000106577 001__ 106577
000106577 005__ 20210902121610.0
000106577 0247_ $$2doi$$a10.1016/j.seppur.2019.115858
000106577 0248_ $$2sideral$$a114716
000106577 037__ $$aART-2020-114716
000106577 041__ $$aeng
000106577 100__ $$aAhmad M.Z.
000106577 245__ $$aHigh-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes
000106577 260__ $$c2020
000106577 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106577 5203_ $$aThe gas separation properties of 6FDA-DAM mixed matrix membranes (MMMs) with three types of zirconium-based metal organic framework nanoparticles (MOF NPs, ca. 40 nm) have been investigated up to 20 bar. Both NPs preparation and MMMs development were presented in an earlier publication that reported outstanding CO2/CH4 separation performances (50:50 vol% CO2/CH4 feed at 2 bar pressure difference, 35 °C) and this subsequent study is to demonstrate its usefulness to the natural gas separation application. In the current work, CO2/CH4 separation has been investigated at high pressure (2–20 bar feed pressure) with different CO2 content in the feed (10–50 vol%) in the temperature range 35–55 °C. Moreover, the plasticization, competitive sorption effects, and separation of the acid gas hydrogen sulfide (H2S) have been investigated in a ternary feed mixture of CO2:H2S:CH4 (vol% ratio of 30:5:65) at 20 bar and 35 °C. The incorporation of the Zr-MOFs in 6FDA-DAM enhances both CO2 permeability and CO2/CH4 selectivity of this polymer. These MMMs exhibit high stability under separation conditions relevant to an actual natural gas sweetening process. The presence of H2S does not induce plasticization but increases the total acid gas permeability, acid gas/CH4 selectivity and only causes reversible competitive sorption. The overall study suggests a large potential for 6FDA-DAM Zr-MOF MMMs to be applied in natural gas sweetening, with good performance and stability under the relevant process conditions.
000106577 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000106577 590__ $$a7.312$$b2020
000106577 591__ $$aENGINEERING, CHEMICAL$$b16 / 143 = 0.112$$c2020$$dQ1$$eT1
000106577 592__ $$a1.278$$b2020
000106577 593__ $$aFiltration and Separation$$c2020$$dQ1
000106577 593__ $$aAnalytical Chemistry$$c2020$$dQ1
000106577 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000106577 700__ $$aPeters T.A.
000106577 700__ $$aKonnertz N.M.
000106577 700__ $$aVisser T.
000106577 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez C.$$uUniversidad de Zaragoza
000106577 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas J.$$uUniversidad de Zaragoza
000106577 700__ $$aFila V.
000106577 700__ $$ade Vos W.M.
000106577 700__ $$aBenes N.E.
000106577 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000106577 773__ $$g230 (2020), 115858 [10 pp.]$$pSep. Purif. Technol.$$tSeparation and Purification Technology$$x1383-5866
000106577 85641 $$uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073647953&doi=10.1016%2fj.seppur.2019.115858&partnerID=40&md5=90f16ce6061b43c39a40128052b460be$$zTexto completo de la revista
000106577 8564_ $$s548955$$uhttps://zaguan.unizar.es/record/106577/files/texto_completo.pdf$$yPostprint
000106577 8564_ $$s1417586$$uhttps://zaguan.unizar.es/record/106577/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000106577 909CO $$ooai:zaguan.unizar.es:106577$$particulos$$pdriver
000106577 951__ $$a2021-09-02-08:40:39
000106577 980__ $$aARTICLE