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Abstract— Deep neural networks (DNNs) are increasing their
presence in a wide range of applications, and their computation-
ally intensive and memory-demanding nature poses challenges,
especially for embedded systems. Pruning techniques turn DNN
models into sparse by setting most weights to zero, offering
optimization opportunities if specific support is included. We pro-
pose a novel pipelined architecture for DNNs that avoids all
useless operations during the inference process. It has been
implemented in a field-programmable gate array (FPGA), and
the performance, energy efficiency, and area have been char-
acterized. Exploiting sparsity yields remarkable speedups but
also produces area overheads. We have evaluated this tradeoff in
order to identify in which scenarios it is better to use that area to
exploit sparsity, or to include more computational resources in a
conventional DNN architecture. We have also explored different
arithmetic bitwidths. Our sparse architecture is clearly superior
on 32-bit arithmetic or highly sparse networks. However, on 8-bit
arithmetic or networks with low sparsity it is more profitable to
deploy a dense architecture with more arithmetic resources than
including support for sparsity. We consider that FPGAs are the
natural target for DNN sparse accelerators since they can be
loaded at run-time with the best-fitting accelerator.

Index Terms— Convolutional neural network (CNN),
deep neural network (DNN), efficiency, embedded systems,
field-programmable gate array (FPGA), sparsity.

I. INTRODUCTION

DEEP neural networks (DNNs) have emerged as an out-
standing model to solve complex problems in a wide

variety of fields, such as computer vision, speech recognition,
natural language processing, or audio recognition.

Convolutional neural networks (CNNs) are one of the most
popular DNN models. Their core consists of several convolu-
tional layers where the input, called activation or feature map,
is convolved with a set of filters. The number of layers and
filters, and the size of the activations turn out these models
into computationally intensive and memory-demanding tasks.
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In computer vision, state-of-the-art CNNs require many mil-
lions of multiply-and-accumulate (MAC) operations to process
a single image. High-performance general purpose processors
(CPUs) and graphics processing units (GPUs) have been the
natural target to execute these models on nonbattery-dependent
systems. However, more energy-efficient architectures are
needed for embedded systems.

Previous works have demonstrated that there are several
strategies to reduce the computational and memory require-
ments of CNNs, with minimal impact on accuracy. Regarding
the arithmetic, it is feasible to move from floating point to
fixed point [1]–[3], and work with lower bitwidth [4]–[6].
Other works propose to speedup the MAC operations by
using approximated outputs [7], [8]. Regarding the size of the
models, pruning techniques force many parameters to zero,
enabling data compression and reducing the number of useful
MAC operations. This approach enables drastic reduction, both
in model size and computational workload, of DNNs, which
is essential for embedded systems.

Deep compression [4] constitutes a good reference for these
techniques. Their authors achieve network size reductions
from 35× to 49× while preserving accuracy in several pop-
ular DNNs (AlexNet, VGG, and LeNet) by using pruning,
quantization, and compression. Another relevant reference is
SqueezeNet [9]. In this study, the authors present a CNN
with 50× fewer parameters than AlexNet with no loss in
accuracy. Again, this result is achieved by using pruning and
compression techniques.

Pruning techniques turn the CNNs into sparse models, and
this sparsity can be exploited by including specific support
to avoid useless operations, i.e., those ones where at least an
operand is zero.

Although the benefits of these techniques are proved,
they also introduce some challenges that must be care-
fully addressed in order to minimize their overhead. Com-
pression requires support to manage the irregularities that
arises in addressing and sparsity demands hardware to iden-
tify useful operations. Moreover, sparsity generates random
memory-access patterns that can significantly degrade the
performance of a parallel architecture due to the memory
conflicts.

We have designed an accelerator that takes advantage of
the optimization opportunities offered by sparsity in DNNs.
Our accelerator works with compressed filters, performs only
useful operations, and retrieves only useful values from mem-
ory by identifying those operations where both operands are
different from zero. To this end, we included an additional
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data structure, called indices tensor, consisting of a single
bit per element that indicates whether that element is zero
or not. This structure allows intelligent recognition of useful
operations using simple bit operations, and compression of
data by not storing values that are zero. Moreover, we have
included specific support to reduce the memory conflicts, and
we have explored the tradeoffs in performance, area, and
energy efficiency.

The register-transfer level design of our accelerator has
been written in VHDL and has been implemented in a Xil-
inx Zynq UltraScale+ FPGA. We believe that reconfigurable
field-programmable gate arrays (FPGAs) are the natural target
for our study since in these platforms it is possible to use the
same hardware resources to implement a conventional CNN
accelerator or an accelerator with specific support for sparsity.
We have taken both performance and power measures running
two popular CNNs: AlexNet and SqueezeNet. We selected
these networks as benchmarks because pruned models are
available for the community [10], [11]. In addition, we have
used synthetic data to characterize the behavior of our accel-
erator for different sparsity ranges.

The rest of this article is organized as follows. Section II is
an overview of the related work and Section III presents our
contributions. Section IV describes the compression format
used. Section V introduces the procedure to identify the useful
operations. Section VI describes the initial architecture used as
baseline, and Section VII explains the additional architectural
support included to efficiently avoid the useless operations
and reduce the memory conflicts. Section VIII describes the
memory hierarchy and the data flow. Section IX analyzes the
scalability of the proposed architecture. Finally, Section X
evaluates the experimental results, and Section XI presents
our final conclusions.

II. RELATED WORK

A recent survey [12] analyzes the state of the art and
future directions of DNN support in ASICs and FPGAs. This
survey identifies the exploitation of sparse data as a power-
ful technique for reducing computational load and memory
requirements in DNNs. Another survey [13] states that “there
is an emerging need for the CNN-to-FPGA tools to support
compressed and sparse.” Although low or medium values
of sparsity can be found in any model, pruning techniques
are essential to build highly sparse models. Pruning was
originally proposed in [14] and [15], and, recently, many
other techniques has been proposed and studied [16]–[18].
These techniques consist in an iterative process that first
identifies those weights that can be set to zero and then
finetunes the remaining weights. Pruned models keep a similar
accuracy than the original models with fewer meaningful
parameters, allowing sparsity-based optimizations. However,
an efficient management of sparsity must overcome the loss
of regularity that arises in memory accesses. Otherwise, trying
to exploit sparsity can even negatively impact on performance
as explained in [19]. Cao et al. [20] proposed a technique
to alleviate this by applying a bank-balanced pruning method

designed to optimize the parallel execution of the pruned
model.

Some recent works have presented custom architectures for
sparse DNNs. Cnvolutin was the first accelerator to partially
avoid useless operations [21]. The authors proposed a tech-
nique to skip those operations where the value of the input
activation is zero. Han et al. [22] presented “EIE: Efficient
Inference Engine on Compressed Deep Neural Network.” This
engine manages compressed weights, and includes hardware
support to compute only useful operations in fully connected
layers. UCNN proposes a factorization technique to replace
multiplications with additions, and takes advantage of filter
sparsity [23], while SqueezeFlow [24] proposes a technique
that transforms a sparse convolution into multiple effective
and ineffective subconvolutions. After that the ineffective
subconvolutions can be eliminated. Cambricon-X [25] and
NullHop [26] are other accelerators for sparse CNNs. The first
one exploits sparsity on filters but not on activations, whereas
the second exploits sparsity on activations but not on the filters.

SCNN is a high-performance-oriented accelerator for
CNNs [27]. It includes several processors, and each of them
computes a convolution in parallel by computing the Cartesian
product. This is a very powerful approach that allows data
reuse and avoids any operation where an operand is zero.
However, this architecture requires large buffers to store partial
results, and crossbars to link the multipliers and the buffers.
As a result, their support for sparsity increases the area of
their chip by 34%, even with a 50% smaller on-chip activation
memory than their dense baseline. In terms of performance,
they achieve speedups from 2.19 to 3.52 for several popular
CNNs.

Other relevant works are Eyeriss [28] and Eyeriss v2 [29]
which are scalable architectures with hundreds of MAC units.
Eyeriss proposes to identify when any of the operands is zero
in order to gate the data path and save energy. Eyeriss v2
compress data in compressed sparse column (CSC) format and
directly operates with the compressed data. With this approach
they read only nonzero activation values. Then they look for
the corresponding weights. If the weights are zero they do not
carry out the computations in order to save energy. The only
penalty is that this may generate some bubbles in the pipeline.

In summary, only three previous designs include support to
avoid all the operations where at least one of the operands
is zero: EIE, designed for fully connected layers, SCNN,
designed for convolutional layers, and Eyeriss v2 that can
deal with both of them. Although our design supports both
fully connected and convolutional layers, we have mainly
focused on convolutional layers because they are much more
computationally intensive. Both SCNN and Eyeriss v2 are
highly parallel systems designed for high performance and
include a large amount of hardware resources whereas our
design is designed for embedded systems, where hardware
resources and power budget are very limited. Hence, our
primary goal is efficiency. In fact, our architecture reaches
almost peak performance in most situations, i.e., one useful
operation per clock cycle in each MAC processor, whereas
SCNN is very far from peak performance on highly sparse
layers. For instance, when processing convolutional layers
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four and five in AlexNet, SCNN only reaches ∼25% peak
performance [27] whereas for the same convolutions our
design reaches ∼98%. Regarding Eyeriss v2, according to
their results during the execution of AlexNet, one of our MAC
processors carries out twice the number of operations per cycle
than one of their MAC processors. This does not mean that our
design is better; we just target different problems. They try to
maximize the throughput using hundreds of MACs in parallel,
whereas our design tries to maximize the performance of an
embedded system with few MAC processors.

The evaluation methodology in all these previous works
quantifies the gains in terms of performance and energy
efficiency of their sparse architectures compared to dense
architectures with the same arithmetic resources. This analysis
is interesting, but it is not completely fair because the sparse
architectures include more hardware resources than the corre-
sponding dense architectures. In our experiments, we compare
architectures with similar area. To this end, we include addi-
tional arithmetic resources in the dense architecture. With this
approach, for a given scenario, we can identify whether it is
better to use hardware resources to exploit sparsity or to use
them to carry out more MAC operations in parallel.

Another limitation of the previous approaches is that they
use in-house high-level simulators to gather the performance
metrics. Of course, the authors have tried to develop accurate
simulators, but it is impossible to know if they are 100%
accurate since they have to model not only the accelera-
tors, but also communications, and memory accesses. In our
case, instead of using a simulator, we have implemented
our design and we have measured our performance metrics
during actual executions to guarantee that they are completely
accurate.

III. CONTRIBUTIONS

The main contributions of our work are as follows.
1) We have designed a sparse architecture that is able

to avoid all useless operations and manage filter com-
pression both for convolutional and fully connected
layers. It also includes support to reduce the impact
of the memory-bank conflicts due to the nonuniform
memory access patterns. The design has been pipelined
to improve the performance. Our architecture has been
designed for embedded systems, and its objective is
to maximize performance and reduce the energy con-
sumption on systems with limited resources. It has been
written in VHDL and is available for the community in
a GitLab repository [30].

2) We propose a dense/sparse evaluation methodology that
attempts to compare architectures with similar area
resources. To this end, we have designed a dense archi-
tecture with parameterizable arithmetic resources and for
each comparison we select the dense architecture most
similar in area to the sparse design.

3) We have implemented both designs on an FPGA and
taken performance and power consumption measure-
ments. With this approach, we can identify the tradeoffs
between sparse and dense architectures, and identify
which architecture is better for a given scenario.

Fig. 1. Compression formats example.

IV. DATA COMPRESSION

Some popular compression formats for sparse CNNs are
run length encoding (RLE), compressed sparse row (CSR)
or CSC [31]. The main idea of RLE is to store consecutive
elements of the same value as a single value and the count
of the repetitions, whereas CSC and CSR consist of two data
sets: one that stores only those values that are not zero, and
one that stores metadata to infer the remaining information
and to calculate the addresses.

Instead of these formats, we propose to use a tensor with
the same dimensions than the uncompressed data that store
a single bit per element pointing out whether they are zero
or not. Fig. 1 shows an example of these formats applied to
matrices. For the comparison, we used the variation of RLE
format proposed in [28], using 5 bits to codify the count of
consecutive zeros. Regarding the CSC/CSR formats, they are
symmetric structures, and using one or the other will be better
depending on the selected matrix representation. In our case,
CSR, using column indices and row pointers, is the one that
reaches better results. Column indices store the column of each
nonzero value, and row pointers point out the first nonzero
value of each row. Its last value is the total number of nonzero
elements.

Fig. 2 shows how these compression formats perform as a
function of the sparsity. It includes two boundaries for each
format. Upper and lower bound in CSC/CSR are calculated on
matrices of 9 × 512 with 8-bit values and 1 × 16 with 32-bit
values, respectively. We have chosen the indices tensor format
for two reasons: first, it allows hardware-friendly identifica-
tion of those operations that are useful (further discussed in
Section V). Second, it yields higher compression ratios than
the other formats for most scenarios and, in those where it
under-performs, size becomes negligible.

In our architecture, filters are compressed in order to reduce
the size of the models. It is also possible to compress the acti-
vation during inference, but it demands additional resources,
as it is generated on the fly. Moreover, since the compression
ratio is unknown at design time, memory resources should be
allocated for the worst case, so the benefits are limited and
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Fig. 2. Compression ratio comparisons.

do not justify the overhead. Our design leverages the indices
tensor also for the activation in order to take full advantage of
this compression format to identify useful operations, at the
expense of a small overhead.

V. IDENTIFYING USEFUL OPERATIONS

Our design avoids any useless operation in order to reduce
memory accesses and arithmetic computation. An efficient
identification of those useful operations relies on the compres-
sion format discussed previously. First, sections of the indices
tensor of the filter and the activation are fetched. Second,
they are matched through a bitwise and operation to find all
the pairs with two nonzero values. The main steps of this
process are described in Algorithm 1. Activation_offset stores
the position in the section where the current pair has been
found. This information is used to calculate the address of
the activation value needed. Filter_offset indicates the number
of nonzero filter values that have been skipped since the last
pair found. It is required to calculate the address of the filter
value as filters are compressed and only nonzero values are
stored. Finally, when the last pair of the fetched sections is
processed, remaining_filter_offset keeps track of the number
of remaining nonzero filter values in the section. This number
must be taken into account when computing the next filter
address.

Fig. 3 illustrates this process with a toy example. The
algorithm iteratively looks for pairs of nonzero values located
in the same section position. Notice that these nonzero values
are marked as 1. In the first iteration, the first pair is found
on the section element #3. Hence, activation_offset is 3.
Filter_offset is 1 since one nonzero filter value has been
skipped. Finally, processed elements (from #0 to #3) are
masked. In the second iteration, the same procedure applies
to the unmasked elements. Additionally, the last pair has been
found, so remaining_filter_offset reports that an additional
filter value must be skipped.

Fig. 4 depicts the hardware unit responsible for these oper-
ations. Bitwise unit carries out bitwise and operations on the
filter and activation sections, and the masks generated by mask
composer. They are both required to identify useful operations
and compute the filter offsets. The priority encoder encodes the
activation offset, i.e., the position where the current pair has
been found. Finally, two tree adders return the filter offsets.

Algorithm 1 Identification of Useful Operations Within a
Section

Fig. 3. Identification of useful operations. (a) Step one. (b) Step two.

Fig. 4. Matching unit.

VI. BASELINE: DENSE ARCHITECTURE

Assessing the benefits of exploiting sparsity in CNNs
requires a baseline to compare with. We designed a dense
accelerator for embedded systems able to exploit interfilter
parallelism, through N processing units (PUs) computing N
different filters, and intrafilter parallelism, through M multi-
pliers per PU. It also includes support for filter compression
according to the format discussed in section IV. Both input
and output activations are stored on-chip through the whole
inference process in order to reduce DRAM off-chip accesses,
and filters are retrieved from DRAM on demand with a
prefetch policy in order to hide fetch latency.
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Fig. 5. Dense architecture.

Fig. 5 depicts the architecture of our dense accelerator. Each
PU includes its own filter management and an MAC processor.
The filter management includes support to decompress filters.
The MAC processor is composed of a multiplier array, a tree
adder to reduce the multipliers output, and an accumulator.
Activation values memory is composed of two memories.
When processing even layers one stores the input activation
and the other one stores the output activation. When processing
odd layers they swap their roles. This memory is shared among
all the PUs, and there are no conflicts because all the PUs read
the same data. In the figure, the pipeline is divided into four
stages. These stages can also be internally pipelined in order
to increase clock frequency if needed.

A. Stage 1: Indices Fetch

Filter indices for the next M operations are fetched at this
stage. These indices are used at the next stage to fetch filter
values.

B. Stage 2: Values Fetch

Filter and activation values are fetched at this stage. Activa-
tion values are fetched by a global controller as they are shared
among all the PUs. Filter values demand specific addressing
for each PU because of compression. Decompressor is the
module responsible for addressing the filter memory based on
the filter indices.

C. Stage 3: MAC

Operations are performed and buffered at this stage. Filter
and activation values are retrieved, the MAC operation is
performed on MAC processor, and the value is stored in a
small buffer to avoid pipeline stalls because of writings. MAC
processor is able to carry out M multiplications in parallel and
reduce them in a single cycle through a tree adder.

D. Stage 4: Writeback

Output activation values are stored in the output activation
memory. Activation values memory is parameterized with M
banks, therefore, arbitration is required for those setups where
N > M. We implemented a fixed-priority arbitration on each
bank in order to keep hardware overhead as low as possible
because pressure on this memory is very low since there are
many computations between two consecutive writings.

Fig. 6. Sparse architecture.

Fig. 7. Pairing unit.

VII. SPARSE ARCHITECTURE

Based on our dense design, we made architectural changes
in order to include support for sparsity. Fig. 6 shows an
architectural overview of our sparse design, which is divided
into five stages. As in the dense architecture, each stage can
be internally pipelined to increase clock frequency.

A. Stage 1: Indices Fetch

Filter and activation sections are fetched at this stage.
Fetching filter indices is straightforward as they are stored
in private memories. Activation indices are stored in a shared
memory, and, therefore, access conflicts among PUs may arise.
We included a multibank Activation indices memory, and
fixed-priority arbitration for each bank. Fetching activation
indices may become a bottleneck when dealing with very
high sparsity ratios: the more sparsity the faster sections are
processed, increasing pressure on memory. We found that
including as many banks as PUs, in conjunction with a section
buffer used to prefetch the next section in advance, causes
minimal stalls while keeping hardware overhead low.

B. Stage 2: Pairing

Useful operations are identified and buffered at this stage
following the procedure explained in Section V. Fig. 7 shows
the architecture of Pairing unit. Sections buffer manager
stores the sections under processing and the next ones to
be processed. Matching unit processes both filter and acti-
vation sections and returns filter and activation offsets to
compute their values addresses. Decompressor and activation
addressing are responsible for computing the absolute memory
addresses of filter and activation values, respectively. Finally,
match buffer stores these addresses. This buffer is also useful
to reduce stalls on accesses to activation values memory. This
is further discussed in the next stage.
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TABLE I

AVERAGE CONFLICT RATIO FOR
SEVERAL CONFIGURATIONS

C. Stage 3: Values Fetch

Filter and activation values are fetched at this stage. Man-
aging accesses to the shared activation memory in our dense
design is straightforward, as every PU requests the same values
at a given time. However, this no longer applies to our sparse
design since accessing only those values that are not zero turn
regular accesses into irregular ones, and therefore arbitration
is required.

Activation values memory suffers from higher pressure
than activation indices memory. Hence, we designed a more
powerful arbitration scheme in order to prevent these accesses
to become a bottleneck. This arbiter is able to explore several
requests from each PU. These requests are stored in the match
buffer. We have included support to process the requests out
of order (multiplications can be safely reordered within a
convolution step), making grants more likely at the expense
of a low hardware overhead. Activation values arbiter grants
each PU one of the requests, if possible, in a fixed order from
PU #1 to #N , where PU #1 has the highest priority.

Fig. 8 illustrates how our arbitration works on a toy exam-
ple with four PUs. Each PU requests two addresses (i.e.,
the depth of the match buffer is two). The activation memory
is composed of four memory banks, so this memory supports
up to four simultaneous accesses as long as they target
different banks. The arbiter receives each pair of bank requests
from each PU and grants one of them if possible. Thus,
PU #1 is granted its first request (Bank #3). As a consequence,
Bank #3 is masked for the remaining PUs. PU #2 requests
Banks #3 and #1. Since Bank #3 is not available, the arbiter
grants its second request (Bank #1). This procedure is repeated
for the remaining PUs as shown in the figure.

In this example, the four PUs are granted, but this is not
always possible. We empirically searched for the best trade-
off between performance and hardware overhead exploring
different configurations between the number of banks of the
Activation values memory and the Match buffer size. As can
be observed in Table I, we found that providing the Activation
values memory with twice as banks as PUs, and setting the
depth of the Match buffer to four, i.e., the arbiter explores up
to four requests from each PU, memory access conflicts rarely
occur.

As an additional optimization, we have included support
to overlap the end of a convolution step with the beginning
of the next one. While the requests corresponding to the last
multiplications of the current convolution step are waiting
to be granted, it is possible to store requests of the first
multiplications of the next convolution step. Hence, when

Fig. 8. Activation values arbiter workflow.

a convolution step finishes, the next one can have several
requests ready for selection. This approach minimizes the
memory accesses conflicts.

D. Stage 4: MAC

Useful operations are performed and buffered at this stage.
Filter and activation values are retrieved, the MAC operation
is performed on a MAC processor, and the value is stored in
a small buffer to avoid pipeline stalls because of writings.

E. Stage 5: Writeback

This stage is similar to the corresponding stage in the dense
architecture.

VIII. MEMORY REQUIREMENTS AND DATAFLOW

The size of the memories in our design is parameterizable,
so it can be adjusted to the needs of each DNN. The memory
hierarchy of our design includes the following storage ele-
ments.

1) Off-Chip Memory: It stores all the filters of the network
and the image/s to be processed.

2) On-Chip Memory: It stores the input and output activa-
tions and the filters under processing in the following
memories.

a) Filters Memory: Each PU includes private
resources to store both the filter for the ongoing
convolution and the next one, which is preloaded to
hide the fetch latency. As depicted in Figs. 5 and 6,
the filter values and their indices are stored in two
different memories, the Filter values memory and
the Filter indices memory, respectively.

b) Activation Memory: The Activation values memory
and the Activation indices memory shown in Fig. 6
store the activation values and their indices in
two shared memories. Both of them are multi-
banked and are accessed through arbiters to prevent
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conflicts. This memory element contains both the
input and the output activation of the layer under
processing.

Regarding the dataflow: first, the image is loaded into the
activation memory, and one filter is loaded into the private
filter memories of each PU. Once the inference begins, each
PU will exploit reuse by convolving the filter across the whole
input activation. This scheme reduces bandwidth with off-chip
memory as filters are retrieved only once per inference. While
convolving a filter, another one is retrieved from the off-chip
memory in order to hide fetch latency. Each PU stores its
ongoing convolution partial results in an accumulator register.
No data is shared among PUs. Once the output of a layer has
been stored, it becomes the input activation of the next layer.

IX. SCALABILITY

Inference on CNNs is a parallel-friendly task. Many filters
are convolved in each layer, and many operations are per-
formed in each filter. Both interfilter and intrafilter parallelism
are free of data dependencies, making it suitable for a custom
hardware architecture to exploit it. This is indeed what we do
in our dense architecture, where adding PUs exploits inter-
filter parallelism, and adding multipliers to each PU exploits
intrafilter parallelism.

When exploiting sparsity, we have to deal with conflicts
in the access to the activation data memory, which requires
hardware hard to scale. Our design needs crossbars to access
multibanked activations memories, and scaling them causes
the performance-area tradeoff to plummet. Hence, our sparse
architecture must be small in order to be efficient. For that
reason, it is more suitable for embedded systems. For other
contexts, like high resolution images, there are very good
massively parallel architectures with hundreds of PEs, such
as SCNN [27] and EyerissV2 [29], whose high throughput
fits the needs of these problems.

Nonetheless, there are contexts where it is still possible
to scale the design by including several instances of our
architecture (i.e., cores) working in parallel on their own
private activation memories. For example, if several images
must be processed, they can be assigned to each of those cores.
It is also possible to assign different regions of the activation
to each core. In this case, there will be a small overlap among
the activations, and therefore some additional control hardware
would be necessary to share these overlapped data between
cores.

X. EXPERIMENTAL RESULTS

We implemented our sparse and dense designs on a Xilinx
Zynq UltraScale+ ZCU104 evaluation board [32]. This plat-
form includes a SoC with an FPGA tightly coupled with a
CPU, a real-time processor, and a GPU. In our experiments,
only the FPGA and the CPU were used. The FPGA, which
hosts our accelerators, performs all the computations, and
the CPU just manages the communications with the off-chip
memory.

Power consumption measurements were taken with a Yoko-
gawa WT210 digital power meter, a device accepted by

TABLE II

EXPERIMENTAL SETUPS WITH EIGHT PUS

standard performance evaluation corporation [33]. Our power
meter records the total consumption of the evaluation board,
which includes many unused elements. Hence, we have
removed the static power consumption from our measures,
and we have focused on the dynamic power consumed by
our design, i.e., the average difference of power consumed by
the board during idle and running states. To do this, we have
measured the energy consumption of our designs for one hour
in each state.

The purpose of our experiments is to characterize the
behavior of our designs in terms of performance, hardware
resources, and energy efficiency, as a function of the useful
operations (which depends directly on the sparsity) and the
arithmetic bitwidth. To analyze the impact of the sparsity,
we developed a set of synthetic benchmarks with a useful
operations ratio ranging from 0 to 1, i.e., we started with a
scenario where each multiplication include a zero as one of its
operands, and we progressively reduced the number of zeros
until reaching the opposite scenario, where all the operands are
different from zero. To study the impact of the bitwidth we
implemented three different versions of each design using 8,
16, and 32-bit fixed-point arithmetic. All the results in the
figures of this section are normalized to the baseline selected
in each case study.

Our experimental setup is divided into three model designs.

a) Sparse: Sparse architecture with one multiplier per PU.
b) Dense Base: Dense architecture with one multiplier per

PU.
c) Dense Equivalent: Dense architecture where the number

of multipliers per PU is selected in such a way that the
dense design is as similar as possible in area to the sparse
design.

Table II details the design parameters, hardware resources
utilization, maximum frequency, and the dynamic power con-
sumption of each setup. In our experiments all the setups
were clocked to 100 MHz. FPGAs include DSP blocks that
can be used to execute MACs, and synthesis tools map
these operations into them whereas the remaining functionality
is implemented using look-up tables (LUTs). This makes
impossible to compare ones with each other, as MACs are
implemented with a different technology than the rest of the
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Fig. 9. Speedup and energy efficiency of sparse experimental setups normalized to dense base. (a) Speedup. (b) Energy efficiency.

Fig. 10. Speedup and energy efficiency of sparse experimental setups normalized to dense equivalent. (a) Speedup. (b) Energy efficiency.

logic. Hence, we disabled DSP mapping in order to map also
the MAC processors into LUTs.

We first compared sparse and dense base models, which
include the same arithmetic resources (number of PUs, and
multipliers per PU). Hence, both designs exploit the same
degree of parallelism. We want to assess the benefits in
terms of performance and energy efficiency of including
support for sparsity, and quantify the hardware overhead
introduced.

Fig. 9(a) depicts the speedup as a function of the use-
ful operations. As all the setups are clocked to 100 MHz,
the speedup grows in inverse proportion to the percentage
of useful operations since the reason for this speedup is the
number of operations avoided, therefore the three different
arithmetics analyzed (8, 16, and 32 bits) achieve the same
speedup.

Fig. 9(b) depicts the energy efficiency as a function of the
useful operations. In the top of the figure the overhead in terms
of logic resources is presented. Unlike speedup, the energy
efficiency and the area overhead depend on the arithmetic
bitwidth. The reason is that arithmetic computations require
less logic resources and consume less energy for low bitwidth,
whereas the area and energy consumption due to the support
included for the sparsity remains the same.

Gains in performance and energy efficiency are remarkable
for highly sparse scenarios. However, achieving these results
involves a logic overhead ranging from 50% to almost 200%.
Hence, the question is: what if we provide our dense design
with similar hardware resources? Comparison between sparse
and dense equivalent models answers this question. Setups
in dense equivalent design balance hardware resources by
including more multipliers for each PU. Scaling by exploiting
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Fig. 11. Average MAC utilization.

the intrafilter parallelism is feasible due to the size of the
filters in actual CNNs, and demands little overhead (tree
adders to reduce the multiplications, and a little more complex
addressing control). Our objective is to identify whether it is
worthy to move from a dense to a sparse architecture for a
given scenario. For that, we are going to compare our sparse
design with a dense design with similar hardware resources,
i.e., similar area. As can be seen in Table II, for 32-bit
arithmetic the dense equivalent version includes twice the
number of multipliers than the sparse version, for 16-bit it
includes 4× multipliers, and for 8-bit it includes 8×. These
differences are due to the different sizes of the multipliers for
each arithmetic bitwidth.

Results in terms of performance are shown in Fig. 10(a).
The results show that the benefits of providing support for
sparsity have decreased. Our sparse design working on 8-bit
arithmetic is only worthy when the useful operations are below
10%. On 16-bit, the threshold grows up to 25%, and on 32-bits,
the threshold is at 50%. Numbers of energy efficiency are
more favorable to the sparse architecture [see Fig. 10(b)].
The benefits show up when the useful operations are below
20%, 60%, and 70%, respectively. Hence, for low-precision
arithmetic, it is only profitable to include support for sparsity
in aggressively pruned models.

One of the goals of our design is to maximize the utilization
of arithmetic resources. Fig. 11 shows that MAC utilization
is virtually 100% even for networks with a very low useful
operations ratio. It only plummets when the useful operations
is under ∼5% because, in that situation, frequently the 32-bit
matching unit cannot find any useful operation in the fetched
sections. Even so, this is not a undesirable scenario for our
architecture. In fact, when no useful operations are found our
architecture is indeed skipping 32 operations in one cycle.

A. AlexNet and SqueezeNet

The previous results have been obtained using synthetic data
generated randomly for a given value for a given percentage of
useful operations. However, we also wanted to try our acceler-
ator with representative pruned models and data sets. Although
many works have demonstrated the possibilities of pruning,
deep learning frameworks still do not include support in their

TABLE III

USEFUL OPERATIONS PER LAYER IN ALEXNET

TABLE IV

USEFUL OPERATIONS AND PERCENTAGE OF MAC
UTILIZATION PER LAYER IN SQUEEZENET

main branches. However, Han et al. [4] shared two pruned
models, AlexNet and SqueezeNet, on GitHub [10], [11].
These are very good benchmarks for our design since they
are popular models that use the representative data set Ima-
geNet [34], and SqueezeNet is especially interesting for
Embedded Systems. Tables III and IV detail the useful oper-
ations ratio per layer of these two pruned networks and the
MAC utilization of our sparse design for each layer. Overall,
the useful operations ratio on AlexNet and SqueezeNet are
18.4% and 32.0%, respectively.

Fig. 12(a) and (b) depicts the execution time per layer of
AlexNet and SqueezeNet, respectively. We have compared our
sparse design working with 8-bit, 16-bit, and 32-bit arithmetic
with their area equivalent dense designs, i.e., dense equivalent
model with 8×, 4×, and 2× multipliers, respectively. Results
vary among layers because of their different useful operations
ratios, as shown in Tables III and IV. When executing AlexNet,
our sparse design outperforms its dense equivalent by 2.66×
on 32-bit arithmetic and 1.33× on 16-bit. On 8-bit, the dense
equivalent design with 8× multipliers is superior by 1.50×.
When executing SqueezeNet, our sparse design outperforms
its dense equivalent by 1.53× on 32-bit arithmetic whereas
the dense equivalent design is superior on 16- and 8-bit by
1.31× and 2.61×, respectively. Given these execution times,
our accelerator is able to process 227×227 images in 203 ms
for AlexNet and in 265.2 ms for SqueezeNet, yielding a
throughput of 3.8 and 4.9 images/s, respectively. These num-
bers are suitable for many embedded applications. They may
not look impressive at a first glance, but, in fact, they are
very close to the peak performance. For instance, processing
an image with the pruned version of AlexNet [11] involves
863 740 448 multiplications. Since most of them include a
zero as an operand, with our approach that the number
can be reduced to just 159 031 554 useful multiplications.
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Fig. 12. Execution time on AlexNet and SqueezeNet. (a) Execution time on AlexNet. (b) Execution time on SqueezeNet.

The minimum execution time using eight multipliers clocked
at 100 MHz and assuming peak performance is 198.79 ms,
just a bit lower than the 203 ms that our sparse architecture
needs.

XI. CONCLUSION

We propose a sparse architecture for DNNs that avoids
those operations with zero as one of the operands and keeps
almost peak utilization of arithmetic resources, even in highly
sparse scenarios. The architecture includes support to deal with
compressed filters, identify the useful operations, and reduce
the memory access conflicts generated due to the nonuniform
memory accesses. It has also been pipelined to improve the
performance.

We have carried out comparisons between similar-in-area
dense and sparse architectures in order to identify in which
scenarios including support for sparsity is superior to provid-
ing a dense architecture with additional arithmetic resources.
Sparsity is, as expected, the key parameter to decide whether
to move from dense to sparse architectures, but arithmetic
bitwidth also plays a major role. The hardware cost of MAC
units does not scale linearly with the bitwidth; therefore,
the overhead ratio of a sparse architecture is much larger on
low precision. Our results show that the benefits of exploiting
sparsity are clear on 32-bit arithmetic, whereas on 8-bit it
is hard to profitably exploit sparsity given the sparsity of
current state-of-the-art CNNs. Recent works show consensus
on using arithmetic of at least 16-bit [21], [22], [25]–[27]. For
this particular arithmetic bitwidth, adding support for sparsity
improves energy efficiency as long as the useful operations are
under 50%, and also performance, when the useful operations
are under 25%. In other scenarios it is better to use the logic
resources to include more arithmetic resources than to include
support for sparsity.

We consider that FPGAs are currently the natural target for
sparse accelerators, instead of ASICs as suggested in previous
works. The benefits of including support for sparsity depend
on the particular sparsity and arithmetic precision of the DNN

to process, and FPGAs can be seamlessly adapted by loading
the best-fitting accelerator for each profile.

Developing pruning techniques for DNNs is currently a very
active research topic and we expect that many aggressively
pruned models are likely to be available soon. The inclusion of
support for sparsity will be needed in order to take advantage
of this powerful optimization opportunity.
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