99.8 

ZIF-8 2.1 99.1 

MIL-101(Cr) 3.9 98.3 

n/a TFN P84® 

MIL-68(Al) 

SY+MeOH 

4.4 93.8 
144 MIL-101(Cr) 4.6 95 

ZIF-11 6.2 91.5 
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Commercial 
name 

Membrane 
type 

Support 
material 

Filler Feed 
Permeance   

(L·m-2·h-1·bar-1) 
Rejection 

(%) 
Ref. 

n/a TFN PAN GO RB+MeOH 15.3 98.5 220 

n/a TFN PAN 
Functionalized 

SiO2 
PEG+MeOH 3.1 84.0 221 

MPF-44 n.s PDMS n/a 
SD+EtOH 

0.05 44.4 
257 

MPF-50 n.s PDMS n/a 0.8 86.4 

n/a MMC PBI GO 
MB+MeOH 

48.5 93.0 
258 

n/a 
Crosslinked 

MMC 
PBI GO 16.9 98.3 

n/a MMM PDMS 

HKUST-1 

RB+IPA 

0.5 95.6 

259 
MIL-47(V) 0.5 99.0 

MIL-53(Al) 0.5 99.0 

ZIF-8 0.5 92.0 

n/a TFN P84® rGO-ODA 

AO+EtOH 4.3 76.8 
This 
work 

SY+EtOH 4.6 98.6 

RB+EtOH 5.0 98.1 

aISA: Integrally skinned asymmetric, TFC: Thin film composite, TFN: Thin film nanocomposite, MMC: Mixed matrix composite, MMM: Mixed matrix membrane. 
bPSF: Polysulfone, PDMS: polydimethylsiloxane, PEEK: poly(ether ether ketone), PAN: Polyacrylonitrile, PBI: Polybenzimidazole. 
cPS: Polystyrene (400 g·mol-1), OII: Orange II (350 g·mol-1), SO: Safranine O (350 g·mol-1), SB: Solvent Blue 35 (350 g·mol-1), RB: Rose bengal (974 g·mol-1), SY: Sunset yellow 

(452 g·mol-1), PEG: Polyethylene glycol (400 g·mol-1), SD: Soybean daidzin (416 g·mol-1), MB: Mepenzolate bromide (420 g·mol-1), AO: Acridine orange (265 g·mol-1) 
n.s: not specified, n/a: not applicable.  
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6.1.-CHARACTERIZATION OF THE MOF PARTICLES 

FOR TFN MEMBRANES 

6.2.-MEMBRANE CHARACTERIZATION 

6.3.-RESULTS OF DICLOFENAC AND NAPROXEN 

AQUEOUS SOLUTION NANOFILTRATION 

6.4.-COMPARISON WITH RESULTS PUBLISHED IN 

THE LITERATURE 

6.5.-STABILITY OF PA/HKUST-1 MEMBRANE 

 

 

Adapted with permission from L. Paseta, D. Antorán, J. Coronas and C. Téllez 
“Polyamide/MOF Bilayered Thin Film Composite Membranes for the Removal of 

Pharmaceutical Compounds from Water”, Ind. Eng. Chem. Res, 2019, DOI: 
10.1021/acs.iecr.8b06017. Copyright 2019 American Chemical Society.  
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6.-Polyamide/MOF bilayered thin film composite 
membranes for the removal of  pharmaceutical 
compounds from water 

A current environmental problem is the presence of so-called micro-pollutants or 

emerging contaminants present in wastewater treatment plant (WWTP) effluents, 

surface water, ground water and even drinking water. WWTPs are not capable of 

removing these micro-pollutants effectively.129-130 These contaminants include 

pharmaceuticals, which are not completely assimilated by the organism and end 

up in the aquatic environment causing negative effects on the human and 

ecological health.260-261 For example in effluents of WWTP located in the Ebro River 

basin, where the University of Zaragoza is placed, diclofenac and naproxen were 

detected up to levels of 1.1 g·L-1 and 1.7 g·L-1, respectively, the total 

pharmaceutical concentration being about 0.02 mg·L-1.262 Several research studies 

have examined the use of membrane technologies as effective processes to remove 

micro-pollutants from water.263-264  

Nanofiltration has become an interesting membrane separation process in a wide 

range of fields (pharmaceuticals,139 food,131 textile,133 drinking water,265 etc.) due 

to its low consumption of energy and low-cost maintenance in comparison with 

other separation processes such as distillation7 or reverse osmosis6 for both 

aqueous and organic streams. Thin film composite (TFC) membranes are the most 

commonly used in this application, consisting of a non-woven fabric at the bottom 

that gives mechanical stability to the whole ensemble, an asymmetric polymeric 

support (usually made by phase inversion) and a selective ultrathin film layer at 

the top, synthesized by interfacial polymerization.7  

One way to increase the flux of these membranes without sacrificing rejection is 

the introduction of nanoparticles during the interfacial polymerization of 

polyamide, resulting in the so-called “thin film nanocomposite” (TFN) 

membranes161. A wide variety of nanoparticles has already been used for this 

purpose: zeolites,266 metal-organic frameworks,144 graphene oxide,13 and TiO2,10 

among others. 

Metal-organic frameworks (MOFs) are hybrid materials formed by the union of 

metal clusters with organic ligands.11 They have been reported as interesting 

materials for the production of TFN membranes because their chemical variety 

(e.g. depending on the nature of the linker they can be hydrophilic or hydrophobic) 

and high porosity results in improvements in the performance of the membrane, 

e.g. increasing flux in nanofiltration processes.9,144. However, sometimes, 

agglomerates of MOFs can be formed during their dispersion in the organic 

solution that participates in the interfacial polymerization reaction. This may 

create non-selective defects between the polyamide and the MOF nanoparticles 

producing a decrease in the membrane performance.9 In order to solve this 



 

6.-Polyamide/MOF bilayered thin film composite membranes for the removal of 

pharmaceutical compounds from water 

   94 

 

problem, different methodologies to control the MOF positioning in the membrane 

have been developed: dip-coating,171 layer by layer,173 Langmuir-Schaefer267 or 

evaporation-controlled filler positioning.268. 

To control the MOF positioning, we report here the synthesis of Polyamide/MOF 

Bilayered Thin Film Composite (PA/MOF BTFC) membranes on top of asymmetric 

polyimide supports. The MOF film is synthesized on the top of polyimide by 

interfacial synthesis method and then the polyamide film is synthesized by 

interfacial polymerization on top of the MOF film. To increase water permeance, 

two hydrophilic MOFs were selected: ZIF-93 and HKUST-1. ZIF-93 (Zn(4-methyl-5-

imidazolecarboxaldehyde)2) is a hydrophilic MOF belonging to the subclass known 

as “Zeolitic Imidazolate Framework”. It is formed by the coordination of Zn cations 

with 4-methyl-5-imidazolecarboxaldehyde resulting in a “rho” topology with a 

pore size of 3.6 Å.73 HKUST-1, also hydrophilic like ZIF-93, was one of the first 

MOFs reported.25 With the empirical formula Cu3(BTC)2(H2O)3 (where BTC is 

1,3,5-bencenetricarboxylate), HKUST-1 has a face-centered-cubic structure and a 

pore size of 6-9 Å.25 The membranes obtained were applied in the nanofiltration 

process for the removal of pharmaceuticals, specifically diclofenac and naproxen, 

two analgesics in common daily use and whose presence has even been found in 

drinking water.269-270 

6.1.-Characterization of the MOF particles for TFN 

membranes 

The crystalline structures of ZIF-93 and HKUST-1 were confirmed by X-ray 

diffraction (see Figure 6.1a). SEM images showed the characteristic morphologies 

described in the literature for both MOFs 179,181 (Figure 6.1c,d) besides an adequate 

particle size: 800±170 nm in the case of HKUST-1 and 67±13 nm for ZIF-93. The 

thermal stability was determined by TGA (see Figure 6.1b) showing no traces of 

solvent or unreacted linkers inside the pores and therefore both MOFs were well 

activated. Table 6.1 shows some selected properties of the two MOF powders used 

to prepare the TFN membranes. 

Table 6.1: Crystal size (calculated measuring at least 50 particles helper by the software Vision Builder), 
BET area and pore volume (at a relative pressure of P/P0=0.98) of the HKUST-1 and ZIF-93 powders 
synthesized in this work for TFN membranes. The crystallographic pore size (Å) has been indicated as a 
reference. 

MOF Particle 
size (nm) 

BET surface 
area (m2·g-1) 

Pore 
volume 

(cm3·g-1) 

Pore/cavity 
diameter 

(Å) 

HKUST-1 800±170 1378271 0.33 6/925 

ZIF-93 67±13 737±11 0.62 3.673 
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Figure 6.1: a) Simulated and experimental XRD patterns of ZIF-93 and HKUST-1. The simulated patterns 
were obtained using the corresponding CIF files,272-273 b) TGA curves of HKUST-1 and ZIF-93 and SEM images 
of nanoparticles c) ZIF-93 and d) HKUST-1. 

6.2.-Membrane characterization 

TFN membranes were synthesized in order to compare their performance with 

the PA/MOF BTFC membranes and corroborate the improvement obtained with 

the latter.  

SEM was carried out with both kinds of membranes. Figure 6.2a,d shows images 

before the IP, where it is possible to see that the synthesis of the MOF was carried 

out over the support surface. In the case of HKUST-1, a homogeneous film of MOF 

was synthesized, whereas in the case of ZIF-93 some areas appear uncoated. After 

the IP (Figure 6.2b,e), the PA/ZIF-93 BTFC membrane shows the typical ridge and 

valley morphology coating the whole MOF film. In case of PA/HKUST-1 BTFC 

membrane, the PA film seems to be thinner as seen in Figure 1b, where it is 

possible to distinguish a hole made during the SEM analysis. Namvar-Mahboub et 

al.168 saw that the thickness of the polyamide layer decreased on TFN membranes 

when the filler loading increased in the PA layer due to the filler restricting the 

MPD diffusion to the organic phase, thus decreasing the polymerization reaction to 

form the PA layer. The same phenomenon was described by Wang et al.173 when 

they increased the number of layers of ZIF-8 synthesized over a support by the 
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layer by layer method. Figure 6.2c,f shows the cross-sectional SEM images 

corresponding to PA/MOF BTFC membranes before IP where it can be observed 

that the MOF layer thickness is larger for HKUST-1 (≈1.5 µm) than for ZIF-93 

(≈500 nm).  

 

Figure 6.2: SEM images of different stages of preparation of PA/MOF BTFC Membranes. a, b, c) HKUST-1 
before IP, after IP and cross-sectional before IP, respectively, and d, e, f) ZIF-93 before IP, after IP and cross-
sectional before IP, respectively. 

SEM images for the TFN membranes can be seen in Figure 6.3. For both MOFs, 

the membranes show the ridge and valley structures indicating that the PA layer 

has been correctly formed. 

 

Figure 6.3: SEM of a) TFN-HKUST-1 and b) TFN-ZIF-93. 

The ATR-FTIR spectra of the PA/MOF BTFC membranes and TFN membranes are 

shown in Figure 6.4. Peaks related to the PA layer formation appear at 1639 cm-1 

(amide I, C=O stretching vibration), 1537 cm-1 (amide II, C-N stretching) and 1465 

cm-1 and 1405 cm-1 (amide functionalities, -NHCO- bond).187 Regarding the 

PA/HKUST-1 BTFC sample, these peaks are less intense due to the fact that, as seen 

in SEM images (Figure 6.2b), the PA layer is thinner than for PA/ZIF-93 BTFC. In 

addition, new peaks appear in the PA/MOF BTFC and TFN membranes (more 

clearly after subtraction of the TFC membrane spectrum) corresponding to the 
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characteristic peaks of the MOFs. In the case of the PA/HKUST-1 BTFC membrane, 

the bands at 1448 and 1371 cm-1 and at 760 and 729 cm-1 correspond to the COO-

Cu2 and C-CO2 stretching vibrations, respectively.274 Whereas in the PA/ZIF-93 

BTFC membrane, the peaks at 1492 and at 1163 cm-1 correspond to the C=C and C-

N stretching mode, respectively, and at 1028 and at 816 and 783 cm-1 are related 

to the C-H in plane and C-H out of plane bending, respectively.275 This reveals their 

correct synthesis and that no structural changes occurred during the PA layer 

formation by interfacial polymerization. 

 

Figure 6.4: ATR-FTIR analysis of MOFs, TFC, TFN and PA/MOF BTFC membranes. a) PA/HKUST-1 BTFC, b) 
PA/ZIF-93 BTFC, c) TFN HKUST-1 and d) TFN ZIF-93. 

Table 6.2 shows the contact angle values for the TFC, TFN and PA/MOF BTFC 

membranes. The measured contact angles follow a trend marked according to the 

added MOFs. Both MOFs are hydrophilic so the contact angle in the TFN and 

PA/MOF BTFC membranes decreased compared to the TFC membranes. The most 

hydrophilic membranes are those with HKUST-1. The TFN membranes for both 

MOFs are more hydrophilic than the PA/MOF BTFC membranes due to the fact that 

the nanoparticles in the former are more exposed to the membrane surface, while 

in PA/MOF BTFC the MOF layer was buried below the polyamide.  
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Table 6.2: Contact angle measurements. 

 Contact Angle (°) 

TFC 78±1 

TFN ZIF-93 64±4 

PA/ZIF-93 BTFC 71±3 

TFN HKUST-1 51±3 

PA/HKUST-1 BTFC 55±3 

AFM images and derived Ra and RMS values of TFN MOF, PA/MOF BTFC and 

conventional TFC membranes are given in Figure 6.5. Independently of the type of 

MOF, the roughness is higher in the following order MOF/PA BTFC > TFN MOF > 

TFC membranes. The effect is more abrupt when the MOF HKUST-1 is used. 

Compared to the TFC membrane (Ra = ±12), the filler HKUST-1 within the 

polyamide layer in the TFN MOF membrane (Ra = ±144) increases the membrane 

roughness, in agreement with the literature.267 The PA/HKUST-1 BTFC membrane 

(Ra = ±526) produced the highest roughness value. On the other hand, the PA/ZIF-

93 BTFC membrane shows a lower roughness value (Ra = ±28) than its analog of 

HKUST-1 (Ra = ±526) due to what has already been observed by SEM (also obvious 

in the AFM images) of a ZIF-93 layer with no covered areas. The increase in the 

roughness of the membrane surface is a factor that causes an increase in the 

effective membrane area and therefore can play a key role increasing the 

permeance. 
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Figure 6.5: 2D AFM images of the top surface of a) TFC, b) TFN ZIF-93, c) PA/ZIF-93 BTFC, d) TFN HKUST-1 
and e) PA/HKUST-1 BTFC membranes, and f) Ra and RMS values. 

6.3.-Results of Diclofenac and Naproxen aqueous solution 

nanofiltration 

First, nanofiltration was carried out using diclofenac as the solute (296.15 Da). 

The results obtained can be seen in Figure 6.6a and Table 6.3. The rejection values 

obtained in all cases were > 99 %. As has been observed previously in other 

studies, the insertion of filler particles giving rise to TFN membranes improves the 

membrane permeance in comparison to TFC membranes.9,144 In this case an 

additional important improvement was achieved with the PA/HKUST-1 BTFC 

membrane compared with the TFN membrane containing HKUST-1 particles from 

6.8 L·m-2·h-1·bar-1 for the TFC membrane to 33.1 L·m-2·h-1·bar-1 for the PA/MOF 

BTFC membrane of water permeance, whereas the Diclofenac rejection was ≥99%. 

Figure 6.6a depicts analogous results with ZIF-93, the water permeance being 24.2 

L·m-2·h-1·bar-1 and the rejection ≥99%.  

This increase in permeability compared to TFC membranes (calculated as 

(PPA/MOF-PTFC)/PTFC·100) in PA/HKUST-1 BTFC (>380%) and in PA/ZIF-93 BTFC 

(>255%) is related to the porosity of the MOF, the higher hydrophilicity of the 

membranes and the higher surface roughness. These three parameters are higher 

for PA/HKUST-1 BTFC than for PA/ZIF-93 BTFC membranes (see Table 6.1, Table 

6.2 and Figure 6.5f) explaining the difference between both MOFs. Regarding the 

f)
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permeance, other factor should be taken into account such as the lower thickness 

of the polyamide layer in the PA/HKUST-1 BTFC membrane 

 

Figure 6.6: Nanofiltration performance using as solute: a) Diclofenac and b) Naproxen. The values given are 
an average of three membranes. Applied pressure 20 bar and temperature 20 °C. The rejection values obtained 
in all experiments were > 98% (see Table 6.3). 

Table 6.3: Nanofiltration performance using diclofenac and naproxen as solutes. The values given are an 
average of three membranes. N/a: not measured. 

 Diclofenac Naproxen 

Permeance 
(L·m-2·h-1·bar-1) 

Rejection 
(%) 

Permeance 
(L·m-2·h-1·bar-1) 

Rejection 
(%) 

TFC 6.8±0.4 99.3±0.3 4.3±0.3 99.3±0.3 

TFN ZIF-93 7.1±1.1 99.4±0.1 n/a n/a 

PA/ZIF-93 BTFC 24.2±5.4 99.0±0.8 10.5±1.6 99.3±0.2 

TFN HKUST-1 9.8±2.5 99.6±0.1 n/a n/a 

PA/HKUST-1 BTFC 33.1±3.1 99.5±0.1 24.9±7.4 98.3±0.5 

Once it was established that the best performances were obtained with PA/MOF 

BTFC membranes, with the continuous layer of MOF coated with polyamide, these 

membranes were used in the nanofiltration of naproxen (230.26 Da) aqueous 

solution. The best performance for the nanofiltration of naproxen aqueous solution 

was obtained with HKUST-1 (Figure 6.6b and Table 6.3), with an increase in the 

water permeance from 4.3 L·m-2·h-1·bar-1 for the TFC membrane to 24.9 L·m-2·h-

1·bar-1 for the PA/HKUST-1 BTFC membrane. The flow also using the PA/ZIF-93 

BTFC membrane reached values of 10.5 L·m-2·h-1·bar-1. In this case, the rejection 

decreased somewhat from 99.3% for the TFC to 98.3% for the PA/HKUST-1 BTFC 

while it was maintained for the PA/ZIF-93 BTFC. The lower size of naproxen 

compared to diclofenac should be taken into account and, as can be seen in Table 

6.1, the pore size of HKUST-1 is larger than that of ZIF-93. Thus, naproxen can 

diffuse more easily. 

The water permeances obtained in the nanofiltration of diclofenac aqueous 

solution are higher than in the case of naproxen aqueous solution. This is true with 

all the three types of membrane (TFC, TFN and PA/MOF BTFC). This suggests that 

some fouling occurred when naproxen was used as the solute in the nanofiltration 
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process. The Hansen solubility parameters (HSP) are useful for gaining insight into 

the fouling phenomenon.144 Table 6.4 shows the HSP of diclofenac, naproxen and 

polyamide (PA). 

Table 6.4: Differences in the Hansen solubility parameters (Ra) calculated as described by Hansen,216 
obtained by for each pharmaceutical276 and PA144, where each HSP correspond to a specific interaction: δD 
refers to the dispersion forces, δP to the dipolar forces and δH is due to the contribution of the hydrogen bonds. 

 δD 

(MPa0.5) 
δP 

(MPa0.5) 
δH 

(MPa0.5) 
Ra 

(MPa0.5)a 

Diclofenac 16.27 18.05 13.48 9.00 

Naproxen 17.35 12.14 9.86 2.36 

PA 18.0 11.9 7.9 0.00 

aCalculated according to Ra2 = 4(δD1 - δD2)2 + (δP1 - δP2)2 + (δH1 - δH2)2 where δD1, δP1 and δH1 and δD2, δP2 and δH2 
are sets of parameters corresponding to PA and pharmaceutical, respectively.  

The ratio (Ra) of the PA and each pharmaceutical indicate the affinity between 

them. The lower the Ra calculated, the greater the affinity. As can be seen in Table 

6.4, the lower Ra value corresponds to naproxen and PA. This is consistent with a 

higher tendency of the PA film to be fouled by this substance as compared to 

Diclofenac, in agreement with the decrease in the permeance observed. 

6.4.-Comparison with results published in the literatureing that obtained in this 

work. 

Table 6.5 shows different methods of fabricating membranes related with 

PA/MOF BTFC membranes with the objective of increasing performance in 

comparison with TFC membranes. It is difficult to compare them because the 

materials used and the nanofiltrated solutes and solvents are not the same. 

However, it can be seen that in all cases a high permeance enhancement was 

obtained, the highest being that obtained in this work. 

Table 6.5: Performance of PA/MOF membranes fabricated using different methods. 

Method MOF Feeda Permeance 
(L·m-2·h-1·bar-1) 

Permeance 
enhancementb 

(%) 

Rejection 
(%) 

Ref. 

Layer by Layer ZIF-8 CR+Water 2.7 142 99.2 173 

Layer by Layer ZIF-8 PCM+Water 4 100 55 277 

Langmuir-
Schaefer 

MIL-101 
(Cr) 

SY+MeOH 10.1 35 91.1 
267 

RB+MeOH 9.5 58 96 

Dip-coating ZIF-8 SY+MeOH 8.7 50 90 171 

Evaporation-
controlled 

Filler 
Positioning 

(EFP) 

ZIF-8 NaCl+Water 2.75 189 83 268 
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Method MOF Feeda Permeance 
(L·m-2·h-1·bar-1) 

Permeance 
enhancementb 

(%) 

Rejection 
(%) 

Ref. 

Interfacial 

synthesis 

HKUST-1 
DIC+Water 

33.1 386 99.5 
This 
work 

ZIF-93 24.2 256 99 

aCR: Congo red (697 g·mol-1), PCM: Paracetamol (151 g·mol-1), SY: Sunset yellow (450 g·mol-1), RB: Rose 
bengal (1017 g·mol-1), NaCl: Sodium chloride (58 g·mol-1) and DIC: Diclofenac (296 g·mol-1). 

bThe permeance enhancement was calculated as follows:  

Several studies have been reported in the literature concerning the removal of 

pharmaceuticals by nanofiltration using different membrane polymers. For 

example, Dong et al.164 synthesized polysulfone TFN membranes using zeolites as 

fillers obtaining a permeance of 2 L·m-2·h-1·bar-1 and a rejection of ≈90% of the 

tested pharmaceutically active compounds (PhACs). Vergili278 studied the 

application of the commercial membrane FM NP010 (polyethersulfone) to the 

removal of diclofenac, ibuprofen and carbamazepine and obtained a rejection of 

88% of diclofenac with a water permeance of 7 L·m-2·h-1·bar-1. Basu et al.277 

incorporated MOF ZIF-8 on a polysulfone support by the layer by layer method and 

applied the resulting membrane to the nanofiltration of Paracetamol, achieving a 

rejection of 55% and a permeance of 4 L·m-2·h-1·bar-1. Table 6.6 shows some 

additional examples of the application of nanofiltration to the removal of 

diclofenac and naproxen. 

Table 6.6: Performance of different membranes in the nanofiltration of diclofenac and/or naproxen 

Membrane Drug 
Permeance 

(L·m-2·h-1·bar-1) 
Rejection (%) Ref. 

TFN (PA) Zeolite Diclofenac 2 92 164 

DOW FILMTEC™ NF270 Diclofenac 10.3 85 279 

DK (GE Osmonics) Diclofenac 3.6 71 279 

FM NP010 (Microdyn-Nadir, 

GmbH) 
Diclofenac 7 88 278 

Trisep® TS-80 

Diclofenac 

4.3 

89.5 
280 

Naproxen 89 

Desal HL (GE Osmonics) 

Diclofenac 

7.2 

87.5 

280 

Naproxen 78 
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Membrane Drug 
Permeance 

(L·m-2·h-1·bar-1) 
Rejection (%) 

Ref. 

PA/HKUST-1 BTFC 
Diclofenac 33.1 99.5 This 

work Naproxen 24.9 98.3 

PA/ZIF-93 BTFC 
Diclofenac 24.2 99 This 

work Naproxen 10.5 99.3 

6.5.-Stability of Polyamide/HKUST-1 membrane 

To check the membrane stability, PA/HKUST-1 BTFC (with which the best results 

were obtained) and TFC membranes were submitted to 3 nanofiltration cycles 

using Diclofenac as the solute. Figure 6.7 shows the percentage of the normalized 

permeance obtained in each cycle. As can be seen, the decrease in the permeance, 

mainly caused by fouling, was higher for the TFC membranes than for the 

PA/HKUST-1 BTFC membranes. Fouling is produced by complex interactions 

between the membrane surface and the solute dissolved in the feed solution. Two 

of the factors that come into play in these interactions are the 

hydrophilic/hydrophobic character of the membrane surface and the electrostatics 

interactions between this and the solute. 281 

Hydrophobic membranes, with their surfaces more inclined to interact with 

organic molecules, are more prone to fouling. As Table 6.2 shows, the introduction 

of the HKUST-1 layer increased the membrane hydrophilicity, giving rise to a low 

contact angle of 55°, ca. 20° below that of the TFC membrane. Therefore, there was 

less fouling and the permeance decrease in each cycle was lower.  

However, HKUST-1 has been reported as a material with low stability in water.188 

Presumably, therefore, the duration of the nanofiltration cycles is not long enough 

for the HKUST-1 to suffer important changes altering the permeance and rejection. 

This is in agreement with previous works that show that the structure of HKUST-1 

is maintained in Mixed Matrix Membranes after 30 h under mild acidic reaction 

conditions (acetic acid and ethanol esterification) which are more drastic 

conditions.271 On the other hand, ZIFs are known for their hydrothermal 

stability282 and, specifically, ZIF-93 has been tested for the adsorption of 5-

hydroxymethylfurfural (HMF)283 and polyols284 from aqueous solution. Therefore, 

the PA/ZIF-93 BTFC membrane is a plausible alternative to the PA/HKUST-1 BTFC 

since, although it has a lower permeation, its stability in water is greater. 
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Figure 6.7: Percentage of the normalized permeance obtained in each cycle with diclofenac used as solute. 
Applied pressure 10 bar and temperature 20 °C. 
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7.1.-CHARACTERIZATION OF LS-TFN MEMBRANES 

7.2.-OSN RESULTS 

 

 

 

 

 

 

Adapted with permission from M. Navarro, J. Benito, L. Paseta, I. Gascón, J. Coronas 

and C. Téllez, “Thin-Film Nanocomposite Membrane with the Minimum Amount of 

MOF by the Langmuir–Schaefer Technique for Nanofiltration”, ACS Appl. Mater. 

Interfaces, 2018, 10 (1), 1278–1287, DOI: 10.1021/acsami.7b17477. Copyright 

2018 American Chemical Society. 
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7.-Thin film nanocomposite membrane with the 
minimum amount of  MOF by the Langmuir-Schaefer 
technique for nanofiltration 

In the chemical and pharmaceutical industries and in the manufacturing of food, 

textiles and paper, the nanofiltration membrane system is gaining great 

importance as a flexible, energy-efficient and low-cost separation technology for 

aqueous and organic feeds.126,285 In particular, organic solvent nanofiltration (OSN) 

focuses on the separation, recovery and disposal of organic solvents. 

This membrane technology demands materials easily available and capable of 

retaining multivalent ions and low molecular weight organics in the wide range of 

200-1000 g·mol-1.7,286-288 Acid dyes are present in the waste from several of the 

above-mentioned industries and have molecular sizes in this range. Their removal 

from water and organic solvents is a must as they can cause severe damage to the 

environment and human health due to their toxic and carcinogenic properties.289-

290 In several nanofiltration studies these contaminants have not only been 

removed from water172-173,268,291-292 and from more aggressive solvents such as 

methanol9,144,169,202 and toluene,233 but they have also been used for characterizing 

the molecular weight cut-off of membranes. Polymeric membranes display 

valuable tuneable properties, namely mechanical stability, structural diversity, 

relatively low fabrication costs and ease of industrial scale-up.7,286-288 With regard 

to organic solvents, solvent resistance should be guaranteed and thus the chemical 

stability of the polymer is crucial. In order to be applicable to a broad range of 

solvents, only intrinsically stable and cross-linked polymers should be considered 

in OSN.293  

Thin film composite (TFC) membranes (Table 7.1) consist of an asymmetric type 

of polyimide (PI) membrane obtained by phase inversion that serves as a support. 

The selective layer is a polyamide (PA) thin film grown via interfacial 

polymerization7,294 at the top of the previous sub-layer. The cross-linked PA active 

layer has been prepared using m-phenylenediamine and trimesoyl chloride as 

monomers.215,295 Gorgojo et al.215 described the structure of the PA layer as an 

ensemble of two layers: a loose and negatively charged one on the outside and a 

cross-linked one in contact with the PI support. TFC membranes have been 

commonly applied in several membrane separation processes. As a matter of fact, 

in 2001 the Norwegian Statkraft company employed TFC membranes in their large 

scale osmotic power plant. For their part, Dow® and Koch Membrane Systems 

companies developed TFC membranes for aqueous separations.139,296 

Furthermore, TFC membranes can be easily employed to OSN since they consist of 

two polymeric layers chemically stable in a wide range of organic solvents. In fact, 

their commercialization in the field of nanofiltration of organic solvents has been 

conducted by several companies, namely Koch Membrane Systems, Evonik, SolSep 

BV and GE Osmonics.139  
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Thin film nanocomposite (TFN) membranes (Table 7.1) were first designed by 

Jeong et al.161 by embedding molecular sieve nanoparticles inside the PA layer, 

broadly following the mixed matrix membranes (MMMs) approach. Metal-organic 

frameworks (MOFs), built from organic linkers and metal-containing clusters, were 

first included in this manner as fillers in TFN membranes by Sorribas et al.,9 

showing better affinity with polymer chains than other types of porous 

nanoparticles. Moreover, Sorribas et al used TFN membranes for OSN application 

for the first time, and reported higher MeOH permeation than with TFC 

membranes, without sacrificing rejection.  

A great challenge to be overcome in TFN membrane preparation is the tendency 

of MOFs to agglomerate and localize heterogeneously inside the PA layer.8 To 

illustrate this phenomenon, Table 7.1 shows the possible permeate pathways 

between the LS-TFN membrane, in which fillers are organised in a monolayer, and 

the conventional TFN membrane, in which fillers are dispersed heterogeneously.  

Table 7.1: Membranes synthesized in this work. Numbers indicate the components of each membrane: (1) 
indicates the cross-linked asymmetric PI (P84®) support, (2) show the LS-MIL-101(Cr) monolayer, and (3) 
and (4) indicate the PA selective layer and the PA layer with MIL-10(Cr) NPs inside, respectively. 

Membranes and their schema (not to scale) 

TFC 

 

LS-P84 

 

LS-TFN 

 

Conventional TFN 

 

As previously reported,9 MOF nanoparticles (NPs) facilitate and enhance MeOH 

permeance due to their pore system. In conventional TFN membranes, MOF NPs 

are heterogeneously embedded inside the PA layer and the permeate flows either 

through the combination of the PA and MOF pores or through the PA layer, since 

PA areas free of MOF nanoparticles are more likely to be present. In the LS-TFN 

membrane, a thin PA layer is well formed on top of the MOF monolayer and the 

MeOH continuously permeates through the combination of the PA layer and the 

MOF pores. Thus, a lower permeance is more probable to be achieved in 

conventional TFN than in LS-TFN membranes. Furthermore, the presence of MOF 

agglomerates can be a drawback, contributing to the formation of unselective 

defects between them, provoking a reduction in the degree of cross-linking of the 

PA173 and consequently the damage to selectivity,268 which is less likely to occur in 

LS-TFN membranes.  

On the other hand, Morris297 suggested that the control of the orientation of the 

porous material and therefore its pore system, ensures high quality films and 

Bètard and Fischer298 compiled many strategies to produce thin MOF layers 

suitable for countless applications. For their part, Ha et al.299 emphasized the 
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importance of the organization of uniformly oriented zeolite monolayers in order 

to be widely applied in industry, for molecular separations and size-selective 

chemical sensors.300  

Accordingly, recent experiments have been done to avoid MOF agglomeration 

and to control their growth process, especially their size, in order to design thin 

MOF membranes. For instance, by means of the interfacial synthesis method, 

continuous ZIF-8 layers172,301 of 250 - 300 nm in thickness were obtained after only 

one synthesis cycle at room temperature. Moreover, a multilayer structure in 

nanocomposite membranes was produced via solvothermal synthesis by the in situ 

growth of ZIF-8, using a layer-by-layer procedure.173 Another determining factor in 

the performance of OSN membranes is the surface roughness and morphology, 

owing to the fact that this directly relates to the enlargement of the effective 

surface area that may well result in flux increase302 and eventually in fouling.303-304 

The fouling phenomenon constitutes an important limiting parameter in the 

performance of nanofiltration membranes and its reduction affects operation costs 

and energy and chemical consumption. Designing a hydrophilic top selective layer 

is a determining factor to reduce fouling in the OSN membrane by preventing 

chemical interactions with foulants.143,161 Since improving hydrophilicity in the 

membrane surface is desirable, dimethylformamide (DMF) post-treatments215 and 

the incorporation of negatively charged-hydrophilic fillers such as MOF MIL-

101(Cr) NPs9,144,202 have been implemented to enhance OSN membrane 

performance.  

Other strategies, like the bottom-up Langmuir-Blodgett (LB) methodology 

(vertical deposition), has recently been applied to improve the performance of 

polysulfone and polyacrylonitrile ultrafiltration membranes with thin 

monomolecular coatings of poly-4-vinylpyridine (PVPyr) or latex particles.305 

Previous studies to obtain smooth, uniform, ordered and high crystallinity polymer 

thin films have been conducted to enhance the charge transport properties in 

electronic devices, by using LB or Langmuir-Schaefer (LS) methodologies.306-308 

Nowadays, LB technology focuses on the industrial-scale production of defect-free 

films on a square-meter substrates.309 Commercial troughs and two alternative 

film deposition routes are being developed for that purpose: automatic Roll-to-Roll 

LB processing for large device areas, and the LS methodology (horizontal 

deposition), since it allows to fabricate resistant, uniform and high-quality 

monolayers. In regard with this, we report the fabrication of a hydrophilic MOF 

monolayer on cross-linked asymmetric polyimide (P84®) supports before the 

interfacial polymerization stage, by the LS methodology. Although we have 

previously demonstrated that MIL-101(Cr) LB films deposited onto different substrates 

(glass, quartz and QCM crystals) were highly compact and dense,
176,310

 in this case we 

found that vertical deposition was not suitable when the substrate has a porous and 

hydrophilic nature, which is the case of P84
®
, and horizontal deposition (LS 

methodology) was needed. As a result, a LS-MIL-101(Cr) film has been incorporated 
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for the first time in TFN membranes for nanofiltration and in particular for OSN 

application. Through the LS approach, we have been able to position the MOF in a 

controlled manner forming a monolayer free of agglomerates. Thus, organic 

solvent permeance has been efficiently enhanced by the hydrophilic porous 

structure of the MOF MIL-101(Cr)30 (MIL; Materials of Institute Lavoisier), built up 

from trimers of Cr octahedral, whose large pores and cavities are 1.2-2.9 nm and 

2.9-3.4 nm in size, respectively.311 On the other hand, negligible loadings of MOF 

nanoparticles have been used to prepare the LS-MIL-101(Cr) film. In particular, 

less than 82% of MOF (MIL-101(Cr)) was required to fabricate the LS-TFN 

membranes in comparison with the TFN membranes of Van Goethem et al.,268 who 

claimed to have considerably lessened (80 times reduction) the amount of MOF 

filler (ZIF-8) in comparison to other conventional MOF-TFN membranes.9,144,197,202 

As a consequence, this may result in the reduction of the costs associated with the 

membrane preparation. A comparative study of the OSN performance of the three 

types of membranes (TFC, LS-TFN and conventional TFN) has been conducted, 

with an exceptional increase in permeance for the LS-TFN membranes, in which 

the nanosized MIL-101(Cr) fillers were organized in a monolayer.  

7.1.-Characterization of LS-TFN membranes 

The membranes fabricated in this work are listed and represented in Table 7.1. 

The MOF MIL-101(Cr) was used as the filler for the TFN membranes and was 

synthesized by microwave irradiation, following a previous publication.176  

 

Figure 7.1: XRD pattern of the MIL-101(Cr) NPs synthesized in this work. Simulated XRD of the MIL-101 
(Cr) crystalline material has also been included.30  

Pure nano-MIL-101(Cr) crystals (see XRD pattern in Figure 7.1) were produced 

with 60 ± 20 nm in size (Figure 7.2a). LS-MIL-101(Cr) film transferred onto a 
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carbon mesh grid was used to check the layout of the crystals by means of TEM, 

confirming the formation of a monolayer. It should be noted that some crystal 

faces are in contact, as Figure 7.2a shows. However, they are beam sensitive and 

apart from suffering loss of crystallinity, the crystals tend to segregate during TEM 

observation. The longer the time they were under the beam, the more the original 

LS layout was broken apart (Figure 7.2a).  

 

Figure 7.2: a) TEM image of a LS-MIL-101(Cr) film transferred onto a carbon mesh TEM grid; b) SEM image 
of the surface of a LS-MIL-101(Cr) film over a cross-linked asymmetric PI (P84®) support (LS-P84); c) SEM 
image of the surface of a LS-TFN membrane. 

Overall, a negligible amount of MIL-101(Cr) NPs was required to achieve their 

successful transfer onto the support. The SEM images in Figure 7.2b and Figure 7.3 

illustrate the substrate coating of a LS film of MIL-101(Cr), which nearly covers the 

whole surface of the cross-linked asymmetric PI (P84®) support and mimics its 

superficial morphology for at least 0.47 mm2 (the area of the image). In particular, 

Figure 7.2b and Figure 7.3b have been used to calculate the coated surface area of 

the cross-linked asymmetric PI (P84®) with the LS-MIL-101 (Cr) film, and it has 

proved to be 70.5 ± 1%. 

 

Figure 7.3: a) and b) Additional SEM images of the surface of a LS-MIL-101(Cr) film over a cross-linked 
asymmetric PI (P84®) support (LS-P84) at different magnifications, used to calculate the coated surface area 
of the support with the MIL-101(Cr) monolayer. 

Although LS films on PI are slightly less dense than the LB films previously 

obtained in other substrates,176,310 they are compact enough for our purposes and 

the continuity and integrity of the LS-MIL-101(Cr) monolayer have been 

200 µm 2 µm
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demonstrated for an area of at least 45 µm2 and along a distance of 13 µm, using 

Figure 7.2b and Figure 7.3b, and Figure 7.3a, respectively. 

Regarding to the Benito et al.176,310 surface pressure-area isotherm (Figure 7.4), 

the theoretical density of MIL-101(Cr) NPs at the transference surface pressure is 

3.8 µg·cm-2. This isotherm is consistent with the formation of a compact film, 

owing to a considerable fast increase of the surface pressure up to 40 mN·m-1. 3.8 

µg·cm-2 is the maximum amount of material that is added to the support by the LS 

methodology. In fact, the improvement in the reduction of the MOF used in 

comparison with conventional membranes9,144,197,202 is remarkable. When a MOF-

TFN membrane is prepared by the conventional procedure, a 0.2% (w/v) 30 mL 

solution of dispersed MOF in hexane is used for a support with identical unit area, 

but only small amounts of MOF NPs are effectively incorporated as fillers in the 

TFN membrane. Van Goethem et al.268 followed the evaporation-controlled filler 

positioning (EFP) procedure to design TFN membranes, requiring amounts of MOF 

80 times smaller than those required by conventional routes and without any MOF 

loss. Taking into account that Van Goethem’s optimal MOF loading for achieving 

the best membrane performance was 0.005% (w/v) in 12.5 mL of hexane for a 30 

cm2 support and no MOF loss occurred, we have calculated that in this case 20.8 

µg·cm-2 of ZIF-8 NPs were incorporated in the TFN membranes. This indicates that 

the LS-TFN membranes require about 82% less MOF per support unit area 

compared to the EFP-TFN membranes.  

 

Figure 7.4: Surface pressure vs Area per mg of MOF isotherm of MIL-101(Cr) NPs + 1% Behenic Acid in the 
chloroform : methanol (4:1) dispersion. Based on Benito et al.176 

After the LS-MOF transference, a PA thin film layer is formed on top of the LS-P84 

support and the irregular morphology of the polymer layer, characterized by 

ridges and valleys, veils the existence of the LS-MIL-101(Cr) monolayer 

underneath (Figure 7.2c). It is also important to note that the total amount of MOF 

incorporated in the membrane resisted attached to the support during the 
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interfacial polymerization process to prepare the PA film. This is due to the fact 

that no NPs were lost towards the water and organic solutions. An achievement of 

this kind could be implemented in other composite membranes where compact 

and homogeneous films that totally cover the support surface are mandatory. In 

addition, this will help save expenses associated to MOF synthesis since the small 

excess of NPs remains in the LS bath and could be easily reused. This would be 

more difficult if the NPs were combined with the interfacial polymerization 

reactants, as typically happens when preparing conventional TFN membranes  

SEM or EDX techniques on the surface of the membrane were not powerful 

enough to image or detect the presence of MOF crystals in the membrane. 

Therefore, in order to reveal the good formation of the MOF-monolayer and its 

resistant location even after the deposit of the PA layer, a composition profile was 

analyzed by XPS. The idea was to profile the sample from the top, where the 

polyamide is, and then to descend until reaching the LS-MIL-101(Cr) monolayer. 

LS-P84 sample was used as a reference for the atomic percentages of Cr present in 

the LS-MIL-101(Cr) film and the C/N ratio of the PI. Then, starting from the top of 

the membrane, Ar+ bombardment was performed in the LS-TFN membrane and an 

average composition was calculated from three measurements taken at the same 

depth level along the depth profile. The atomic percentages of Cr, C and N are 

shown for each sample at different etching cycles that correspond to different 

profile depths. Ideally a decline in the Cr signal would take place while reaching 

the cross-linked asymmetric PI (P84
®
) support, and the C/N ratio is expected to be 

higher for PI than for PA. The XPS data shown in Table 7.2 confirm this previously 

formulated hypothesis. 

Table 7.2: Atomic compositions of C, N and Cr of a LS-P84 and a LS-TFN systems analyzed via XPS, after a 

given number of bombardment cycles with Ar+. 

System N° etching cycles % C % N % Cr 

LS-P84     

LS-TFN 

0    

20    

50    

Before starting the etching process, the contribution of Cr to the atomic 

percentage of the three elements could be detected but was the smallest, indicating 

that the thickness of the PA layer is particularly low. After 20 Ar+ etching cycles, a 

slight increase in the C/N ratio was observed. In addition, the Cr percentage rose to 

a value close to that of the LS-P84 system (0.21%). The nearly complete removal of 

the PA layer was achieved after 50 cycles, as the C/N ratio showed a sharper 

increase. Additionally, the Cr percentage started decreasing (0.13%), meaning that 

the XPS data was then taken closed to the bottom of the LS-MOF film.  
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Figure 7.5a and Figure 7.5b show the STEM images of a LS-TFN lamella obtained 

by FIB, illustrating the continuity of the LS thin monolayer in between the 

“sandwich” of polymers: the cross-linked asymmetric PI (P84
®
) support at the 

bottom and the polyamide thin layer at the top. The preparation of the lamella 

required the deposition of two Pt coatings that have also been imaged, represented 

by letters d and e (electron and ion-beam-deposited-layer, respectively). In 

addition, it is important to note that prior to FIB Pt deposition, the LS-TFN 

membrane was coated with Pt to make the sample conductive (Figure 7.5b), in the 

same way as for other microscopy techniques. This Pt coating stands out (whiter in 

the image) from the other Pt depositions and the cross-linked asymmetric PI 

(P84
®
) support. As a consequence of the FIB Pt depositions, the edges of the MIL-

101(Cr) NPs were impregnated with Pt, highlighting their localization and 

distribution and the fact that the LS-MOF monolayer was almost free of MOF 

agglomerates that could hinder the membrane separation performance. In fact, the 

Pt contribution in the EDS line spectrum of 2 (inset in Figure 7.5c), which 

corresponds to the edge of a MIL-101(Cr) nanoparticle, contrasts with the absence 

of Cr whose contribution has only been detected in the inside of a MIL-101(Cr) NP 

(EELS spectrum 3, Figure 7.5c). Although Pt is still detected in the inside of a MIL-

101(Cr) NP by EDS, its peak is less intense, while the Cr contribution is clearly 

represented (Figure 7.6a). The EELS line scan of 1, which corresponds to the cross-

linked asymmetric PI (P84
®
) support (Figure 7.5c), and the EDS spectrum (Figure 

7.6b) evinces neither the presence of Pt nor that of Cr but only confirms the 

presence of C, as expected. 

 

Figure 7.5: a) and b) STEM images of the LS-TFN lamella that illustrate the LS film of MIL-101(Cr) NPs in 

between the polymer system (PI at the bottom, PA at the top): a) the elements that constitute the FIB lamella imaged 

by STEM are indicated as a, b, c, d and e; b) magnified area from a). 1, 2 and 3 indicate the areas where EELS and 

EDS spectra (represented in c)) have been recorded. 
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Figure 7.6: a) STEM image of the LS-TFN lamella and EDS spectra of the area analyzed in the rectangle, that 
corresponds to the inside of a MIL-101(Cr) NP; b) STEM image of the LS-TFN lamella and EDS spectra of the 
area analyzed in the rectangle, that corresponds to the cross-linked asymmetric PI (P84®) support. 

Moreover, the thickness of the LS-MIL-101(Cr) monolayer was measured using 

Figure 7.5a, Figure 7.5b and Figure 7.6, being 60-110 nm that is in good agreement 

with our filler particle size. The LS-MIL-101(Cr) monolayer in combination with 

the polyamide thin layer was also measured, being 130-275 nm. The polyamide 

nanocomposite layer thickness is in good agreement with the findings reported by 

Lind et al.162 (100-300 nm) and Van Goethem et al.268 (100-200 nm). 

AFM images of LS-P84, TFC, LS-TFN and conventional TFN membranes are given 

in Figure 7.7 and Figure 7.8, and the corresponding Ra and RMS values are 

presented in Table 7.3. In particular, the RMS parameter is more sensitive to big 

peaks and valleys. The surface topography of the bare cross-linked asymmetric PI 

(P84
®
) support (Figure 7.7a and Figure 7.7b) inspected by AFM was used as a 

reference to characterize the changes in roughness and morphology in comparison 

with the rest of the composite membranes, especially focusing on the samples 

containing the MOF. All the membranes were analyzed before any DMF post-

treatment; therefore, they will show rougher surfaces than after having been 

tested in the OSN experiments. Compared to the bare cross-linked asymmetric PI 

(P84
®
) support (Ra = ±2.1) (Figure 7.7a, b), the characteristic ridge and valley PA 

surface in TFC membranes increases the membrane roughness (Ra = ±24.8) (Figure 

7.8a), and so does the LS-MIL-101(Cr) film procedure in LS-P84 membranes (Ra = 
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±50.6) (Figure 7.7c, d). Interestingly, when adding the thin PA layer to form the LS-

TFN membrane, the Ra value decreases considerably down to ±47.0 and its surface 

becomes smoother (Figure 7.8b). On the other hand, the increase in roughness 

when comparing the TFC with the two TFN membranes is enough to provoke an 

enhancement in the membrane permeance, as it will be showed in due course, but 

it is not too marked so as to harm rejection and produce a defective membrane.299  

 

Figure 7.7: a) 3D and b) 2D AFM images of the bare cross-linked asymmetric PI (P84®) support; c) 3D and d) 2D 

AFM images of the LS film of MIL-101(Cr) NPs on the cross-linked asymmetric PI (P84®) support (LS-P84). 

Upon comparing Ra and RMS values of LS-TFN and conventional TFN membranes 

(Table 7.3), the LS-TFN membrane has the smoothest and homogeneous surface. 

AFM images of a conventional TFN membrane (Figure 7.8c) show a random 

distribution of MIL-101(Cr) NPs in the PA layer in comparison with LS-TFN 

membranes, due to the absence of a well-formed MOF monolayer that it has been 

clearly formed in the LS-TFN membrane. 

 

Figure 7.8: AFM images of the surface of a) TFC membrane; b) LS-TFN membrane and c) conventional TFN 
membrane. 
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Table 7.3: Mean surface roughness (Ra) and root mean square (RMS) values of the cross-linked asymmetric PI 

(P84®) support, LS-P84, TFC, LS-TFN and conventional TFN membranes. Each value was calculated from 3 images 

taken from 4 µm2 of different substrates. 

 
Cross-linked asymmetric PI 

(P84®) support 
LS-P84 TFC LS-TFN 

Conventional 

TFN 

Ra (nm) 2.1 ± 0.0 50.6 ± 1.2 24.8 ± 1.7 47.0 ± 0.2 52.7 ± 0.6 

RMS (nm) 2.7 ± 0.1 62.8 ± 0.1 30.7 ± 1.2 57.5 ± 1.7  64.7 ± 0.2 

7.2.-OSN results 

Figure 7.9 shows the performance of TFC, LS-TFN and conventional TFN 

membranes in terms of the MeOH/dye system (Figure 7.9a) and rejection (Figure 

7.9b) when using SY (in orange) or RB (in pink) as solutes. The membranes were 

reproducible with relatively small errors (obtained by averaging the performance 

of two different membranes) in the permeance and rejection values. Regardless of 

the solute used, it should be noted that permeance was markedly higher for the LS-

TFN membranes than for the TFC and conventional TFN membranes. Nevertheless, 

there are several differences related with the type of solute and the type of 

membrane (a membrane with fillers organized in a monolayer (LS-TFN), with 

inhomogeneously distributed fillers (conventional TFN) or without fillers (TFC)). 

Focusing exclusively on SY, the methanol permeance for the TFC, LS-TFN and 

conventional TFN membranes is surprisingly high (from 7.5 ±0.7 to 10.1 ±0.5 and 

7.7 ±1.1 L·m-2·h-1·bar-1, respectively) with steady and high SY rejections greater 

than 90% for all membranes (from 94.0 ±6.4 to 91.1 ±0.9 and 97.8 ±0.8, 

respectively). The overall OSN results reported here are among the highest for 

MeOH permeance to date, only improved by Peyravi et al.169 using functionalized 

TiO2 nanoparticles and obtaining a methanol permeance of 25.2 L·m-2·h-1·bar-1 and 

a rejection of 93% for crystal violet. Our results show a marked improvement even 

compared with the TFC and TFN membranes in which MOF NPs are used as fillers, 

like the MIL-101(Cr)-conventional TFN membranes designed by Sorribas et al.,9 

measured in a cross-flow unit for MeOH/styrene oligomers system, and the 

Echaide-Gorriz et al.144,202 ones, whose OSN performance was measured in a dead-

end module, filtrating MeOH with SY as the solute. Conversely, in these two cases, 

DMF was used to prepare the dope solution for the membrane casting and as the 

activating solvent instead of using DMSO. The MeOH permeance for TFC and TFN 

membranes was 1.5 ±0.1 and 3.9 ±0.3 L·m-2·h-1·bar-1, respectively, for Sorribas et 

al.9, and 3.3 ±0.9 to 3.9 ±1.0 L·m-2·h-1·bar-1, respectively, for Echaide-Gorriz et 

al.144,202. Styrene oligomers and SY rejection were higher than 90% in all cases. 
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Figure 7.9: OSN performance at 20 bar and 20 °C: a) permeance of methanol for TFC, LS-TFN and conventional 

TFN membranes and b) rejection of solutes for LS-TFN and TFC membranes. Orange polygons correspond to Sunset 

yellow (SY, 450 Da) and pink ones correspond to Rose bengal (RB, 1017 Da). 

Regarding the RB OSN experiments, the rejection values were very satisfactory, 

being > 96% for all membranes, and the MeOH permeance increased significantly 

in the LS-TFN membranes compared to the TFC membranes, from 6.0 ±0.7 to 9.5 

±2.1 L·m-2·h-1·bar-1, respectively. Due to the fact that the superior OSN 

performance of LS-TFN membranes in the MeOH/SY system have been 

demonstrated, conventional TFN membranes were not subjected to the 

nanofiltration of the larger solute RB. Finally, it is noteworthy that regardless of 

the solute used, the LS-TFN membranes showed an exceptional membrane 

performance with the highest MeOH permeance reported so far, with a minor loss 

in the already high rejection of the two solutes used: smaller SY (450 Da) and 

larger RB (1017 Da). The higher roughness in LS-TFN and conventional TFN 

membranes compared to TFC membranes could facilitate the MeOH permeance 

due to an increase in the effective membrane surface area, without altering the 

solute rejection. Moreover, the large pores and cavities of the MOF MIL-101(Cr) NP 

used as fillers, their hydrophilic nature, and the LS-MIL-101(Cr) layout forming a 

monolayer with no MOF agglomerates, contribute to their remarkable MeOH 

permeance. Additionally, the absence of obstacles (other MOF NPs) that can hinder 

the MeOH permeance through the MOF pore system as they are organized in a thin 

monolayer, and the controlled localization of the MOF NPs over practically the 

total surface of the support, make the LS-TFN membranes more effective and 

suitable for OSN performance than conventional TFN membranes. 
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8.-Summary and conclusions 

This PhD thesis entitled “Development of thin film composite membranes based 

on metal-organic frameworks and graphene for its application in nanofiltration”, 

was carried out at the Catalysis, Molecular Separations and Reactor Engineering 

Group (CREG), which belongs to the Chemical and Environmental Engineering 

Department (IQTMA) and the Nanoscience Institute of Aragón (INA) of the 

University of Zaragoza and the Aragon Materials Science Institute (ICMA, 

University of Zaragoza-Spanish National Research Council). Specifically, this thesis 

was developed in the part of the CREG currently focused on the synthesis, 

modification and characterization of nanostructured materials and hybrid 

membranes for their application in various fields such as: gas separation, 

membrane reactors, pervaporation, heterogeneous catalysis, encapsulation and 

controlled released of additives and nanofiltration. 

It is worth mentioning that this PhD thesis has been possible thanks to the 

“Ayuda para contratos predoctorales para la formación de doctores 2014” founded 

by the Ministry of Science, Innovation and Universities as well as the following 

projects, to which their financing is appreciates: 

 “Catalysis, Molecular Separations and Reactor Engineering (CREG)” 

(Government of Aragón (DGA) and European Social Fund (FSE)) 

 “Development and application of metal-organic porous materials (MOF)” 

(MAT2010-15870, Spanish Ministry of Economy and Competitiveness 

(MINECO)) 

 “Innovation in MOF for energetic and environmentally efficiency 

applications: nanofiltration and catalysis in biorefineries” (MAT2013-

405546-R, MINECO) 

 “Advanced in hollow fiber membranes based on MOF and graphene 

focused on efficient processes” (MAT2016-77290-R, MINECO and the 

European Regional Development Fund (ERDF)) 

In order to enhance the quality of this thesis, a stay of three and a half months 

(September-December 2016) has been carried out at The University of Manchester 

in the School of Chemical Engineering & Analytical Science and under the 

supervision of Dr. Patricia Gorgojo. This stay was founded by the Ministry of 

Science, Innovation and Universities through the “Ayudas a la movilidad 

predoctoral para la realización de estancias breves en centros de I+D”. 

The results presented in this thesis have led to the following publications 

corresponding to chapters 4, 6 and 7, respectively: 

1.-L. Paseta, M. Navarro, J. Coronas, C. Téllez, “Greener Processes in the 

Preparation of Thin Film Nanocomposite Membranes with Diverse Metal-Organic 

Frameworks for Organic Solvent Nanofiltration”, Journal of Industrial and 

Engineering Chemistry, 2019, DOI: https://doi.org/10.1016/j.jiec.2019.04.057 
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2.-L. Paseta, D. Antorán, J. Coronas, C. Téllez, “Polyamide/Metal-Organic 

Framework Bilayered Thin Film Composite Membranes for the Removal of 

Pharmaceutical Compounds from Water”, Ind. Eng. Chem. Res, 2019. 58, 4222-

4230. DOI: 10.1021/acs.iecr.8b06017DOI: 10.1021/acs.iecr.8b06017 

3.-M. Navarro, J. Benito, L. Paseta, I. Gascón, J. Coronas, C. Téllez, “Thin Film 

Nanocomposite Membrane with the Minimun Amount of MOF by the Langmuir-

Schaefer Technique for Nanofiltration”, ACS Appl. Mater. Interfaces, 2018, 10, 

1278-1287. DOI: 10.1021/acsami.7b17477 

Also, the results of chapter 5 are in elaboration for publication: 

1.-L. Paseta, J. M. Luque-Alled, P. Gorgojo, J. Coronas, C. Téllez, “GO-based Thin 

Film Nanocomposite Membranes for Organic Solvent Nanofiltration”.   

Finally, it should be noted that, although it is not explicitly included in this thesis 

book, the doctoral student has carried out research related to the composite and 

polyamide nanocomposite membranes that have led to the following two 

publications: 

1.- J. Sánchez‐Laínez, L. Paseta, M. Navarro, B. Zornoza, C. Téllez, J. Coronas, 

“Ultrapermeable Thin Film ZIF-8/Polyamide Membrane for H2/CO2 Separation at 

High Temperature without Using Sweep Gas”, Adv. Mater. Interfaces, 2018, 5, 

1800647. DOI: https://doi.org/10.1002/admi.201800647 

2.-L. Sarango, L. Paseta, M. Navarro, B. Zornoza, J. Coronas, “Controlled 

Deposition of MOFs by Dip-Coating in Thin Film Nanocomposite Membranes for 

Organic Solvent Nanofiltration”, J. Ind. Eng. Chem., 2018, 59, 8-16. DOI: 

https://doi.org/10.1016/j.jiec.2017.09.053 

8.1.-Summary 

Metal-organic frameworks (MOFs) with exceptional characteristics (surface area, 

adsorption capacity, molecular sieving, flexibility, organic-inorganic character and 

possibility of functionalization) and graphene derivatives with extraordinary 

electrical, mechanical and thermal properties, can be considered advanced and 

nanotechnological materials that are candidates to improve the features of 

materials in today’s society. 

In last years, membrane technologies have emerged as a separation process more 

efficient from the energy and environmental point of view than other separation 

processes. Within this technology, nanofiltration (with a rejection molecular size 

up to 2 nm) has gained a great relevance for its application in both aqueous and 

non-aqueous (“organic solvent nanofiltration”, OSN) media, thanks to the 

advantages its offers over other more traditional separation processes like 

distillation or reverse osmosis. 

The membranes most commonly used in nanofiltration are thin film composite 

(TFC), the most researched being those formed by a thin layer of polyamide (PA) 
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supported on a polyimide support. Although, thin film nanocomposite (TFN) 

membranes have appeared as an important competitor. These membranes offer 

performance improvements, increasing the permeance (without sacrificing 

rejection) thanks to the introduction of nanoparticles during the thin film layer 

synthesis. 

In this context, the aim of this thesis is to progress in this kind of membranes 

with the use of MOFs and graphene derivatives in such a way they optimize the 

nanofiltration processes. Specifically, it aims to: a) develop processes for the 

preparation of TFC and TFN membranes more respectful with the environment; b) 

prepare novel TFN membranes with MOF; c) functionalize graphene oxide to make 

it more compatible with polyamide in TFN membranes; d) control the MOF 

positioning in a polyamide TFN membrane. The prepared membranes are 

characterized by different techniques such as X-ray diffraction (XRD), scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), attenuated 

total reflection Fourier transform infrared spectroscopy (ATR-FTIR), atomic force 

microscopy (AFM), among others. Finally, the synthesized membranes will be 

applied to nanofiltration for the recovery of organic solvents and the removal of 

pharmaceuticals from water. Next, it is briefly described what has been done in 

this thesis. 

The main drawback in the fabrication of TFC and TFN membranes is that the 

polymer necessary to prepare the support is usually soluble in highly toxic organic 

solvents such as N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) 

or N,N-dimethylacetamide (DMAc). Moreover, the post-treatment applied to TFC 

and TFN membranes to improve their performance is made with DMF. 

Nowadays, the growth of environmental awareness and the laws for the 

protection of the environment increasingly restrictive are leading in the 

development and implementation of the so-called “green chemistry”, whose 

principles are focused on the reduction or elimination of hazardous substances in 

the chemical products and processed design. In order to develop greener 

membrane fabrication process, in this thesis DMF has been replaced by another 

less toxic solvent like DMSO in the preparation of the “casting” solution. Besides, to 

verify the interchangeability of both solvents in the membrane activation process, 

TFC membranes post-treated with both solvents has been characterized showing 

minimal differences. The same happens with the results obtained in the application 

of the membranes in OSN, where even higher permeances have been obtained with 

the TFC membrane post-treated with DMSO. This effect has been related with it 

higher roughness. 

To extend the solvent interchangeability concept, TFN membranes with ZIF-8 as 

filler have been used in OSN. The same effect as in the TFC membranes has been 

observed. Consequently, DMSO has been used in the rest of the thesis. 
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As discussed above, TFN membranes offer improvements in relation to TFC 

membranes. In this thesis, three MOFs: ZIF-8, ZIF-93 and UiO-66, and a graphene 

derivative, rGO-ODA, have been used as filler. In the case of MOFs, the best results 

have obtained using as filler UiO-66 and ZIF-93, with a permeance of 11 L·m-2·h-

1·bar-1 for both MOF, a 57% higher than that obtained with TFC membrane, in the 

nanofiltration of SY in MeOH. This permeance improvement was linked to MOF 

porosity, thin layer thickness and hydrophilic/hydrophobic membrane character. 

For UiO-66, the rejection obtained is a bit lower due to its higher pore size and the 

worse compatibility between this and polyamide (PA). On the other hand, the use 

of rGO-ODA as filler gave improvements in the consecutive nanofiltration of three 

solutions of dyes in ethanol: Acridine Orange (AO), Sunset Yellow (SY) and Rose 

Bengal (RB), thanks to the simultaneous presence of polar and non-polar in rGO-

ODA together with the creation of gaps between this and PA. The enhancement 

most important was obtained by using a 0.06% (w/v) of filler, going from 2.8, 3.4 

and 3.7 L·m-2·h-1·bar-1 for AO, SY and RB, respectively, with TFC membrane to 4.3, 

4.6 and 6 L·m-2·h-1·bar-1 with TFN membranes. The rejection for these two last 

dyes was maintained over 98%, whereas for AO, the rejection is around 76%. The 

smaller size of this dye and the possible creation of gaps during the PA synthesis 

due to the filler presence explain this lower rejection. 

Among the factors that affect the permeance of TFC and TFN membranes is the 

selective layer thickness. The smaller the thickness, the greater the permeation. 

One of the difficulties in the TFN membrane synthesis is to keep aforesaid 

thickness controlled, which implies having to use nano-sized particles which have 

more tendency to agglomerate. The appearance of agglomerates during the 

synthesis of the selective layer may results in the formation of defects and 

therefore, a decrease in the membrane performance. As a solution of this problem 

in this thesis, membranes have been fabricated through two techniques that allow 

controlling the nanoparticles positioning: MOF interfacial synthesis and the 

application of the Langmuir-Schaefer technique. 

MOF Interfacial synthesis is based on the same principle that interfacial 

polymerization: the reaction between two reactants (MOF precursors) in the 

interface of two immiscible solvents, in particular, between the metallic salt 

dissolved in water and the organic linker in octanol. Through this technique, it was 

possible to synthesize layers of two MOFs over a P84® support in a reaction time of 

1 min: HKUST-1 and ZIF-93. Afterwards, a selective polyamide layer was 

synthesized over the MOF layer by interfacial polymerization (PA/HKUST-1 and 

PA/ZIF-93). These membranes were applied to the removal of emerging 

micropollutants present in water, a problem with negative effects not only on the 

environment, but also on animal and human health. Particularly, it was studied the 

removal of two pharmaceuticals: diclofenac and naproxen. For comparison, TFC 

and TFN (using HKUST-1 and ZIF-93 as filler) membranes were also used for this 

purpose. The highest permeances, with a rejection over 98% for both 
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pharmaceuticals, were recovered by the membranes synthesized by interfacial 

synthesis. The most important enhancement was achieved with PA/HKUST-1 BTFC 

(bilayered thin film composite) membrane, with a permeance of 33.1 L·m-2·h-1·bar-

1 in the nanofiltration of diclofenac and 24.4 L·m-2·h-1·bar-1 in naproxen 

nanofiltration. These permeances corresponding to a permeance increase with 

respect to TFC membrane of 386% and 476% for diclofenac and naproxen, 

respectively. Membrane characterization indicated that these permeance 

improvements are linked to the final layer thickness, the MOF porosity, the 

membrane hydrophilicity and its roughness. Besides, the stability of PA/HKUST-1 

BTFC and TFC membranes were tested by the application of both in three 

consecutive nanofiltration cycles of diclofenac in water. The higher hydrophilicity 

of the PA/HKUST-1 BTFC membrane provides it antifouling properties, which 

translates into a lower permeance decrease due to the fouling between cycle and 

cycle in comparison with TFC membrane. 

In the case of Langmuir-Schaefer technique, reported for the first time in this 

work for the fabrication of composite membranes for nanofiltration, a monolayer 

or the nanoparticle of interest (in this case the MOF MIL-101(Cr)) is first generated 

on a liquid surface. Later, this is deposited by chemi or physisorption on the 

polymeric support. Once the correct deposition of the MIL-101(Cr) monolayer was 

corroborated by different characterization techniques, a selective polyamide layer 

was synthesized on this one. The obtained membrane was applied to the 

nanofiltration of two different solutions: SY and RB in methanol. With both dyes, 

an improvement in the permeance was achieved with these synthesized 

membranes in comparison with TFC membranes, from 7.5 to 10.1 L·m-2·h-1·bar-1 

for SY and from 6 to 9.5 L·m-2·h-1·bar-1 for RB. This permeance enhancement is due 

to the large pore size of MIL-101 (Cr), its hydrophilicity and the formation of a 

MOF monolayer without the presence of agglomerates. 

In conclusion, more environmentally-friendly membrane preparation processes 

have been developed and an important progress has been made with novel thin 

film nanocomposite membranes based on MOFs and graphene derivatives which 

have been more efficient in the nanofiltration of organic solvents and drug aqueous 

solutions. 

8.2.-Conclusions 

In this PhD thesis, significant advances have been made in the preparation of thin 

film nanocomposite membranes based on metal-organic frameworks (MOFs) and 

graphene derivatives to improve the separation by nanofiltration of several 

mixtures, including organic solvents with dyes and aqueous solutions with drugs.  

In Figure 9.1, it is shown a summary graph with the results obtained by applying 

the membranes synthesized in this thesis in nanofiltration. These results are 

shown as the ratio between the permeation obtained with the synthesized 

membranes and that corresponding to the TFC membrane. As can be seen, in all 
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cases this ratio is greater than 1, that is, the synthesized membranes have 

improved the performance of the TFC membrane. 

Next, the main conclusions of chapter 4, 5, 6 and 7 are shown in detail. 

8.2.1.-Greener Processes in the Preparation of Thin Film 

Nanocomposite Membranes with Diverse Metal-Organic Frameworks 

for Organic Solvent Nanofiltration 

 It was possible to change the DMF by another less toxic solvent such as 

DMSO, both in the casting solution and in the activation post-treatment in 

the fabrication of TFC membranes. The characterization of the TFC 

membranes post-treated with one and another solvent showed very few 

differences. In the results obtained when these membranes were applied 

in the nanofiltration of SY in methanol, greater permeance was obtained 

with the membrane post-treated with DMSO, which was related to its 

slightly higher roughness as shown by AFM characterization. 

 The alternative solvent was also verified in TFN membranes using ZIF-8 

as filler. These membranes were applied to the nanofiltration of SY in 

methanol, showing the same trend as in the case of TFC membranes: 

slightly higher permeances using DMSO as activating solvent. This allows 

concluding the interchangeability of both solvents in the preparation of 

TFC and TFN membranes. 

 TFN membranes were successfully synthesized using ZIF-8, UiO-66 and 

ZIF-93 as fillers. The last one was used for the first time that it is used as 

filler in TFN membranes. 

 The MOF presence in the polyamide layer as well as the maintenance of its 

structure were verified by different techniques like XPS, ATR-FTIR and 

SEM, among others. 

 Hansen solubility parameters allowed to predict the polyamide/MOF 

interactions.  

 The application of the synthesized membranes in the nanofiltration of SY 

in methanol showed an increase of the permeance in comparison with 

TFC membranes thanks to the combination of diverse factors such as the 

MOF porosity, the PA-MOF layer thickness and the 

hydrophilic/hydrophobic membrane character. The highest increase was 

achieved with the incorporation of UiO-66 and ZIF-93, being both 2.3 

times higher than with the TFC membrane (Figure 8.1). 

 The MOF pore size and the kinetic diameter of the solvents were key 

elements to elucidate the permeance of pure solvents through the TFN 

membrane studied here. 
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8.2.2.-GO-based Thin Film Nanocomposite Membranes for Organic 

Solvent Nanofiltration 

 TFN membranes based on graphene derivatives were applied for the first 

time in organic solvent nanofiltration. 

 The correct functionalization of GO with ODA and subsequent reduction 

for obtaining rGO-ODA was confirmed by ATR-FTIR, XRD and Raman. This 

functionalization led to nanocomposites based on graphene more 

hydrophobic than GO, and therefore, more easily dispersible in the 

organic phase of the interfacial polymerization reaction carried out for the 

production of polyamide TFN membranes. 

 The characterization by TEM and Raman of a piece of rGO-ODA detached 

during TFN membrane preparation allowed to verify the existence of rGO-

ODA in the polyamide layer and confirm its correct incorporation and the 

maintenance of its structure during the polyamide layer synthesis.  

 The presence of polar and non-polar groups in rGO-ODA together with the 

existence of microdefects between the filler and the polyamide layer 

produced a permeance increase in the nanofiltration of AO, SY and RB 

dissolved in ethanol in comparison with TFC membrane. The best results 

were achieved using a 0.06% w/v of rGO-ODA, with a permeation 1.5 

times higher in the case of the AO and 1.4 permeation for both SY and RB 

compared to the TFC membrane (Figure 8.1). 

8.2.3.-Polyamide/MOF Bilayered Thin Film Composite Membranes for 

the Removal of Pharmaceutical Compounds from Water 

 Layers of the MOF ZIF-93 and HKUST-1 were successfully synthesized by 

interfacial synthesis on a polymeric support, the layer of HKUST-1 being 

more homogeneous and continuous than that of ZIF-93. 

 The formation of a selective thin layer of polyamide on the MOF layer by 

interfacial polymerization was corroborated by SEM. Thus, novel 

bilayered thin film composite membranes were prepared (PA/MOF 

BTFC). 

 The characterization by ATR-FTIR of the PA/MOF BTFC membranes 

permitted to confirm the maintenance of the MOF structure during the 

interfacial polymerization process. 

 The prepared membranes were applied to the removal of drugs in 

aqueous solutions with better results than those reported in literature. 

 In comparison with TFC and TFN membranes, PA/MOF TFC membranes 

exhibited higher permeances in the nanofiltration of aqueous solutions of 

diclofenac and naproxen. The characterization techniques used (SEM, 

AFM and contact angle) showed that this enhancement was due to the 

MOF porosity, the membranes hydrophilicity, the lowest thickness of the 

polyamide layer and the higher roughness of the PA/MOF BTFC 
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membranes. The best results were obtained with the PA / HKUST-1 BTFC 

membrane with a permeation 4.9 times that obtained with the TFC 

membrane in the case of diclofenac and 3.6 in that of naproxen (Figure 

8.1). 

 Naproxen, with regard to diclofenac, showed a better affinity with 

membrane surface according to Hansen solubility parameters, which 

explained the achievement of lower permeances. 

 This work has achieved the highest permeance enhancements with 

respect to the pure polymer as compared to the results obtained in the 

literature with analogous membranes. 

 The greater hydrophilicity of the PA/HKUST-1 membrane provided anti-

fouling properties to the membrane, which translated into a lesser 

decrease in permeance from cycle to cycle due to fouling as compared to 

TFC membranes. 

8.2.4.-Thin Film Nanocomposite Membrane with the Minimum 

Amount of MOF by the Langmuir-Schaefer Technique for 

Nanofiltration 

 It was possible to transfer a monolayer of MIL-101(Cr) on P84® support 

through the Langmuir-Schaefer technique. The verification of the correct 

deposition and homogeneity of the monolayer was carried out by 

different characterization techniques like XPS, STEM and FID, among 

others. 

 On this monolayer, a polyamide layer was successfully synthesized by 

interfacial polymerization as shown in the SEM images. 

 The prepared membrane was used in the nanofiltration of SY and RB in 

methanol, obtaining a great permeance enhancement as compared to TFC 

membranes (1.4 times higher for the SY and 1.6 times for the RB (Figure 

8.1)) whereas the rejection was kept over 90%. This was due to the MOF 

porosity, its hydrophilic nature and the absence of agglomerates.  

 This methodology allowed the formation of a continuous, homogeneous 

and defect-free MOF films using the lowest amount of MOF reported to 

date: 3.8 µg·cm-2. 
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Figure 8.1: Summary graph of the results obtained by applying the synthesized membranes in 
nanofiltration, where TFN refers to the TFN membranes themselves, to the PA/MOF and to those synthesized 
by the Langmuir-Schaefer technique. Different solutes (SY: Sunset Yellow, AO: Acridine Orange, RB: Rose 
Bengal, DCL: diclofenac and NAP: naproxen) and solvents (MeOH: methanol, EtOH: ethanol and water) have 
been used in the nanofiltration. 
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9.-Conclusiones 

En esta tesis, se han conseguido avances significativos en la preparación de 

membranas nanocompuestas de película delgada basadas en materiales metal-

orgánico porosos (MOF) y derivados del grafeno para la mejora de la separación 

mediante nanofiltración de diversas mezclas, entre las que se incluyen disolventes 

orgánicos con colorantes y disoluciones acuosas con fármacos. 

En la Figura 9.1, se muestra una gráfica a modo de resumen con los resultados 

obtenidos al aplicar las membranas sintetizadas en esta tesis en nanofiltración. 

Estos resultados se muestran como el ratio entre la permeación obtenida con las 

membranas sintetizadas y la correspondiente a la membrana TFC. Como se puede 

observar, en todos los casos este ratio es mayor que 1, es decir, las membranas 

sintetizadas han conseguido mejorar el rendimiento de la membrana TFC. 

A continuación, se muestran en detalle las principales conclusiones extraídas de 

los capítulos de resultados 4, 5, 6 y 7. 

9.1.-Procesos más ecológicos en la preparación de membranas 

nanocompuestas de película delgada con diferentes MOF para 

la nanofiltración de disolventes orgánicos 

 Es posible intercambiar la DMF por un disolvente menos tóxico como el 

DMSO, tanto en la disolución de “casting” como en los postratamientos de 

activación en la fabricación de membranas TFC. La caracterización de las 

membranas TFC tratadas con uno y otro disolvente mostraron muy pocas 

diferencias. En los resultados obtenidos al aplicar estas membranas en la 

nanofiltración de SY en MeOH se obtuvo incluso un flujo mayor con la 

postratada con DMSO, lo que puede estar relacionado con su rugosidad 

ligeramente mayor como demuestra la caracterización mediante AFM.  

 La sustitución de disolventes se verificó también en membranas TFN 

utilizando como relleno ZIF-8. Estas membranas se aplicaron a la 

nanofiltración de SY en MeOH, observándose la misma tendencia que en el 

caso de las membranas TFC: flujos algo mayores utilizando como 

disolvente de activación DMSO. Esto permite concluir la 

intercambiabilidad de ambos disolventes en la preparación de 

membranas TFC y TFN. 

 Se han sintetizado con éxito membranas TFN utilizando como rellenos 

ZIF-8, UiO-66 y ZIF-93. Este último es la primera vez que se utiliza como 

relleno en membranas TFN. 

 La presencia de los MOF en la capa de poliamida así como la conservación 

de su cristalinidad se verificó mediante diferentes técnicas como XPS, 

FTIR-ATR y SEM entre otras. 

 Los parámetros de solubilidad de Hansen permiten predecir las 

interacciones MOF/polímero. 
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 La aplicación de las membranas TFN en la nanofiltración de SY en MeOH 

mostró un aumento de flujo en comparación con el obtenido con la 

membrana TFC gracias a la combinación de diversos factores como la 

porosidad de los MOF, el espesor de la película PA-MOF y el carácter 

hidrófilo/hidrófobo de estas. El mayor aumento se obtuvo con la 

incorporación de UiO-66 y ZIF-93, siendo para ambos 2.3 veces mayor que 

con la membrana TFC (Figura 9.1). 

 Las dimensiones del poro del MOF y el tamaño del disolvente fueron clave 

para elucidar la permeación de diferentes solventes puros a través de una 

membrana TFN. 

9.2.-Membranas nanocompuestas de película delgada basadas 

en derivados del grafeno para la nanofiltración de disolventes 

orgánicos 

 Por primera vez se han aplicado a la nanofiltración de disolventes 

orgánicos membranas TFN basadas en derivados del óxido de grafeno. 

 La correcta funcionalización del GO con ODA y posterior reducción para la 

obtención de rGO-ODA se ha confirmado mediante FTIR-ATR, XRD y 

Raman. Esta funcionalización ha conducido a nanocompuestos basados en 

grafeno, más hidrófobos que el GO, y por lo tanto, más fácilmente 

dispersables en la fase orgánica de la reacción de polimerización 

interfacial (IP) llevada a cabo para producir membranas de poliamida 

TFN. 

 La caracterización mediante TEM y Raman de un trozo de película de 

PA+rGO-ODA desprendido durante la fabricación de una membrana TFN 

permitió comprobar la presencia del rGO-ODA en la capa de poliamida y 

confirmar así tanto su correcta incorporación como la conservación de su 

estructura durante la síntesis de la capa selectiva de poliamidad. 

 La presencia de grupos polares y apolares en el rGO-ODA junto con la 

presencia de microdefectos entre el relleno y la poliamida produjeron un 

aumento de flujo en la nanofiltración de AO, SY y RB disueltos en EtOH en 

comparación con las membranas TFC. Los mejores resultados se 

obtuvieron utilizando un 0.06% masa/volumen de rGO-ODA, con una 

permeación 1.5 veces mayor en el caso del AO y de 1.4 tanto para SY como 

para RB en comparación con la membrana TFC (Figura 9.1). 

9.3.-Membranas compuestas de película delgada bicapa 

PA/MOF para la eliminación de fármacos en agua 

 Se ha conseguido sintetizar correctamente por síntesis (cristalización) 

interfacial una capa de los MOF ZIF-93 y HKUST-1 sobre un soporte 
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polimérico, siendo más homogénea y continua en el caso del HKUST-1 que 

del ZIF-93. 

 Mediante SEM, se ha confirmado la formación de la capa selectiva de PA 

mediante polimerización interfacial sobre la capa de MOF. Por tanto, se ha 

conseguido preparar novedosas membranas de película delgada bicapa 

(PA/MOF). 

 La caracterización de las membranas PA/MOF BTFC mediante FTIR-ATR 

ha permitido comprobar la conservación de la estructura del MOF durante 

el proceso de polimerización interfacial. 

 Las membranas preparadas se aplicaron a la eliminación de fármacos en 

disoluciones acuosas con resultados mejores que los publicados en la 

literatura. 

 En comparación con las membranas TFC y TFN, las membranas PA/MOF 

BTFC ofrecieron flujos más elevados en la nanofiltración de disoluciones 

acuosas de diclofenaco y naproxeno. Las técnicas de caracterización 

empleadas (SEM, AFM y ángulo de contacto) mostraron que esta mejora 

es debida a la porosidad del MOF, la hidrofilicidad de las membranas, el 

menor espesor de la capa de poliamida y a la mayor rugosidad de las 

membranas. Los mejores resultados se obtuvieron con la membrana 

PA/HKUST-1 BTFC con una permeación 4.9 veces la obtenida con la 

membrana TFC en el caso del diclofenaco y de 3.6 en el del naproxeno 

(Figura 9.1).  

 El naproxeno, respecto al diclofenaco, mostró una mejor afinidad con la 

superficie de la membrana según los parámetros de solubilidad de 

Hansen, lo que explica la obtención de permeaciones más bajas. 

 La comparación de los resultados obtenidos con los publicados en la 

literatura con membranas similares muestra que en este trabajo se han 

alcanzado las mejoras más altas de permeación respecto al polímero puro. 

 Se ha comprobado la estabilidad de las membranas PA/HKUST-1 BTFC y 

TFC mediante su aplicación a tres ciclos consecutivos de nanofiltración de 

diclofenaco en agua. La mayor hidrofilicidad de la membrana PA/HKUST-

1 BTFC proporciona propiedades anti-ensuciamiento a la membrana, lo 

que se traduce en una menor disminución de flujo de ciclo a ciclo debido 

al ensuciamiento. 

9.4.-Membranas nanocompuestas de película delgada para 

nanofiltración, fabricadas mediante la técnica de Langmuir-

Schaefer con la mínima cantidad de MOF 

 Se ha conseguido transferir una monocapa del MOF MIL-101(Cr) sobre 

soportes de P84® mediante la técnica Langmuir-Schaefer. La verificación 

de la correcta deposición y homogeneidad de la monocapa se ha realizado 

a través de técnicas de caracterización como XPS, STEM, FIB, entre otras. 



 

9.-Conclusiones 

   136 

 

 Sobre dicha monocapa, se ha sintetizado con éxito una capa de poliamida 

por polimerización interfacial como muestran las imágenes de SEM. 

 La membrana obtenida se ha aplicado a la nanofiltración de SY y RB en 

metanol, obteniéndose una importante mejora en el flujo en comparación 

con las membranas TFC (1.4 veces mayor para el SY y 1.6 veces para el RB 

(Figura 9.1)) gracias a la porosidad del MOF, su naturaleza hidrofílica y la 

ausencia de aglomerados, manteniendo el rechazo por encima del 90%. 

 Esta metodología, permite la formación de películas de MOF continuas, 

homogéneas y sin defectos, utilizando la cantidad de MOF más baja 

reportada hasta la fecha: 3.8 μg·cm−2. 

 

Figura 9.1: Gráfica resumen de los resultados obtenidos al aplicar las membranas sintetizadas en 
nanofiltración, donde TFN hace referencia a las membranas TFN propiamente dichas, a las PA/MOF y a las 
sintetizadas mediante la técnica de Langmuir-Schaefer. Diferentes solutos (SY: Sunset Yellow, AO: Acridine 
Orange, RB: Rose Bengal, DCL: diclofenaco y NAP: naproxeno) y disolventes (MeOH: metanol, EtOH: etanol y 
agua) se han utilizado en la nanofiltración. 
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Glosario 

AFM Microscopía de fuerza atómica (atomic force microscopy) 

AO Naranja de acridina (Acridine Orange) 

ATR Reflexión total atenuada (attenuated total reflectance) 

BDC 1,4-bencenodicarboxilato 

BET Brunauer-Emmett- Teller 

BTC 1,4-bencenodicarboxilato 

CREG Grupo de Catálisis, Separaciones Moleculares e Ingeniería de 
Reactores 

DCL Diclofenaco 

DMAc Dimetilacetamida 

DMF Dimetilformamida 

DMSO Dimetilsulfóxido 

EtOH Etanol 

FTIR Espectroscopia infrarroja por transformada de Fourier 

(Fourier transform infrared spectroscopy) 

GO Óxido de grafeno (Graphene oxide) 

HDA 1,6 hexanodiamina 

HKUST Hong Kong University of Science and Technology 

HPLC Cromatografía líquida de alta eficacia (high-performance liquid 

chromatography) 

HSP Parámetros de solubilidad de Hansen (Hansen solubility parameters) 

ICMA Instituto de Ciencias Materiales de Aragón 

INA Instituto de Nanociencia de Aragón 

IP Polimerización interfacial (interfacial polymerization) 

IPA Isopropanol 

IQTMA Ingeniería Química y Tecnologías del Medio Ambiente 

IRMOF Isoreticular MOF 

ISA Integrally skinned asymmetric 

LMA Laboratorio de Microscopías Avanzadas 

LS Langmuir-Schaefer 

MeOH Metanol 

MIL Materiaux de l’Institut Lavoisier 

MINECO Ministerio de Economía y Competitividad 



 

   162 

 

MOF Metal-organic framework 

MPD M-fenilendiamina (m-phenylenediamine) 

MWCO Molecular weight cut off 

NAP Naproxeno 

NF Nanofiltración 

NMP N-metilpirrolidona 

ODA Octadecilamina 

OSN Nanofiltración de disolventes orgánicos (organic solvent 
nanofiltration) 

PA Poliamida 

PI Poliimida 

PP Polipropileno 

PEG Polietilenglicol 

RB Rosa de Bengala (Rose Bengal) 

rGO-ODA Óxido de grafeno reducido y funcionalizado con octadecilamina. 

RO Ósmosis inversa (reverse osmosis) 

SEM Microscopia electrónica de barrido (scanning electron 

microscopy) 

SY Amarillo crepúsculo (sunset yellow) 

TEM Microscopia electrónica de transmisión (transmission electron 
microscopy) 

TFC Thin film composite 

TFN Thin film nanocomposite 

TGA Termogravimetría (Thermogravimetry) 

THF Tetrahidrofurano 

TMC Cloruro de trimesoilo (Trimesoyl chloride) 

UF Ultrafiltración 

UiO University of Oslo 

UV-Vis Ultravioleta visible 

XPS Espectroscopia fotoelectrónica emitida por rayos X (X-ray 

photoelectron spectroscopy). 

XRD Difracción de rayos X (X-ray diffraction) 

ZIF Zeolitic imidazolate framework 

 


