
The Journal of Systems & Software xxx (xxxx) xxx

a

b

c

d

c
t
m
w
f
r
s
t
c

c
a
t
s
a
m
s

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Securitymodelling and formal verification of survivability properties:
Application to cyber–physical systems
S. Bernardi a, U. Gentile b, S. Marrone c,∗, J. Merseguer a, R. Nardone d

Universidad de Zaragoza, Dpto. de Informática e Ingeniería de Sistemas, Zaragoza, Spain
Digital Food Safety Department, Nestlè Research, Lausanne, Switzerland
Università della Campania ‘‘Luigi Vanvitelli’’, Dip. di Matematica e Fisica, Caserta, Italy
Università Mediterranea di Reggio Calabria, DIIES, Reggio Calabria, Italy

a r t i c l e i n f o

Article history:
Received 15 October 2019
Received in revised form 8 July 2020
Accepted 14 July 2020
Available online xxxx

Keywords:
Security specification
Formal verification
Survivability properties
UML
cyber–physical systems (CPS)

a b s t r a c t

The modelling and verification of systems security is an open research topic whose complexity and
importance needs, in our view, the use of formal and non-formal methods. This paper addresses the
modelling of security using misuse cases and the automatic verification of survivability properties using
model checking. The survivability of a system characterises its capacity to fulfil its mission (promptly)
in the presence of attacks, failures, or accidents, as defined by Ellison. The original contributions of this
paper are a methodology and its tool support, through a framework called surreal. The methodology
starts from a misuse case specification enriched with UML profile annotations and obtains, as a by-
product, a survivability assessment model (SAM). Using predefined queries the survivability properties
are proved in the SAM. A total of fourteen properties have been formulated and also implemented in
surreal, which encompasses tools to model the security specification, to create the SAM and to prove
the properties. Finally, the paper validates the methodology and the framework using a cyber–physical
system (CPS) case study, in the automotive field.

© 2020 Published by Elsevier Inc.
s
b
n
c
v
b
c
e
s
C
b
w
(
a
a

1. Introduction

Some years ago, Cheng and Atlee (2007) identified that be-
oming computing systems ever more pervasive, mobile and
argets of security attacks, new challenges to security require-
ents engineering would be posed. Therefore, they advised that
orks on notations and methodologies for modelling and veri-

ying high-level security policies would become strategic. More
ecently, Bures et al. (2017) also identified as open yet the re-
earch topic on the need for verifying requirement specifica-
ions of cyber–physical systems (CPS) and declared its inherent
omplexity.
CPS are networked embedded systems used to monitor and

ontrol the physical world (Zacchia Lun et al., 2018), for ex-
mple, electrical power grids, oil and natural gas distribution,
ransportation systems or health-care devices. Undoubtedly, CPS
ecurity is of primary importance in the current networked world
nd understanding their vulnerabilities, attacks and protection
echanisms is a must for developing the underlying control
oftware (Humayed et al., 2017).
Among the list of challenges, identified by Cheng and Atlee

2007) and Bures et al. (2017), on requirements engineering for

∗ Corresponding author.
E-mail address: stefano.marrone@unicampania.it (S. Marrone).
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js

ttps://doi.org/10.1016/j.jss.2020.110746
164-1212/© 2020 Published by Elsevier Inc.
securing CPS, this work helps in the modelling of security re-
quirements, early in the software life-cycle, and in the formal
and automatic verification of system properties. Regarding the
kind of properties, we mostly focus on system survivability ones.
The survivability of a system can be defined as its capacity ‘‘to
fulfil its mission on time, in the presence of attacks, failures, or
accidents’’ (Ellison et al., 1999), then preventing perpetual service
degradations, outages or integrity leaks, for example.

Survivability, as defined in the original papers by Ellison et al.
(1999) and Knight and Strunk (2004) embraces security and
afety requirements, since it encompasses under the term threats,
oth attacks (usually named threats, in the security commu-
ity) and accidental faults (often named hazards, in the safety
ommunity), and corresponding protection mechanisms (i.e., sur-
ivability strategies). This work considers misuse cases, introduced
y Alexander (2003) as follows: ‘‘Misuse cases – a form of use
ases – help document negatives scenarios. Use and misuse cases,
mployed together, are valuable in threat and hazard analysis,
ystem design, eliciting requirements, and generating test cases.’’
onsequently, misuse cases are used for eliciting and specifying
oth security and safety requirements. In the context of CPS,
e consider critical both types of requirements, and survivability
also referred to as resilience, as stated more recently in Goertzel
nd Feldman, 2009) provides a framework for their modelling
nd analysis. For example, consider in the critical infrastructure
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

https://doi.org/10.1016/j.jss.2020.110746
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
mailto:stefano.marrone@unicampania.it
https://doi.org/10.1016/j.jss.2020.110746

2 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

p
t
m
f
c
p

(

domain, the well-known Stuxnet attack (Kushnet, 2013) – the
first advanced persistent (APT) threat – to a CPS, that is the
SCADA and PLC system of the nuclear plants of Iran in 2010, that
provoked substantial damage to nuclear plants. The consequences
of such damage could have been even more severe, also affecting
people and the environment. This paper considers a smart car
case study, that is a safety-critical CPS (a system failure may have
catastrophic consequences on the user(s) and the environment),
where safety requirements (expressed by ASIL — safety-integrity
levels) can be affected by attacks.

The original contributions of this paper are a methodology
and its tool support, through a framework called surreal. The
methodology comprises different phases, significantly modelling
and verification, and artefacts. For modelling, misuse cases are
enriched with a UML1 profile, then defining a security specifi-
cation, where sequences of attacks and protections are inferred.
By protections, we mean countermeasures, introduced to allow
the system to recover from an attack. The UML profile (UML2,
2017) extension mechanism enables to tailor the language to
different domains, in our case, the survivability domain, by intro-
ducing concepts such as survivability strategies or service modes.
For verification, state-of-the-art model-checking techniques are
used to prove predefined survivability properties on the security
specification. The surreal framework offers support for all the
methodology phases proposed in this paper.

The methodology and the framework, described in this work,
contribute to the requirements engineering process by support-
ing the analysts in better eliciting and assessing security re-
quirements, especially those related to system survivability. Con-
cretely, the work contributes to:

• model threats to essential services, and the countermea-
sures needed to recover the system from degraded states;

• and to verify survivability properties by checking the mod-
elled specification.

More specifically, this paper extends our previous work
(Bernardi et al., 2016; Gentile et al., 2017) in many different
aspects. First, it introduces model-checking for producing an
assessment model automatically. Second, it proposes fourteen
predetermined queries, ready to be used by the analyst, for verify-
ing system survivability properties. Third, model checking is also
used for carrying out such verification automatically. Fourth, we
extend the UML profiles presented in Bernardi et al. (2016) and
Gentile et al. (2017) to accommodate these new features, then
improving the profiles modelling capabilities. Fifth, the current
work provides tools that automate, for the analyst, the steps of
the methodology. Last, this paper validates the approach with a
case study in the CPS domain.

The structure of the paper is as follows. Section 2 recalls the
background supporting this paper as well as some related works.
Section 3 presents, at a glance, the methodology and tools that
are part of the surreal framework, for the reader to catch the
overall picture. Sections 4 and 5 describe the internals of each
hase of the methodology. Section 6 elaborates a case study in
he automotive field, which demonstrates the applicability of the
ethodology in the CPS context and the usefulness of the tool

ramework. Finally, Section 7 summarises the assumptions and
onducts a threat to validity analysis, and Section 8 concludes the
aper.

1 Unified Modelling Language (UML2, 2017).
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
2. Background and related works

This section is devoted to review the background on surviv-
ability modelling and model-checking techniques (Section 2.1)
and the related works (Section 2.2).

2.1. Background on survivability modelling and model-checking
techniques

On survivability modelling. In previous works (Bernardi et al.,
2016; Gentile et al., 2017), we proposed and implemented a
UML profile2 for specifying system survivability requirements. In
particular, four main concepts are captured by our survivability
profile (Ellison et al., 1999; Knight and Strunk, 2004):

• Essential services — representing system services that must
survive despite threats materialisation. They are charac-
terised by non-functional metrics (e.g., performance, in-
tegrity or availability) that define their health.

• Service modes — defining different Quality of Service (QoS)
levels of the system according to combinations of essential
services measured by their health, i.e., by a QoS index. For
example, the system is in ‘‘fully operational’’ service mode
when the availability of all of its essential services is greater
than 90%.

• Threats — representing either activity carried out by at-
tackers or materialisations of natural causes (e.g., blackouts)
resulting in system failures. They may compromise essential
services by degrading the system quality.

• Survivability strategies — resistance, recognition and recov-
ery actions aimed to prevent/react against consequences of
threats. They are countermeasures to threats that try to
maintain or restore the health of essential services.

Considering a military command and control system, used
as a running example in this paper,3 an essential service is, for
instance, the provision – via GPS trackers – of up-to-date po-
sition awareness of military forces on a digital map. On the
one hand, threats affecting this service can be either attacks or
accidental faults: for example, respectively, a man-in-the-middle
attack – that counterfeits the position of the enemy forces in
the digital map – or unintentional destruction of the deploy-
ment platform where the essential service is running on. On the
other hand, for each threat, different survivability strategies can
be applied to mitigate it. In particular, the man-in-the-middle at-
tack could be reduced by combining different types of strategies,
such as implementing cryptographic protocols in GPS commu-
nication (resistance), anomaly detection techniques (recognition)
and restoration of original geodata (recovery) after the attack has
been detected. The accidental destruction of the deployment plat-
form could be mitigated by the implementation of fault-tolerance
mechanisms such as hardware and software redundancy and
reconfiguration (recovery).

As shown in Fig. 1, the survivability profile has two main pack-
ages, Misuse case and SAM (Survivability assessment model)
extensions, and a package for types definitions. The Misuse case
package extends UML use cases, and it is used to enrich misuse
case specifications.

2 A UML profile (Lagarde et al., 2007; Selic, 2007) is a set of extensions
i.e., stereotypes and tags) that can be applied to UML model elements.
3 The running example is introduced in Section 3.
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 3

u
p
d
D
o
p
c
p
t

Y
b

In particular, the Misuse case package extends existing con-
cepts proposed in the original misuse case notation (Alexander,
2003) by including the survivability concepts from Ellison et al.
(1999) and Knight and Strunk (2004), previously mentioned –
i.e., essential services, service mode definition and survivability
strategies – and by enabling the specification of QoS indices –
e.g., availability metric. The SAM package is applied to UML state
machines to specify system service modes, sequences of threats
and survivability strategies.

Table 1 summarises the stereotypes of the profile used in this
paper, where the last column highlights changes concerning the
previous proposals (Bernardi et al., 2016; Gentile et al., 2017). In
particular, tag type means that the tag has a different meaning:
in Gentile et al. (2017) misuse and recovery stereotypes have a
targetServiceMode tag to specify the system service mode reached
as a consequence of the stereotyped (misuse or recovery) use
case, whereas here the affects tag is used to determine the QoS
indices of the essential services affected by the stereotyped (mis-
use or recovery) use case. Similarly, in Bernardi et al. (2016), state
machine transitions can be annotated with a tag to specify the
event that triggers the change of service mode (a misuse or a
survivability strategy), whereas here the path tag of a scenario
stereotyped transition is used to specify a sequence of misuse
cases and survivability strategies that causes the change of a ser-
vice mode. Tag refinement means that the indices tag has the same
meaning as in our previous proposal (Gentile et al., 2017), i.e., it is
used to specify the QoS indices associated to an essential service,
but it enables a finer-grained specification (i.e., the type of value
domain, the value domain and the initial value). Appendix A
presents the complete profile. The profile is now a component
of the surreal framework that supports this paper.

It is worth noticing that the Survivability profile provides gen-
eral concepts that can be applied to different domains, including
cyber–physical systems (CPS). The application of such concepts to
CPS will be illustrated, in this paper, with a running example of
military command and control system and a case study of a smart
car, in the automation domain.

On model-checking techniques. Model-checking is a formal
method that, given a finite-state model of a system and a formal
property, systematically checks if the property is verified for each
possible sequence of states in that model. If a violation of a
property is detected, the model checker produces a counterex-
ample that is a sequence of analysed states whose crossing lead
to the violation. Model-checking can be automated and can be,
in general, applied to both software and hardware systems for
the verification of properties related to communication protocols,
concurrent systems or even for safety-critical systems. In Alrajeh
et al. (2013), model checking is used to analyse the completeness
of requirement specification, the work in Ghallab et al. (2004)
proposes automated planning to compute sequences of actions
able to reach a specified goal, while the work in Sheyner et al.
(2002) deals with the automatic generation of attack graphs in
network security. Model-checking is suggested by the interna-
tional standards (e.g., ISO 61508, ISO 26262) for the verification
of safety-critical system specifications. In the safety-critical do-
mains, Wang et al. (2019) use a model checker to verify safety
properties of the integrated modular avionics (IMA) – a comput-
ing network involved in aircrafts software development – and
Benerecetti et al. (2017) proposes a framework based on model
checking for the automatic system-level test case generation.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
Model-checking can be even combined with learning-based
techniques to obtain and verify properties from a black-box view
of a system. In Fiterău-Broştean et al. (2016) model-learning
combined with model checking, has been used to detect some
flaws within the TCP protocols, by verifying properties on learned
models of different clients and servers. Despite all the benefits
introduced, the use of model checking comes with some draw-
backs. First, the formal languages used to feed model checkers
are mathematics-based and are often very complicated to fully
master. Second, there is no guarantee that the counterexamples
generated by a model checker are of a minimal length. To this
aim, extra and more computation demanding techniques can be
adopted, e.g., Bounded Model Checking (Biere et al., 2003).

2.2. Related works

In the following, we review the related works on the modelling
of security and safety requirements and their verification with
model checking techniques.

Security and safety requirements modelling. Hundreds of works
can be found in the literature regarding the elicitation and mod-
elling of security and safety requirements. The surveys (Vilela
et al., 2017; Raja Ramesh and Satyananda Reddy, 2016; Ullah
et al., 2011) offer a good insight in this field. However, unlike our
work, the greatest part of these works deal with safety-related
approaches oriented to hazard identification. Among them, the
following ones are of interest, although they do not use UML
nor apply model checking techniques. In Troubitsyna (2008), the
author proposes a method based on fault tree analysis (FTA) to
derive requirements with the support of a state-based model.
The Event-B formalism for control-systems is used in Lopatkin
et al. (2011) and Méry and Singh (2015); interestingly the former
ses it to automate Failure Modes and Effects Analysis (FMEA)
artially. In the area of safety management and safety-driven
esign, Leveson presents the STAMP/SPTA approach (Leveson and
ulac, 2005) to meet assurance goals in software projects among
ther fields. This approach is followed and applied in other pa-
ers (Song et al., 2019; Friedberg et al., 2017). In the field of
yber–physical applications, the work in Masrur et al. (2016)
resents a technique, to model interactions between components,
hat allows reasoning about timing behaviour.

The works in Dörr et al. (2003), Koh and Seong (2009) and
oo et al. (2005) are also in the field of safety-related approaches
ut closer to ours. In particular, Dörr et al. (2003) propose a

requirement elicitation process based on use case modelling. Koh
and Seong (2009) use model checking, as our work, and FTA
and combine such techniques to verify security requirements
automatically. Yoo et al. (2005) introduce a new formal method
– NuSCR – to elicit safety-critical requirements and apply it to
nuclear plants.

Security and safety requirements modelling using UML. The lit-
erature on modelling security and safety requirements, using
UML is also large. In the following we only recall: (a) some
works highly cited in the literature, some of them have inspired
our approach, and (b) some UML profiles that have been the
baseline for the profile presented in this paper. SecureUML (Lod-
derstedt et al., 2002) is a seminal work in modelling security
based on UML and the model-driven paradigm. The approach
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

presents a methodology for modelling access control that also

4 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx
Fig. 1. Survivability profile overview.
Table 1
UML profile extensions used in the approach.
Misuse case extensions package

Stereotype Description Tags (type) Extended UML metaclass Changes w.r.t. (Bernardi et al.,
2016; Gentile et al., 2017)

service An essential service indices (index) Use case tag refinement
misuse A threat scenario affects (affectConsequence) Use case tag type
threatens A threat to a service Dependency
mitigates A threat mitigation Dependency
service mode definition Definition of the service modes formula (String) Constraint new
recovery A recovery strategy affects (affectConsequence) Use case tag type

SAM extensions package

Stereotype Description Tags (type) Extended UML metaclass Changes w.r.t. (Bernardi et al.,
2016; Gentile et al., 2017)

mode A service mode severity State
scenario A sequence of misuses and

survivability strategies
path (MSactivation) Transition tag type
offers support for specifying complex authorisation constraints.
Then, SecureUML focusses on specifying role-based access control
policies and requirements, while our approach is for the mod-
elling of attacks and protections. The final goal of SecureUML
is to automatically generate security infrastructures for access
control while our approach aims to assess survivability properties
of systems. The CORAS method4 is oriented to model-driven
risk analysis of changing systems (Lund et al., 2011), the CORAS
language is used to support the analysis of security threats and
risk scenarios in security risk analyses. UMLsec (Jürjens, 2002)
allows to specify security information during the development
of security-critical systems and provides tool-support for formal
security verification according to the SVDT approach (Houmb
et al., 2007). SVDT and its successor (Georg et al., 2010) allow
for evaluating (already) verified alternatives against different re-
quirements, including time-to-market and budget constraints. All
these approaches are applied to software system design and IT
security.

Regarding UML profiles, MARTE (OMG-MARTE, 2011) (Mod-
elling and Analysis of Real-Time and Embedded Systems) is an
OMG standard mostly focussed on schedulability and perfor-
mance. DAM (Bernardi et al., 2013) is a MARTE extension for
the modelling and analysis of dependable systems, while Se-
cAM (Rodríguez et al., 2014) extends DAM for security modelling
of critical infrastructures, early in the system development life-
cycle. CIP_VAM (Vittorini et al., 2015; Drago et al., 2019) is a
UML profile for vulnerability analysis and modelling in the field
of critical infrastructure protection.5 It is used in model-driven
chains involving Bayesian networks and quantitative modelling,
and it focuses on physical aspects modelling, integration with Se-
cAM was proposed in Marrone et al. (2015). Other approaches use
SysML (Friedenthal et al., 2008) instead of ad-hoc UML profiles,

4 http://coras.sourceforge.net/index.html.
5 CIP_VAM was developed within the European project METRIP http://metrip.

unicampus.it/.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
as in Scholz and Thramboulidis (2013) and Roudier et al. (2013),
and others create specific profiles for SysML (Biggs et al., 2016).
An application of the SysML language to a critical system for
assessing repair/survivability strategies can be found in Biagi et al.
(2018). Finally, in Gharib et al. (2019) a UML profile for modelling
functional safety requirements is proposed, the requirements are
expressed in OCL and verified directly on the UML model.

Security and safety requirements verification using model checking.
As stated at the beginning of the sub-section, different works exist
having similar premises: the work (Alrajeh et al., 2013) presents
a tool, based on model checking, to complete the operational
requirement specification according to the stakeholders’ goals.
However, this approach strongly relies on the state-based spec-
ification and forces the requirement engineer to define positive
and negative scenarios each time the model checker verifies a
property violation. Thus, at each iteration, there is the need to
define such scenarios against the properties, using the considered
temporal logic language.

In this work, we propose a framework that allows the engineer
to model safety and security requirements in the same model,
using an extended version of the use case diagram. The rationale
behind our proposal is to relieve the engineer from the modelling
of a precise state-based specification and the definition of the
properties to be checked in the temporal logic language. Then,
the framework leverages model transformations for the state-
based representation of the specification to verify the properties,
which are selected by the engineer from a list of properties ex-
pressed as English sentences. The results of the verification allow
the engineer to make informed decisions about the completeness
of the requirement specification.

Based on the STPA methodology, previously commented, the
work (Howard et al., 2017) identifies and formally analyses safety
and security requirements, but different from our work, it is
not focussed on verifying survivability properties. Verification of
safety requirements in large software systems using probabilistic
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

http://coras.sourceforge.net/index.html
http://metrip.unicampus.it/
http://metrip.unicampus.it/

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 5
model-checking is proposed in Calinescu et al. (2012). Unlike our
work, the approach in Calinescu et al. (2012) assumes the system
already operational, and it is aimed at verifying, at runtime,
the compliance with safety requirements. Another work, with
some common points with our approach, is the seminal work
in Gargantini and Heitmeyer (1999) that uses model-checking to
test software implementations from requirements specifications.
The main difference with this approach is that the methodology
here proposed aims at verifying the specification instead of the
resulting software artefact. Finally, the Formal Tropos (Fuxman
et al., 2001) and Secure Tropos (Mouratidis, 2011) approaches de-
serve to be mentioned. Formal Tropos is a language that enables
the automatic verification of requirements using model-checking,
although it is not explicitly devoted to security requirements. Se-
cure Tropos is for the analysis of security requirements alongside
functional ones. It drives system designers from the acquisition
of requirements up to their verification. There exist two versions
of Secure Tropos, one extends the i*-language and the other
extending Tropos. Secure Tropos also offers a CASE tool (Pavlidis
et al., 2012).

In the light of the works above reviewed and considering the
improvements, summarised in Section 1, that this paper offers
concerning our previous works (Bernardi et al., 2016; Gentile
et al., 2017), we can stress some conceptual differences with
related works in the literature, as follows. First difference, we
overcome the single-stepped attack and single-stepped recovery
hypotheses assumed in Gentile et al. (2017), see Section 4.2.
Second, the proposed fourteen queries define a starting rich-full
framework for guiding the analyst to select the requirements of
interest to be verified in the system. Third, the use of model
checking, for the automatic verification of the selected require-
ments, produces counterexamples that significantly helps the
analyst, for example: (1) to find sequences of attacks and re-
pairs, or (2) to find degradation paths, as well as recovery paths
and strategies. All these improvements conform to a framework
that empowers the analyst to automatically obtain an assess-
ment model, that helps in many tasks concerning the automatic
verification of system security properties.

3. Methodology overview

Fig. 2 presents the big picture of our methodology and related
framework. The methodology is composed of three phases: mod-
elling, generation and verification. Regarding tools, those depicted
as black gears are used by the CPS analyst, while the grey ones
are invoked transparently by the other tools.

During the modelling phase, the CPS analyst defines (func-
tional and non-functional) system requirements building a UML
misuse case diagram (MUCD) (Alexander, 2003). This specifica-
tion is enriched by identifying essential services, threats, surviv-
ability strategies, and system service modes, which are annotated
using the survivability profile recalled in the previous section.

During the generation phase, the aim is to create a sur-
vivability assessment model (SAM). The SAM is a UML
state machine that represents the system service modes and the
change of service modes caused by the occurrence of threats
and the application of survivability strategies. The SAM gener-
ation tool accomplishes the task automatically, through sev-
eral steps. In the first step, starting from the MUCD, the states
of the SAM are created, they represent system service modes.
Next, the tool transforms the MUCD into a Kripke model (MUCD
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js

formal model), that can be analysed by a model checker,
e.g., NuSMV (Cimatti et al., 2002). The results of the analysis, in
particular the counterexamples provided by the model-checker,
are then post-processed to add the transitions of the SAM and
label them with sequences of events (threats and survivability
strategies). Consequently, the SAM represents the system evo-
lution throughout the different service modes using the possi-
ble sequences of threats occurrences and survivability strategies
execution.

In our methodology, the verification phase deals with the
verification of system survivability properties. The properties are
specified as abstract queries and stored in a query template
repository (QTR). The CPS analyst, using the query instan-
tiation GUI, selects queries and instantiates them with actual
elements of the MUCD (e.g., misuse cases) or of the SAM (i.e., ser-
vice modes). Then, an engine is called, which downloads, for
each instantiated query, a solver capable of executing it. Finally,
the query is proved against the SAM by the solver and results
are presented to the analyst in the form of an assessment
report. Currently, the surreal framework allows assessing four-
teen different survivability properties, that is the properties listed
in Table 3. The rationale behind the choice of these properties
is to provide a general support for the assessment of systems
survivability, and this paper applies them in the CPS context. The
support encompasses the analysis of the recoverability of service
modes (Security level properties), and the analysis of the effect
of threat occurrences and survivability strategies on the service
modes (Threat and Mitigation properties). Moreover, the frame-
work has been designed for being easily extensible regarding new
survivability properties.

The assessment report allows the analyst to make informed
decisions about the completeness of the requirement specifica-
tion. For example, one property of interest to verify is the strong
reversibility, that is the possibility to recover the system to a given
service mode (property P1 in Table 3). This property does not
hold when the specification omits possible survivability strategies
mitigating one or more threats represented as misuse cases; in
such a case, the analyst can decide to refine the MUCD by adding
such strategies and repeat the generation and verification phases
with the refined specification. Therefore, the modelling and ver-
ification activities, supported by the interactive methodology,
are carried out by the CPS analyst in a cyclic manner, until a
requirement specification that satisfies the properties of interest
is found.

Motivation. In requirement engineering it is impossible to find a
‘‘silver bullet’’ and, in the case of cyber–physical systems, this task
is worsened by the confluence of software, hardware, mutable
operating environments and the human factor, since emerging
behaviours are not rare but hard to predict. Hence, formal meth-
ods are just one of the techniques that can be used in such
systems. They proved their effectiveness with many success sto-
ries, from Paris metro systems (Behm et al., 1999) to the Intel’s
practices for the design of CPU architectures using model check-
ing (Kaivola et al., 2009). Notwithstanding such techniques, new
vulnerabilities are found even in those processors (e.g., the Spec-
tre and Meltdown vulnerabilities). We strongly believe that the
approach proposed in this paper, like other similar techniques,
cannot be as a one-size-fits-all tool for system hardening.

First, the proposed methodology is for eliciting security re-
quirements, hence, it should be first used in the early stages
of the system development to discover failure scenarios. The
fulfilment of such requirements should be then assessed later in
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

the lifecycle.

6 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

I

Fig. 2. Methodology and tool framework overview.
Second, the proposed approach does not exclude but creates
synergy with other techniques as testing. As it has been demon-
strated in Benerecetti et al. (2017) model checking combined with
functional testing may be successful in industrial settings.

Finally, the proposed methodology must be embedded in the
development process. As it is impossible to have detailed knowl-
edge in the early stages of development, we think that it should
be applied more than once during the system lifecycle.

The choice of focusing on a functional level description is
because the most widespread methodologies dealing with safety,
security and in-the-large, dependability assessment of a produc-
t/system during the whole duration of its lifecycle, start with
some kind of Functional Hazard Assessment (FHA). This family
of methodologies is in charge of eliciting, determining the proper
level of safety (or other dependability attributes) for each compo-
nent with the consequent definition of the appropriate design and
validation processes. Since such processes start in the very early
phases of the system lifecycle, when the architecture is not often
defined yet, then functions that the system has to provide are
the only known system assets. Since our approach supports such
phases, a functional view of the system is a right starting point. To
help this point of view, the most adopted international standards
recommend FHA in the early phases across different domains
(e.g., IEC 61508 International Electrotechnical Commission, 1998,
SO 26262 ISO 26262, 2011, EN 50128 CENELEC, 2011).

Running example. Modern military command and control sys-
tems are actually systems of systems that incorporate fully-
integrated modular cyber–physical systems such as personal com-
bat displays, unmanned aerial systems and tactical mobility night
vision devices to enhance the situational awareness and im-
prove decision-making (Eisenberg et al., 2018). To support the
methodology description a military command and control sys-
tem (Bernardi et al., 2016) is used as a running example.. The
system provides two basic essential services: messaging and map
positioning. These services must survive despite the presence of
faults or attacks, thus allowing the officers in charge to send
timely their orders to subordinates and to achieve the situational
awareness in the battlefield. In particular, we will address the
following questions that indeed represent system survivability
requirements:

• Is it always possible to recover to the service mode that
provides the highest quality (the best service mode)?

• Let us suppose the system is offering the highest quality
service and man-in-the-middle attacks occur that manipu-
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js

late the information about the operations plan exchanged
between the officers, what is the service quality provided
by the system after the attacks?

• Let us consider a set of possible survivability strategies that
can be used to improve the service quality in a degraded ser-
vice mode. Which is the smallest subset that allows reaching
the best service mode?

4. Modelling and generation phases

4.1. Modelling phase

In the modelling phase, the CPS analyst creates a MUCD en-
riched with a survivability specification. A MUCD is the result
of a requirements elicitation process where four tasks can be
emphasised: (a) the elicitation of the essential services, which
should survive despite the presence of threats; (b) the vulner-
ability analysis (or threat modelling), where threats affecting
essential services are identified; (c) the definition of survivability
strategies, that aim at eliminating or mitigating threats; and (d)
the definition of system service modes, which guarantee different
levels of QoS, from the best one offered by the system, for all
essential services, to the most degraded, but still acceptable.
Specifically, system service modes are ranked according to the
relevance of the QoS indices and their threshold values (i.e., QoS
levels) associated to essential services: all system service modes
but the one with the best QoS level are considered degraded
service modes (or degraded states).

The specific methodology used to carry out the elicitation
process has been already presented in Bernardi et al. (2016)
and it is here omitted. the emphasis is, indeed, on the artefacts
produced by the process. The vulnerability analysis takes into
account two hypotheses: (i) the threats (or misuses) are indepen-
dent, they may occur concurrently, and (ii) they are carried out
in a single step. The same holds for the recovery strategies which
are considered as single-step actions to recover from a degraded
state.

Fig. 3 shows an excerpt of the MUCD of the running example,
where just two essential services are considered: i.e., Exchange-
Information – that is initiated by the military staff and includes
different scenarios, such as the sending of reports, the request of
supplies and the transmission of orders – and UpdateMap – that
is triggered by a sensor, like a GPS tracker, and it provides up
to date position awareness of military forces on a digital map. A
more comprehensive model can be found in Bernardi et al. (2016),
herein we refine the misuse case diagram applying the surviv-
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

ability profile, where for the sake of clarity, the tagged values

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 7

a
i
t
e
0
i
i

r
c
s
a

Table 2
Tagged-values specification of the running example.
Stereotype: service Tagged-values: indices (name,kind,values,initial)

ExchangeInformation (avail, integerInterval, 0..100, 100)
(integLevel, integerInterval, 0..100, 100)

UpdateMap (avail, integerInterval, 0..100, 100)
(integLevel, integerInterval, 0..100, 100)

Stereotype: misuse Tagged-values: affects (index,set,inc,dec)

Jamming (avail, –, –, 10)
ManipulateInformation (integLevel, 50, –, –)

DestroyNode (avail, 0, –, –)
(integLevel, 10, –, –)

Stereotype: recovery Tagged-values: affects (index,set,inc,dec)

RestoreOriginalCommunication (avail, 100, –, –)
ChooseAlternativeCommunication (avail, –, 10, –)
RestoreOriginalData (integLevel, 100, –, –)

Reconfigure (avail, 100, –, –)
(integLevel, 90, –, –)

Stereotype: serviceModeDefinition, tagged-values: formula

(GS0,0, (ExchangeInformation.avail > 90) & (ExchangeInformation.integLevel > 60) &
(UpdateMap.avail > 90) & (UpdateMap.integLevel > 60))

(GS1,1, (ExchangeInformation.avail > 80) & (ExchangeInformation.integLevel > 60) &
(UpdateMap.avail > 80) & (Update map.integLevel > 60))

(GS2,2, (ExchangeInformation.avail > 50) & (ExchangeInformation.integLevel > 30) &
(UpdateMap.avail > 50) & (UpdateMap.integLevel > 30))

(GS3,3,)
Fig. 3. MUCD of the running example annotated with the survivability profile.
i
m
o
e
o
i
e
E
o
t

ssociated to the stereotyped model elements are summarised
n Table 2. In particular, essential services are characterised by
wo QoS indices, i.e., the availability and the integrity level, both
xpress a percentage, thus they are defined over the interval
..100, and their initial values are set to the highest value. The
nitial values represent the optimistic situation where the system
s not affected by threats.

There are three misuse cases in the diagram: Jamming rep-
esents an attack aimed at interrupting (or slowing down) the
ommunication, it is usually carried out by sending interference
ignals; ManipulateInformation represents an attack that is aimed
t manipulating the geodata used to update the digital map or the
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js

o

nformation exchanged by the military staff; and DestroyNode that
odels the destruction of a node, which can be either accidental
r intentional. The misuse cases compromise the QoS of the
ssential services, in particular, each misuse case may affect one
r more QoS indices and the degradation of a QoS index value
s specified using the affects tagged-value (see in Table 2). For
xample, the Jamming misuse case affects the availability of the
xchangeInformation service, it may occur multiple times, and its
ccurrence decreases the initial availability value of 10%, whereas
he ManipulateInformation misuse case affects the integrity level
f the two essential services by halving its value. The DestroyNode
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

8 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

i
t
s
a
t
t
n

s

t
b
i
e
t
m
a
s
p
(
a
w
t
e
d
a
s

4

m
c
a
t
i
t
a
s
s
s
a
f
m

t
c
p
i
v
t
a
u

M
K
w
s
d
o
t

o
d
b
m
p
u
m
–
I
e

w
1
g
i

<
n
c
t
d
<
a

a
h
i
r
a

Fig. 4. Venn’s diagram representing system service modes.

misuse case affects both the availability and the integrity level of
the UpdateMap essential service by setting their value to zero and
10, respectively.

For each misuse case, survivability strategies need to be spec-
fied to mitigate the effect of the misuse case on the QoS of
he essential services. In the running example, only recovery
trategies are modelled. In particular, two different strategies
re included to mitigate a jamming attack, i.e., setting an al-
ernative communication with lower bandwidth (ChooseAlterna-
iveCommunication) and the restoration of the original commu-
ication (RestoreOriginalCommunication). The ManipulateInforma-

tion misuse case is mitigated by restoring the original geodata
before the attack, and the destruction of a node (DestroyNode) is
overcome through hardware redundancy and software reconfigu-
ration. Similar to misuse cases, recovery strategies are annotated
with affects tagged-values to specify how they affect the QoS
indices of the essential services. For example, a reconfiguration,
after node destruction, improves both the availability and the
integrity level by setting them to the initial value and 90, re-
spectively; whereas the two alternative recovery strategies from
a jamming attack increase the availability differently: a 100%
availability is guaranteed with the restoration of the original com-
munication and an increase of 10% (concerning the initial value)
is obtained in case of choosing the alternative communication
mean.

Finally, the last annotation included in the MUCD specifies the
ystem service modes (see serviceModeDefinition in Table 2). We
use an ad-hoc syntax that enables to define each service mode
as a triplet: (name, severity, QoSlevel), where name is the name
of the service mode, severity is the severity level (the higher is
he level more degraded the service mode is) and QoSlevel is a
oolean expression that specifies the QoS level of the system
n terms of the thresholds for the QoS indices associated to the
ssential services. In the running example, the thresholds for both
he QoS indices are minimum values, and there are four service
odes: GS0 is the best service mode that guarantees at least a 90%
vailability and at least a 60% integrity level of the two essential
ervices. The other service modes provide degraded services: in
articular, GS1 guarantees a lower threshold for the availability
i.e., 80%) concerning GS0, whereas in GS2 both the availability
nd integrity thresholds are lower than GS1. Finally, GS3 is the
orst service mode, and it does not guarantee a QoS minimum
hreshold. Thus, the specification of the system service mode
nables to divide the value domain space of the QoS indices into
ifferent regions, where each region is defined by the QoSlevel of
service mode: Fig. 4 shows a Venn’s diagram representation of
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js

uch regions.
.2. Generation phase

The work in Gentile et al. (2017) already dealt with the auto-
atic generation of the SAM. In that paper, starting from a misuse
ases diagram – that specifies the system essential services, the
ttacks and countermeasures – a SAM is produced by a model-
o-model transformation. However, the approach has a limitation,
t only considers single-stepped attacks/recoveries, i.e., the direct
ransition from a service mode to another is due to either a single
ttack occurrence or a single recovery execution. Although rea-
onable in some industrial contexts, this paper wants to overcome
uch hypothesis, then allowing to elicit complex attack-recovery
equences – that is sequences of multiple attack occurrences
nd multiple recovery executions that cause the direct transition
rom a service mode to another – which postulates the main
otivation of this phase of the methodology.
In the generation phase, we use NuSMV (Cimatti et al., 2002)

o produce the SAM. NuSMV is a powerful model-checking tool
haracterised by its simplicity in specifying both models and
roperties. To generate the SAM, the MUCD is first transformed
nto a Kripke model – MUCD formal model, in Fig. 2 – and a first
ersion of the SAM, which includes just the states representing
he service modes. Next, the Kripke model is analysed by NuSMV
nd the counterexamples produced by the model checker are
sed to enrich the SAM with the state transitions.

UCD-to-KRipke. The generation process from the MUCD to the
ripke model is depicted, at a high level of abstraction, in Fig. 5
here a sample MUCD model is represented on the left and a
cheme of the Kripke model is on the right. In the Figure, the
irected arrows show the mapping between the model elements
f the MUCD and the three main sections of the Kripke model,
hat is: Module Section, Define Section and Properties.

The Module Section contains the description of the behaviour
f the processes determining the evolution of the system: this
escription is apportioned among as many modules as the num-
er of the ≪ service ≫ use cases, in the MUCD, and one main
odule. The Define Section contains the definition of symbols. In
articular, there are two sets of symbols: the Inhibit Symbols –
sed in the main module – to permit the activation of one or
ore attacks, and the SM Symbols – used in the Properties section
that capture into boolean variables the system service modes.

n the end, the Properties section reports a list of CTL formulas
xpressing the possibility to pass from a service mode to another.
In the following, we describe the generation process in details

ith the help of the running example of Fig. 3 and the Listing
, that reports an excerpt of the Kripke model automatically
enerated from Fig. 3. The complete Kripke model can be found
n the Appendix C.

First, there are as many modules as use cases stereotyped
<service>> in the MUCD. The parameters of a module are the
ames of the attacks and recovery actions related to the use
ase, i.e., the misuses that threat the use case and the recoveries
hat mitigate the misuses. Each module is then responsible for
etermining the evolution of the QoS indices specified in the
<service>> as a response to the values specified for the attacks
nd recoveries.
The second part is the main module that instantiates all the

ttacks and recoveries in the MUCD model with the following be-
aviour: attacks are represented by boolean variables (i.e., TRUE
f the attack is launched, otherwise FALSE); recoveries are rep-
esented by three-valued variables (i.e., KO if the recovery is not
ctive, ENABLED if a triggering attack has been launched, but the
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling and formal verification of survivability properties: Application to cyber–physical
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.jss.2020.110746.

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 9

Listing 1: MUCD Kripke model structure
-- Process modules
MODULE ExchangeInformation(p_Jamming ,p_ChooseAlternativeCommunication ,p_RestoreOriginalCommunication ,
p_ManipulateInformation ,p_RestoreOriginalData)
VAR
avail: 0..100;
integLevel: 0..100;
ASSIGN
init(avail) := 100;
init(integLevel) := 100;
next(avail) := case
(p_Jamming = TRUE) & (p_ChooseAlternativeCommunication = KO)
& (avail >= (10 + 0)): avail - 10;
(p_ChooseAlternativeCommunication = OK)
& (avail <= (100 - 10)): avail + 10;
(p_Jamming = TRUE) & (p_RestoreOriginalCommunication = KO)
& (avail >= (10 + 0)): avail - 10;
(p_RestoreOriginalCommunication = OK) & (avail < 100): 100;
TRUE: avail;
esac;
next(integLevel) := case
(p_ManipulateInformation = TRUE) & (p_RestoreOriginalData = KO)
& (integLevel > 50): 50;
(p_RestoreOriginalData = OK) & (integLevel < 100): 100;
TRUE: integLevel;
esac;

...
-- Main module
MODULE main
VAR
Jamming: boolean;
ManipulateInformation: boolean;
DestroyNode: boolean;
RestoreOriginalCommunication: {ENABLED, OK, KO};
ChooseAlternativeCommunication: {ENABLED, OK, KO};
RestoreOriginalData: {ENABLED, OK, KO};
Reconfigure: {ENABLED, OK, KO};
proc_ExchangeInformation: ExchangeInformation(Jamming,ChooseAlternativeCommunication ,
RestoreOriginalCommunication ,ManipulateInformation ,RestoreOriginalData);
proc_UpdateMap: UpdateMap(DestroyNode ,Reconfigure ,ManipulateInformation ,
RestoreOriginalData);
ASSIGN
init(Jamming) := FALSE;
next(Jamming) := case
(Jamming_inhibitor = TRUE): FALSE;
(Jamming_inhibitor = FALSE): {TRUE, FALSE};
esac;
init(ManipulateInformation) := FALSE;
next(ManipulateInformation) := case
(ManipulateInformation_inhibitor = TRUE): FALSE;
(ManipulateInformation_inhibitor = FALSE): {TRUE, FALSE};
esac;
init(DestroyNode) := FALSE;
next(DestroyNode) := case
(DestroyNode_inhibitor = TRUE): FALSE;
(DestroyNode_inhibitor = FALSE): {TRUE, FALSE};
esac;
init(RestoreOriginalCommunication) := KO;
init(ChooseAlternativeCommunication) := KO;
init(RestoreOriginalData) := KO;
init(Reconfigure) := KO;
next(RestoreOriginalCommunication) := case
(RestoreOriginalCommunication = KO) & ((Jamming = TRUE)): ENABLED;
(RestoreOriginalCommunication = ENABLED): {ENABLED, OK};
(RestoreOriginalCommunication = OK): KO;
TRUE: RestoreOriginalCommunication;
esac;
next(ChooseAlternativeCommunication) := case
(ChooseAlternativeCommunication = KO) & ((Jamming = TRUE)): ENABLED;
(ChooseAlternativeCommunication = ENABLED): {ENABLED, OK};
(ChooseAlternativeCommunication = OK): KO;
TRUE: ChooseAlternativeCommunication;
esac;
next(RestoreOriginalData) := case
(RestoreOriginalData = KO) & ((ManipulateInformation = TRUE)): ENABLED;
(RestoreOriginalData = ENABLED): {ENABLED, OK};
(RestoreOriginalData = OK): KO;
TRUE: RestoreOriginalData;
esac;
next(Reconfigure) := case
(Reconfigure = KO) & ((DestroyNode = TRUE)): ENABLED;
(Reconfigure = ENABLED): {ENABLED, OK};
(Reconfigure = OK): KO;
TRUE: Reconfigure;
esac;

10 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx
-- Inhibit Symbols
DEFINE
Jamming_inhibitor := FALSE;
ManipulateInformation_inhibitor := FALSE;
DestroyNode_inhibitor := FALSE;

-- SM Symbols
DEFINE
GS0 := (proc_ExchangeInformation.avail > 90)
& (proc_ExchangeInformation.integLevel > 60) & (proc_UpdateMap.avail > 90)
& (proc_UpdateMap.integLevel > 60);
GS1 := !(GS0) & (proc_ExchangeInformation.avail > 80)
& (proc_ExchangeInformation.integLevel > 60) & (proc_UpdateMap.avail > 80)
& (proc_UpdateMap.integLevel > 60);
GS2 := !(GS0 | GS1) & (proc_ExchangeInformation.avail > 50)
& (proc_ExchangeInformation.integLevel > 30) & (proc_UpdateMap.avail > 50)
& (proc_UpdateMap.integLevel > 30);
GS3 := !(GS0 | GS1 | GS2);

-- Properties
CTLSPEC AG (GS0 -> AX(!GS1))
...
CTLSPEC AG (GS3 -> AX(!GS2))
Table 3
Survivability properties supported by the surreal framework.
ID Kind Name Query template Parameters type Result type

P1 Security
level

Reversibility It is always possible to recover to the ⟨SMode⟩ ⟨SMode⟩ (a service mode) Boolean

P2 Security
level

Strong reversibility It is always possible to recover to the ⟨SMode⟩ without
further degradation

⟨SMode⟩ (a service mode) Boolean

P3 Security
level

Recoverability It is always possible to recover to ⟨DegradedMode⟩ from
⟨WorseDegradedMode⟩

⟨DegradedMode⟩ (a
service mode),
⟨WorseDegradedMode⟩ (a
worse service mode)

Boolean

P4 Security
level

Strong recoverability It is always possible to recover to ⟨DegradedMode⟩ from
⟨WorseDegradedMode⟩ without degradation

⟨DegradedMode⟩ (a
service mode),
⟨WorseDegradedMode⟩ (a
worse service mode)

Boolean

P5 Threat Threat consequence (single
occurrence)

Does a single occurrence of ⟨Misuse⟩ provoke a system
degradation?

⟨Misuse⟩ (a misuse case) Boolean

P6 Threat Threat consequence
(multiple occurrence)

Does (multiple) occurrence of ⟨Misuse⟩ provoke a system
degradation?

⟨Misuse⟩ (a misuse case) Boolean

P7 Threat Security level threat impact
(single occurrence)

Given the best service mode, which is the service mode
reached by a single occurrence of ⟨Misuse⟩

⟨Misuse⟩ (a misuse case) ⟨SMode⟩ or
∅

P8 Threat Security level threat impact
(multiple occurrence)

Given the best service mode, which is the service mode
reached by (multiple) occurrence of ⟨Misuse⟩

⟨Misuse⟩ (a misuse case) ⟨SMode⟩ or
∅

P9 Threat Threat scenario Given the best service mode, which is the smallest set of
misuses that leads to ⟨DegradedMode⟩?

⟨DegradedMode⟩ (a
service mode)

⟨Scenario⟩ or
∅

P10 Mitigation Recovery feasibility The strategy ⟨Recovery⟩ is feasible ⟨Recovery⟩ (a recovery
strategy)

Boolean

P11 Mitigation Multiple recovery The strategies ⟨Recovery1⟩,. . . , ⟨RecoveryN ⟩ are always
needed together

⟨Recovery⟩∗ (a sequence
of recovery strategies)

Boolean

P12 Mitigation Recovery mutual exclusion The strategies ⟨Recovery1⟩,. . . , ⟨RecoveryN ⟩ are never carried
out together

⟨Recovery⟩∗ (a sequence
of recovery strategies)

Boolean

P13 Threat/
Mitigation

Threat/recovery
effectiveness

Is the strategy ⟨Recovery⟩ effective to mitigate the threat
⟨Misuse⟩?

⟨Recovery⟩ (a recovery
strategy), ⟨Misuse⟩ (a
misuse case)

Boolean

P14 Mitigation Best set of strategies in a
service mode

Among the feasible strategies in ⟨DegradedMode⟩, which is
the smallest set of strategies that leads to the best service
mode?

⟨DegradedMode⟩ (a
service mode)

⟨Scenario⟩ or
∅

recovery is not executed, yet, and OK if the recovery is executed).
The body of the main module correlates the evolution of the
attacks (KO −→ OK) and of the recoveries (KO −→ ENABLED
−→ OK). Furthermore, the main module instantiates the attack-
related Kripke modules passing the attack/recovery variables to
the corresponding use case modules as actual parameters. The
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
usage of NuSMV’s modules for the modelling of the behaviour
of the <<service>> use cases is not motivated by the need of
instantiating these modules more than once in the main module;
but rather by choice of respecting a modular approach and easing
the generation process. Moreover, the main module instantiates
the process modules by passing as actual parameters the misuse
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 11

a
s

F
i
i
a
a

a
b
e
d
l
b
t
t
v

Fig. 5. MUCD-to-Kripke: overview.
G

nd recovery variables since misuse and recoveries have global
cope (i.e., they must be seen from all the service processes).
The third part of the NuSMV model is made of two DE-

INE sections that are related to the definition of: (1) attack
nhibitor variables, used to inhibit one or more attack occurrences
n fine-grained analyses (see Section 5); (2) service mode vari-
bles used to understand if the system is in one service mode or
nother.
Concerning the latter, there are as many boolean variables

s service modes, which are defined according to the QoSlevel
oolean expressions in the tagged values of the <<serviceMod-
Definition>> stereotype. The severity values of the service modes
efine a total ordering relation of the service modes that is trans-
ated into an expression by taking into account the precedence
etween the variables themselves. As an example, if there are
wo service modes, Gx and Gy with severity of Gy greater than
he severity of Gx, such service modes are translated into two
ariables as in Listing 2:

Listing 2: Defining auxiliary variables

Gx := expr_x;
Gy := (!Gx) & expr_y;

where expr_x and expr_y are, respectively, the QoSlevel boolean
expressions associated to the service modes Gx and Gy.

Both these groups of symbols are introduced for technical rea-
sons. They simplify, respectively: (1) the switching between the
MUCD formal model used in the generation and the verification
phases (see Section 5 for further details); (2) the generation of
the properties to check since, without defining such symbols,
the properties should report the whole expressions with QoS
indices.

The last part defines the properties to check. There is one
property per transition in the SAM, hence, if we have n service
modes, there will be n∗(n−1) transitions and properties to check.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js

B

Each property computes the sequence of events that brings from
a service mode Gx to a service mode Gy. In order to compute such
sequence, we need to negate it in the form of a CTL expression
— i.e., it is always true that starting from Gx, all the next steps
present !Gy, where the conditions Gx and Gy are the truth of
the variables as defined above. The CTL formula for checking the
‘‘Gx-to-Gy’’ property is then expressed as in the Listing 3:

Listing 3: Defining CTL formula for the Gx-to-Gy property

CTLSPEC AG (Gx -> AX(!Gy))

Counterexamples-to-SAM. The SAM is a UML state machine,
where the states represent the system service modes, and the
transitions allow the system to evolve through service modes.
The statuses of the SAM are directly generated from the MUCD,
considering the serviceModeDefinition, whereas the transitions
between states are added from the results provided by NuSMV
from the checking of the Kripke model.

In particular, for each service mode in the serviceModeDefi-
nition, a state is generated and stereotyped as <<mode>>; each
state is annotated with the severity tagged value, represent-
ing the severity of the service mode. The transitions between
states are generated by considering the list of counterexamples
that are produced by NuSMV with the checking of the CTL
formulas, for the Gx-to-Gy properties, defined in the Kripke
model. In the case that the Gx-to-Gy property is considered
true by the model-checker, no counterexample is found and
thus there is no feasible sequence of attacks and/or repairs be-
tween the two service modes Gx and Gy. Otherwise, the model
checker produces a detailed description of the steps from Gx to
y.
Such a description is parsed according to an EBNF grammar.

y constructing a proper parser and semantic analyser, the
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

12 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

t
i

o
a
G
p

m
v

t
f
i
t
t
s
f
p

5

5

h
(
v
s
b
a
r
q
p
c
b
n
r
m
t
s
a
o
w
f

(
v
t
p
s
d
s
t

T
t

attacks/recoveries contained in the counterexample are filtered
and then used to annotate the transition in the SAM, with the
path tagged value of the <<scenario>> stereotype.6 A path is a
sequence of misuse cases/recovery strategies states that cause
the change of service mode, where each path item is specified
by a triplet (service,value,step): service is the name of the misuse
case/recovery strategy, value is its state and step is the global
system state (see Tables A.7 and A.8 of the Appendix A).

The Listing 4 reports an excerpt of the NuSMV output related
o our running example, whereas Fig. 6 shows the generated SAM
n its graphical form.

Listing 4: Sample of a counterexample
-- specification AG (GS3 -> AX !GS2) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 12.1 <-
Jamming = FALSE
ManipulateInformation = FALSE
DestroyNode = FALSE
RestoreOriginalCommunication = KO
ChooseAlternativeCommunication = KO
RestoreOriginalData = KO
Reconfigure = KO
proc_ExchangeInformation.avail = 100
proc_ExchangeInformation.integLevel = 100
proc_UpdateMap.avail = 100
proc_UpdateMap.integLevel = 100
DestroyNode_inhibitor = FALSE
ManipulateInformation_inhibitor = FALSE
Jamming_inhibitor = FALSE
GS3 = FALSE
GS2 = FALSE
GS1 = FALSE
GS0 = TRUE
-> State: 12.2 <-
Jamming = TRUE
DestroyNode = TRUE
-> State: 12.3 <-
Jamming = FALSE
DestroyNode = FALSE
RestoreOriginalCommunication = ENABLED
ChooseAlternativeCommunication = ENABLED
Reconfigure = ENABLED
proc_ExchangeInformation.integLevel = 100
proc_ExchangeInformation.avail = 90
proc_UpdateMap.avail = 0
proc_UpdateMap.integLevel = 10
GS3 = TRUE
GS0 = FALSE
-> State: 12.4 <-
ManipulateInformation = TRUE
RestoreOriginalCommunication = OK
ChooseAlternativeCommunication = OK
Reconfigure = OK
-> State: 12.5 <-
ManipulateInformation = FALSE
RestoreOriginalCommunication = KO
ChooseAlternativeCommunication = KO
RestoreOriginalData = ENABLED
Reconfigure = KO
proc_ExchangeInformation.avail = 100
proc_ExchangeInformation.integLevel = 50
proc_UpdateMap.avail = 100
proc_UpdateMap.integLevel = 90
GS3 = FALSE
GS2 = TRUE

The screenshot, in Fig. 6 on the right, shows the property panel
f the Eclipse-Papyrus tool, with the path value (not complete)
ssociated to the transition T_GS3_GS2 – from the service mode
S3 to the service mode GS2, with lower severity. The complete
ath has been manually added in the note symbol attached to

6 The filter consists in cutting the sequence between the relevant service
odes (e.g., from Gx to Gy) also purging the sequence from all the model
ariables evolution not related to attacks and/or recoveries.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
the transition. In particular, the path discovered by the model-
checker represents the situation where both a Jamming and a
DestroyNode has occurred and the corresponding recovery actions
become enabled (step 0); in the next step (step 1), a Manip-
ulateInformation attack is launched and, in the meanwhile, the
recovery actions for the attacks previously occurred are executed;
finally, recovery actions are deactivated (step 2). The effect of
the recovery actions is to re-establish the 100% availability of
the two essential services and increase the integrity level of
updateMap; however, the attack in step 1 affects the integrity
level of the ExchangeInformation which remains equal to 50%.
Thus, the reached service mode GS2 is better than GS3, but it is
still degraded.

Observe that, the paths found by the model-checker maybe
not realistic in the context of the system under analysis. For
instance, according to the approach discussed above both the
recovery strategies RestoreOriginalCommunication and ChooseAl-
ernativeCommunication are executed, whereas it seems straight-
orward that the execution of just the former is sufficient to
mprove the availability of the essential services. In the verifica-
ion phase, the CPS analyst can perform a fine-grained analysis
o check whether both are necessary, or just one of them is
ufficient to improve the QoS indices. The framework is also open
or fine-grained automatic analysis that are future works for this
aper.

. Verification phase

.1. Properties and the query template repository

Once the system services, threats, strategies and service modes
ave been specified, and the survivability assessment model
SAM) automatically generated, then the system is ready for
erification purposes. To this end, we have collected a set of
urvivability properties. Although large, the set is not exclusive
ut expandable. Most of these requirements belong to the surviv-
bility analysis field since they test properties related to system
ecovery. Table 3 presents the properties that are expressed as
ueries that can be proved against the SAM by a solver. Each
roperty has a unique identifier (first column), a name (third
olumn) and specifies a query template (fourth column) that will
e eventually instantiated to the SAM. The query is expressed in
atural language (English), and it is characterised by input pa-
ameters (fifth column) that may represent either service modes,
isuse cases or recovery strategies. Depending on the property

o be assessed, a different type of result will be returned by the
olver (sixth column) that is a boolean value (i.e., true/false),
service mode or a scenario (i.e., a sequence of misuse cases
r recovery strategies). The complete set of properties conforms
hat we call the query template repository (QTR) in the surreal

ramework.
Table 3 shows the properties arranged according to their kind

second column), which guides the interests of the analyst in the
erification phase. In particular, the Security level properties focus
he analysis on the recoverability of service modes, the Threat
roperties allow analysing the effect of threat occurrences on the
ervice modes and the Mitigation properties help the analyst in
eciding on the survivability strategies to be developed in the
ystem. Appendix B formalises all the properties implemented by
he surreal framework and listed in Table 3.

he properties in the running example. Let us recall and interpret
he three questions initially posed in Section 3:
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 13
Fig. 6. SAM of the running example.
1. Is it always possible to recover to the service mode that
provides the highest quality (the best service mode)?

2. Let us suppose the system is offering the highest qual-
ity service and attacks that manipulate information occur,
what is the service quality provided by the system after the
attacks?

3. Let us consider a set of possible survivability strategies that
can be used to improve the service quality in a degraded
service mode. Which is the smallest subset that allows
reaching the best service mode?

The first question can be pinpointed to P1 and can be answered
by instantiating the service mode GS0 (see Fig. 6) to the ⟨SMode⟩
input parameter of the query template. The second question can
be addressed by instantiating P8, i.e., considering the Manipu-
lateInformation misuse case (see Fig. 3). Finally, the last question
can be answered by instantiating three times P14, one for each
degraded service mode, i.e., GS1, GS2 and GS3.

5.2. The surreal framework

As shown in Fig. 2, for the verification phase the surreal
framework encompasses several tools and documents, as follows.

Repository. The QTR is currently implemented as a JSON file
deployed on a web server. The file completely describes each
property and includes an extra line to indicate the URL of the
solver for the query: the Listing 5 reports an excerpt of it, where
only the template of property P8 is shown.

Listing 5: Excerpt of the QTR (JSON implementation)
{
" queries " :[
...
{ " id " : " P8 " ,
" kind " : " Threat " ,
" name " : " Security level threat impact (multiple

occurrence) " ,
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
" description " : " Given the best service mode, which is
the service mode reached by (multiple) "

" occurrence of <M >" ,
" paramlist " [
{ " name " : " M " ,
" stereotype " : " Misuse " }
],
" result " : " ServiceMode " ,
" solver " : " http://localhost:8081/

MultipleThreatImpactSolver.jar " },
...
]
}

Query instantiation GUI. The CPS analyst is now in charge of
choosing the queries of interest and of specifying the parameters
for binding — i.e., selecting the actual model elements according
to the parameter type list. The query instantiation GUI guides
the analyst in accomplishing this task for producing the query
instantiation document (QID). Fig. 7 depicts a snapshot of the GUI
when executed for our running example analysis.

Engine and solvers. The engine is the core of the query analysis
process. It is in charge to read the proper solvers in the QTR and
call them based on the instantiated queries in the QID. More in
details, the engine asks the QTR for the solver, retrieves the URL
and dynamically loads it in the JVM7 to enable the solution of the
instantiated query according to the binding specified in the QID.
As inputs, the solver receives the SAM and an instantiated query
(i.e., a single element of the QID). The solution algorithms of each
solver are different one from another, but three categories have
been identified:

• Type A: some solvers simply explore the SAM (e.g., in un-
derstanding which are the essential services potentially re-
covered by a recovery action);

• Type B: others rely on the exhaustive state space explo-
ration capability of the SAM by the model checker;

7 Java Virtual Machine (Oracle, 2019).
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

14 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

t
t

Fig. 7. Query instantiation GUI executed on the running example.
Fig. 8. The running example — assessment report.
• Type C: others can combine the two approaches above in
effective and efficient solution algorithms. As an example of
this class, Algorithm 1 sketches a pseudo-java solution for
the solve method of the ‘‘Best set of strategies in a service
mode (P14)’’ solver. This solution method uses the first
approach (Type A) to analyse the SAM model by searching
for a sequence of transitions from the queried service mode
to the best one (lines 2–5). In the case of negative response,
there is no recovery strategy, and hence the function ends
returning an empty scenario. Otherwise, a recovery strategy
is generated by considering as actions the paths associated
with the transitions of the sequence.
However, this set may be not minimal.8 Therefore, the
second approach is applied (Type B) and the algorithm

8 The set is not minimal because traditional model checkers do not guarantee
he minimal length of the computed counterexamples: the application of further
echniques is due (e.g., Gastin and Moro, 2007).
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
(lines 7–12) computes the smallest set of recovery actions
by re-analysing the model with Bounded Model Checking
(BMC) technique. More in detail:

– @line 7: the MUCD formal model is generated us-
ing a new transformation component which is built
based on the one developed in the Generation phase.
These components differ in the number of properties to
check (i.e., in P14 query template the model checker is
asked to compute the path from degradedModeName
to bestModeName);

– @line 8: the MUCD formal model is analysed. In this
case, the difference is just in the command line for
launching NuSMV. The -bmc flag is just added (inside
the called method);

– @lines 9–10: they create and invoke the proper method
of the specific query template post-processor to sepa-
rate the requested answer among the other counterex-
amples;
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 15

p
e

a
S
S
e
t
P
e
i
t
p
o
a

6

m
i

d
b
c
k

a
a
s
c
t
s
t
s
s
s
t
s
t
i

i
t
w
m
c
I
D
a
c
s

M
r
a
u
s
t
c
s
s
p
b
a
v
a
a
a
p
a
n
m
t
s
n

– @lines 11–12: at these lines, the transition from de-
gradedModeName to bestModeName is extracted,
parsed, cleaned and added to the returning Scenario.

It is worth noticing that the Query Template solvers of Type B
and Type C require to analyse the MUCD formal model again; the
MUCD-to-Kripke transformation, described in Section 4.2, is engi-
neered to reuse most of the Kripke model automatically obtained
in the generation phase. However, in the verification phase, the
model checker is not used to generate the labelled transitions
of the SAM, but to verify a property on the SAM. Hence, the
Properties section of the Kripke model is different from the one
generated before. Furthermore, while the Process Section is the
same, few differences are present in the Define Section in case the
property deals with one single attack (e.g., P8). In this case, the
evolution of the original MUCD formal model is different because
all the attacks cannot fire, but the one that is the subject of the
analysis. To this aim, the Inhibit Symbols of the Define Section are
changed setting to TRUE all of them but the one related to the
attack that is free to fire.

Finally, and according to Fig. 2, the called solver returns the
results for the engine to generate a textual report. All the reports
related to all the queries in the QID are collected by the engine
that returns them to the user in terms of an assessment report
(AR). Fig. 8 depicts a snapshot of such a GUI for our running
example analysis. Thus, the feedback provided to the analysis are
the following answers:

• P1(SM=GS0):true. It is always possible to recover to the
best service mode.

• P8(M=ManipulateInformation):[GS2]. When manipu-
lation information attacks occur in the best service mode,
then the system degrades to service mode GS2.

• P14(S=GS1):@0:(P)RestoreOriginal
Communication->OK. The best service mode can be re-
stored from the degraded service GS1 by carrying out the
only RestoreOriginalCommunication strategy.

On the extensibility of the solvers. The solution already presented
for the solvers enables easy extensibility of the tool by allowing
developers to define their query templates and related solvers. As
supported by the UML class diagram in Fig. 9, the implementation
of a solver is limited to the classes in the solver.specific
package. More in detail, a solver should use and/or extend only
some classes in the surreal.engine and surreal.samgen
ackages of the surreal framework, as depicted by the class hi-
rarchy.
The main classes that a solver developer must implement

re mainly related to: (1) the core of its solving algorithm —
pecificSolvers’s solve method —, (2) the usage of the
AMHandler containing the services able to query the SAM
nhanced model (Type A and Type C solvers), (3) the implemen-
ation of both SpecificTransformation and SpecificPost-
rocessor in Type B and Type C. Solvers which respectively
xtend the classes of the surreal framework — Transformation
s in charge of generating the SAM while PostProcessor parses
he results of the model checker execution. Finally, as explained
reviously, each solver returns the results, concretely an object
f the class Result, for the engine to generate a textual report
s in Fig. 8.

. The case study

This section describes the application of the approach to a
ore complex case study in order to exhibit its potentialities

n real contexts. The considered system is a smart car in the
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
omain of intelligent transportation systems. The case study has
een extensively described in Stellios et al. (2018), where readers
an find the complete description of the system and a survey of
nown attacks against it.
Modern smart cars are equipped with many sensors, actuators

nd a set of control units (Electronic Control Units — ECUs) that
re able to manage both mechanical and electrical components,
uch as braking, transmission, airbags, infotainment, emergency
all and adaptive cruise control. These components allow the in-
roduction of innovative smart control and assisting subsystems,
uch as Autonomous Driving Systems (ADS), Adaptive Cruise Con-
rol (ACC), collision avoidance and emergency vehicle notification
ystems. All these systems rely on data collected by on-board sen-
ors that automatically generate novel control actions to maintain
peed and safety distance, to immediately brake the car, to alert
he driver with messages transmitted by emergency vehicles and
o on. Smart cars also integrate an Internet connection (mainly
hrough a data SIM card) for infotainment services to enable an
n-car WiFi connection.

A single bus (Controlled Area Network — CAN) – introduced
n the ’80s to reduce the car wiring costs and to share informa-
ion among the different subsystems – connects all the devices
ith the ECU. Furthermore, wireless technologies enable com-
unication with other vehicles (known as Vehicle-to-Vehicle
ommunications) and with the traffic infrastructures (Vehicle-to-
nfrastructure communications). A physical connection (On-Board
iagnostics Socket — ODB) is also present to provide physical
ccess to the whole system. Typically, all these subsystems and
omponents do not include any security mechanism making the
mart car vulnerable to various types of attacks.

isuse case diagram. The misuse case diagram, shown in Fig. 10,
epresents a set of subsystems of the smart car at a high level of
bstraction. As said previously, the depicted diagram is a UML
se case diagram where mainly the use cases are annotated as
ervice, misuse or recovery to identify respectively essen-
ial services, threat scenarios and recovery strategies. The ADS
onsists of two subsystems: the ACC and the collision avoidance
ubsystems. The former is in charge of providing two essential
ervices MaintainSpeed and MaintainDistance, whereas the latter
rovides the EmergencyBraking. The first two services are needed
y the ACC to regulate the speed of the car to automatically keep
minimum distance from the preceding vehicles. Both these ser-
ices rely on the information provided by the on-board sensors,
nd specifically either on a radar, or on a laser detector, or on
camera, and are able to brake the car when it is approaching
slower vehicle, and then accelerates when the traffic condition
ermits it. These services have been modelled as UML use cases
nnotated with the stereotype service. The third service is
eeded to activate the emergency braking of the car (with the
aximum breaking strength) when an obstacle is detected in

he proximity of the car to avoid collisions. The other two sub-
ystems i.e., Internet connectivity services and Emergency vehicle
otification, provide respectively the OnLineInfotainment and the

AlertDriver essential services. The former is initiated by the driver
and it allows him/her to easily control all those systems such
as GPS navigation system, radio, music playing and smartphone
integration using simple and intuitive commands. The latter is
waked up by road sensors and it shows alerts about the presence
of emergency vehicles with the rights of way in the proximity
of the car. Also these two services are use cases of the misuse
case diagram, annotated as service. Furthermore, the diagram
in Fig. 10 contains six misuse cases (use cases annotated with
the stereotype misuse) which can threaten the essential services,
and six recovery strategies which can be applied to recover the
system (use cases annotated with the stereotype recovery).
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

Each misuse case and recovery will be described in the following

16 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

o
a
s
m
m

h
s
T
D
w
t
p
a
a
v
w
m
[

a
s
i
t
t
1
3
v

Algorithm 1 The Best set of strategies in a service mode solution process

1: procedure Result: solve(query: QueryInstantiation, model: SAMHandler)
2: retval = new ScenarioResult()
3: degradedModeName = query.getBindingEntry("S")
4: bestModeName = model.getBestServiceMode()
5: reachable = model.existingNotDegradingPath(degradedMode,bestMode)
6: if reachable == True then
7: P14Transformation t = new P14Transformation(model,degradedModeName,bestModeName)
8: String report = t.execute()
9: Postprocessor pp = new P14Processor()

10: pp.buildEvolution(report)
11: Transition extended = pp.getTransition(degradedModeName,bestModeName)
12: retval.load(extended)

return retval
Fig. 9. Class diagram for extending solvers in the surreal framework.
f this paragraph. The dependencies among use cases are also
nnotated with the stereotype threatens to model the relation-
hips between misuse cases and services, and with the stereotype
itigates to model the relationships between recoveries and
isuses.
According to the ISO 26262 – Functional Safety for Road Ve-

icles (ISO 26262, 2011) – the essential services have to be clas-
ified considering the Automotive Safety Integrity Levels (ASILs).
here are four levels in the ASIL classification: from ASIL A to ASIL
, where ASIL A represents the lowest requirement on the service
hereas ASIL D is the highest. In addition, ASIL QM means that
here are not safety requirements associated to the service. As re-
orted in Table 4, the services considered in this case study have
ll an impact on safety. In particular, the indices tagged-values
ssociated to the essential services correspond to the highest
alue of ASIL (i.e., 100), indicating the highest safety requirement,
here the ASIL enumeration domain {QM, A, B, C,D} has been
apped to an integer interval 0..100 as follows: QM = 0, A =

1, 25], B = [26, 50], C = [51, 75],D = [76, 100]. Moreover, the
vailability of the On-LineInfotainment and AlertDriver essential
ervices is also considered. This index, in fact, is expressed as an
nteger interval 0..6, which specifies the number of ‘‘nines’’ after
he comma, i.e., 0 = 99%, 1 = 99.9%, . . . , 6 = 99.999999%. Just
o interpret the availability values, considering a mission time of
year, the corresponding downtimes are about 30 s (avail=4),
s (avail=5) and 315 ms (avail=6). Thus, the availability initial
alues assigned to the essential services are the highest ones.
There are six misuse cases in the diagram in Fig. 10 (repre-

sented by the use cases annotated with the stereotype misuse).
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
SensorsJamming represents an attack aimed at slowing down (or
interrupting) the distance measurement by means of interference
signals, thus it threatens the maintenance of the distance from the
preceding vehicle and the capability of activating the emergency
braking. BlindRadar also threatens the MaintainDistance service
as the previous attack, but it is aimed to prevent the correct
measurement of the distance from the preceding vehicle. Each
time one of these two attacks are launched, they decrease the
initial ASIL level of the affected services by 20%. TakeControl rep-
resents an attack aiming at taking the control of the ADS system,
e.g., managing speed and distance from the outside. A successful
attack of this type completely reduces the ASIL of the affected
services to 0. InjectCommandsViaWifi and SendCraftedDABdata are
special cases of TakeControl, in the sense that they also aim to
take control of the ADS of the car but they act, indirectly, by
exploiting vulnerabilities of the OnLineInfotainment service. The
former represents an attack conducted by a nearby adversary
who wants to take control of the ADS of the car by injecting
malicious commands through the in-car WiFi; the latter models
an attack conducted by an adversary who creates a fake radio
station and sends crafted Digital Audio Broadcasting (DAB) signals
to compromise the on-line infotainment of the smart cars in the
range. Both these attacks reduce the ASIL of the affected services
to 50% and decrease the availability of the OnLineInfotainment
service of 1 nine. Finally, InjectMessages represents an attack to
the emergency vehicle notification system, where an adversary
injects messages in the traffic control system of high-traffic roads.
This attack reduces the ASIL of the AlertDrive service to 50% and
decreases its availability of 1 nine.
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 17

m
–
r
s
s
2
c
a
r

Fig. 10. Misuse case of the case study.
In the diagram depicted in Fig. 10, six survivability strategies –
odelled as use cases annotated with the stereotype recovery
are defined to mitigate the effects of the misuse cases and

ecover the system. DiscardSensor is introduced to mitigate the
ensor jamming attack, and its effect on the QoS indices of the
ervices affected by the misuse case is to increase their ASIL of
0%. An extreme recovery strategy consists in giving the manual
ontrol to the driver (ManualControl), which can help in case of
dversaries who take the control of the ADS of the car or blind
adar, but with a negative impact on the availability of the On-
LineInfotainment service, reducing it to 0. To contrast the injection
of commands via Wi-Fi, applicable strategies are to reconfigure
the firmware (ReconfigureFirmware) or to disable the in-car WiFi
(DisableWiFi). In both these cases, the strategies improve the ASIL
of the services that is reset to 100%, while the availability of
the OnLineInfotainment service increases by 1 nine only in case
of firmware reconfiguration. Instead, if the adversary tries to
crack the DAB signal, it is possible to disable the DAB receiver
(DisableDABReceiver), which increases the ASIL to 100%. At last,
to recovery the system from fake messages injected against the
emergency vehicle notification system, it is possible to hide the
alerts (HideAlerts) but, as for the manual control, the availability
of the alert service goes to 0.

At the bottom of Table 4, we reported the definition of the
six system service modes which vary from the Optimal to the
WorstDegradation. In particular, the Optimal service mode guar-
antees ASIL D (i.e., greater than 75) for all the essential services
and an availability of at least 6 nines for the OnLineInfotainment
and AlertDriver services. Starting from the best service mode,
two distinct degradations are possible: degradation of Internet
Connectivity and/or of the emergency vehicle notification ser-
vices (DegradedICandEN), and degradation of ADS services (De-
gradedASDSafety). The intersection of both these degradations
is a different service mode, named Degraded. A last acceptable
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
degraded service mode is VeryDegraded, where essential services
guarantee a minimum ASIL B, and the OnLineInfotainment and
AlertDriver services guarantee an availability of at least 5 nines.
The last service mode,WorstDegradation, does not guarantee min-
imum thresholds of the QoS indices. The inclusion relationship
between the six services modes is represented by the Venn’s
diagram shown in Fig. 11.

The SAM model. Fig. 12 depicts the SAM model that has been
automatically generated from the misuse case diagram of Fig. 10
by the SAM generation tool. The generated state machine has 6
states, corresponding to the service modes previously described,
and 24 transitions, corresponding to the possibilities of the sys-
tem to pass through the different service modes.

For sake of space, we do not report the NuSMV model of the
case study; in the following paragraph, we describe the coun-
terexamples to SAM, which are automatically generated to verify
some properties of interest.

System verification. The model previously described has been
verified against the three properties P1 (Reversibility), P8 (Secu-
rity level threat impact) and P14 (Best set of strategies in a service
mode). Excluding the trivial case of the service mode WorstDegra-
dation, we obtained that the reversibility is guaranteed for all the
service modes but VeryDegraded. In fact, the reader can verify
that all the corresponding states except VeryDegraded in the SAM
model (depicted in Fig. 12) have incoming transitions from all the
states with higher severity.

More complex results have been found for the remaining two
properties. In fact, the analysis of the security level threat impact
(P8) highlights that multiple occurrences of TakeControl lead
the system in the state WorstDegradation. Instead, each of the
remaining misuse cases sets ASIL of services to 50 and decreases
their availability one at a time up to unacceptable levels.
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

18 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx
Table 4
Tagged-values specification of the case study.
Stereotype: service Tagged-values: indices (name,kind,values,initial)

MaintainSpeed (ASIL,integerInterval, 0..100,100)
MaintainDistance (ASIL,integerInterval, 0..100,100)
EmergencyBraking (ASIL,integerInterval, 0..100,100)

On-LineInfotainment (ASIL,integerInterval, 0..100,100)
(avail, integerInterval, 0..6, 6)

AlertDriver (ASIL,integerInterval, 0..100,100)
(avail, integerInterval, 0..6, 6)

Stereotype: misuse Tagged-values: affects (index,set,inc,dec)

SensorsJamming (ASIL, –, –, 20)
BlindRadar (ASIL, –, –, 20)
TakeControl (ASIL, 0, –, –)

InjectCommandsViaWiFi (ASIL, 50, –, –)
(avail, –, –, 1)

SendCraftedDABData (ASIL, 50, –, –)
(avail, –, –, 1)

InjectMessages (ASIL, 50, –, –)
(avail, –, –, 1)

Stereotype: recovery Tagged-values: affects (index,set,inc,dec)

DiscardSensor (ASIL, –,20,–)
ManualControl (avail, 0, –, –)

ReconfigureFirmware (ASIL, 100, –,–)
(avail, –, 1, –)

DisableWiFi (ASIL, 100, –, –)
DisableDABReceiver (ASIL, 100, –, –)
HideAlerts (avail, 0, –, –)

Stereotype: serviceModeDefinition, tagged-values: formula

(Optimal,0,(MaintainSpeed.ASIL > 75) & (MaintainDistance.ASIL > 75) &
(EmergencyBraking.ASIL > 75) & (AlertDriver.ASIL > 75) & (AlertDriver.avail > 5) &
(On-LineInfotaintment.ASIL > 75) & (On-LineInfotaintment.avail >5))

(DegradedICandEN,1,(MaintainSpeed.ASIL > 75) & (MaintainDistance.ASIL > 75) &
(EmergencyBraking.ASIL > 75) & (AlertDriver.ASIL > 50) & (AlertDriver.avail > 4) &
(On-LineInfotaintment.ASIL > 50) & (On-LineInfotaintment.avail >4))

(DegradedASDSafety,2,(MaintainSpeed.ASIL > 50) & (MaintainDistance.ASIL > 50) &
(EmergencyBraking.ASIL > 50) & (AlertDriver.ASIL > 75) & (AlertDriver.avail > 5) &
(On-LineInfotaintment.ASIL > 75) & (On-LineInfotaintment.avail >5))

(Degraded,3,(MaintainSpeed.ASIL > 50) & (MaintainDistance.ASIL > 50) &
(EmergencyBraking.ASIL > 50) & (AlertDriver.ASIL > 50) & (AlertDriver.avail > 4) &
(On-LineInfotaintment.ASIL > 50) & (On-LineInfotaintment.avail >4))

(VeryDegraded,4,(MaintainSpeed.ASIL > 25) & (MaintainDistance.ASIL > 25) &
(EmergencyBraking.ASIL > 25) & (AlertDriver.ASIL > 25) & (AlertDriver.avail > 4) &
(On-LineInfotaintment.ASIL > 25) & (On-LineInfotaintment.avail >4))

(WorstDegradation, 5)
Fig. 11. Venn’s diagram representing smart car service modes.
At last, the analysis of the best set of strategies in a service
mode (P14) highlights that the recovery ReconfigureFirmware is
the shortest way – alone or in combination to other countermea-
sures – to recover the system from the states DegradedICandEN,
Degraded, VeryDegraded and WorstDegradation. In fact, this recov-
ery rises up the ASIL to 100, which is the level required by the
best service mode.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
In the last part of this paragraph, we report the execution
times of the conducted analysis. All the results have been ob-
tained working on a laptop equipped with Intel(R) Core(TM)
i7-2677M CPU @ 1.80 GHz and 4 GB of RAM. The SAM generation
has been performed in 25.32 s. The analysis of P1 was almost
instantaneous (since it is of Type A). Concerning P8 and P14
properties, Table 5 reports the minimum, maximum and average
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 19

p
c
t
p
o

7

s
M
b
c
s
c
p
m
c
i
m

Fig. 12. SAM of smart car (automatically generated).
W
a
s
p
t
p
s
a
i
o
t
a
h
a
c
p
t
o
a
a
A
a
l
r
o
v
c
t
l
t
p

Table 5
Execution times.
Property Execution time [s]

min avg max

P8 0.01 0.05 0.07
P14 26.89 36.21 51.04

time. The difference between the execution times of these two
analysis is due to the need in P14 query to find the shortest
counterexample, that we implement with the BMC analysis —
generally more complex and time-consuming than other kinds of
analysis.

These values demonstrate the applicability of the proposed ap-
roach also on complex real-world case studies, as the smart car
ould be. Up to now, the tool analyses each query separately: fu-
ure tool optimisation actions would explore batch executions of
roperties on the same formal model (to exploit single generation
f the state space) and/or parallel executions.

. Assumptions and threats to validity

The presented methodology relies, in our view, on realistic as-
umptions discussed throughout the paper and here summarised.
ainly, the application of the surreal framework is enabled
y the usage of profiled UML models representing both, use
ases and misuse cases, but also service modes of the overall
ystem need to be known and well-defined. These assumptions
an be easily satisfied in realistic applications when domain ex-
erts analyse the survivability from such an elicitation of possible
isuse cases. Starting from this model, the framework is able to
onduct automatic verification, so giving answers to common and
mportant properties in the survivability field. Summarising, the
ain hypothesis supporting the methodology are the following:

HP1: misuses may occur concurrently and are independent;
HP2: misuses are considered as carried out in a single step;
HP3: recovery strategies are independent;
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
HP4: recovery strategies are considered as single-step actions
and are able to recover from a degraded state;

HP5: the QoS levels of each system status, as well as the impact
of the attacks and the improvement due to the mitigation
strategies, are based on the requirement engineer domain
knowledge.

hen using surreal, we have observed that the framework is
ble to cope with the increasing size of the models in realistic
cenarios. In fact, the tree-like structure offered by the Eclipse
lugin helped to the scalability of the approach. Moreover, when
he number of misuses increases, the model can be organised in
ackages for a better visualisation and management. In any case,
urreal leverages, for modelling, state of the art Eclipse tools
nd scales according to them. If some threat exists for these tools
t will apply to surreal as well. The application of the method-
logy and framework to the proposed case study has shown us
he effective management of a complex real-world application
nd its validation. In fact, the manual modelling of the case study
as not been a hard task and the framework well supported this
ctivity. So, we are also confident that more complex case studies
an also be managed. Even if we have investigated fourteen
roperties, the surreal framework can be extended with addi-
ional ones and corresponding solvers. The latter can be carried
ut by downloading the source code of the framework, freely
vailable on the GitHub repository of the project, and developing
custom package, following the instructions given in Section 5.
ccording to our opinion, such development of a new solver is not
challenging task for a medium experienced Java developer. At

ast, it is important to remark that the real impact of attacks and
ecovery strategies during system service may not correspond,
ne by one, to those estimated by the approach. In fact, estimated
alues can be affected by contextual factors that may not be
ompletely captured by the model initially. This threat is common
o all modelling approaches, especially in the initial stages of the
ife-cycle. Hence, there is research on modelling under uncertain-
ies (Ayyub and Klir, 2006). However, as the development process
rogresses, the engineer is equipped with better knowledge and
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

20 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

t
o
b
a
b
d
p
i

w
w
F
M
S
t
J
f
c

p
i
t
t
f
a
m
d

v
T
t
c
t
t
f
n
t
n
t
f
m

c

e
c
e
c
t
t
f
i
p
o

C

D
U
o
i
W
a
S

D

c
t

A

e
B
F
t
e

A

s

A

p
r
i
w
i
d
F
S
i
D

tools, such as system prototypes, that help to gain insights for
calibrating the model, then obtaining more accurate estimations.
In particular, for threat elicitation, discrepancies can derive from
many sources, even from a wrong threat analysis conducted by
experts. Fortunately, in our proposal, the automation capabilities
provided by surreal, both at the modelling and solution levels,
make feasible to re-apply the approach several times in short
time-span. This is useful for updating the UML models, as well
as the estimations, as such knowledge is acquired.

8. Discussion and conclusion

The relevant contribution of this work, in our view, is the
capability of verifying survivability properties. Moreover, the ver-
ification is automatic, as well as the generation of the model
where they are proved, i.e., the SAM. The SAM is a by-product
of the security specification developed by the analyst, mostly in
terms of misuse cases.

Currently, we have conceptually investigated fourteen prop-
erties, all of them implemented in the framework. As explained
in Section 5.2, the set of properties is extensible, also in terms
of tool implementation - Fig. 9 - which confers great potential to
he approach. The properties are expressed abstractly, in terms
f security concepts, e.g., threats, which means that they need to
e interpreted in the problem domain by an expert, e.g., the CPS
nalyst in the case study. Such abstraction level makes more ro-
ust the proposal since it is not bounded to a particular problem
omain or application, but can address CPS at large. However, it
osed the challenge of formalising each property, as explained
n Appendix B.

The methodological and theoretical contexts proposed by the
ork have indeed been made practicable. The surreal frame-
ork has been developed for the Eclipse platform (The Eclipse
oundation, 2019) and applying the model-driven (The Object
anagement Group (OMG), 2018; Selic, 2003) paradigm for the
AM generation tool. The rest of the tools, query instan-
iation GUI, engine and solvers have been developed in
ava (Oracle, 2019) language and they are also integrated in the
ramework, which can be freely downloaded from https://github.
om/stefanomarrone/surreal.
Concerning the surreal architecture, the design choice to im-

lement a lightweight analysis framework with just the Solver
nterface has the following advantages: (a) it gives the freedom to
he user to implement his/her specific solvers with the preferred
echnology; (b) an open architecture supports extensibility of the
ramework with third-party contributions, of new solvers; (c)
d-hoc solvers, focussing on a single Query Template, are more
anageable to design, test and load at run-time in the engine
uring the verification phase.
The surreal framework and the overall approach have been

alidated through a CPS case study in the automotive domain.
he system is exposed to attacks that threaten the safety of
he passengers. The case study makes it clear at least: (a) the
omplexity of survivability specifications in CPS, as manifested in
he specifications in Table 4 and in the complex definition of the
ransitions in Fig. 12, (b) the important role of the CPS analyst
or understanding the problem domain, for example, when s/he
eeds to classify essential services considering the ASILs, and (c)
he need for verifying security properties. Although we decided
ot to present all the details of the system verification, we assess
hree interesting properties, and among others, we conclude that
or different service modes the system could not reach an optimal
ode, i.e., the safety is not guaranteed.
As future work, we want to test the tool framework in various

ase studies and with new properties at hand. Other research
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
fforts will be put on upgrading the methodology and tools by
onsidering quantitative aspects. Services, misuses and recov-
ry actions can also be annotated with quantitative information
apturing the probability of their occurrence and/or success. Fur-
hermore, we plan to integrate this quantitative information into
he MUCD formal model, and use quantitative model checking
rameworks (e.g., PRISM Kwiatkowska et al., 2011). The final aim
s to provide to the CPS analyst not only information about the
ossible sequence of events but also to estimate the probability
f their occurrence, to boost his/her decisional power.

RediT authorship contribution statement

S. Bernardi: Conceptualization, Methodology, Formalization,
efinition and Implementation of the UML Profile, Writing.
. Gentile: Conceptualization, Definition and Implementation
f SAM generation process, Writing. S. Marrone: Conceptual-
zation, Methodology, Framework design and implementation,
riting. J. Merseguer: Supervision, Methodology, Definition

nd Implementation of the UML Profile, Writing. R. Nardone:
oftware, Validation, Case study, Writing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This research was supported by the Spanish Ministry of Sci-
nce, Innovation and Universities [ref. Medrese-RTI2018-098543-
-I00]. The author U. Gentile thanks the University of Napoli
ederico II (Italy) where he started the activities described in
he paper. Finally, the authors want to thank the reviewers and
ditors for their invaluable help to improve the paper.

ppendix A. Survivability profile

The survivability profile, see Fig. 1, is structured in three
eparate packages:

• Misuse case extensions: it includes stereotypes to specify
threats/attacks and protections in UML use case diagrams,
as a result of threats modelling and survivability analysis of
the system. Table A.6 lists all the stereotypes of this package.

• Survivability Assessment Model (SAM) extensions: it includes
stereotypes to specify service modes and changes of service
modes in UML state machine diagrams. This package de-
pends on the previous one. Table A.7 lists all the stereotypes
of this package.

• Survivability types: it includes a set of datatypes/enumera-
tion used to define the previous stereotypes. Table A.8 lists
all types in detail.

ppendix B. Formalisation of the properties

This appendix provides a formalisation of the survivability
roperties that the surreal framework offers currently. We
ealised the need for formalising the properties early while study-
ng their application even to simple examples, and definitively
hile implementing them. In fact, some properties where being

nterpreted by each researcher slightly different. However, it took
iscussions to find a better way of carrying out the formalisation.
inally, we based the formalisation on two definitions: (a) the
AM (survivability assessment model), i.e., a state machine, given
n Definition 1; and (b) the service mode reachability, given in
efinition 2.
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

https://github.com/stefanomarrone/surreal
https://github.com/stefanomarrone/surreal
https://github.com/stefanomarrone/surreal

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 21
Table A.6
Misuse case extensions.
Stereotype/Tag Extension Description

misuse – (Generalisation: serviceMS) A misuse case represents an use case from the point of view of an hostile actor.
Tag
affects It is a set of consequences on the services threatened by the misuse case. Each consequence is expressed in terms of

the (negative) impact on the value of a QoS index.
successProb It is the probability of succeeding.
attackDelay It is the mean time between the attack launching and the intrusion occurrence.

misuser Actor A misuser is an hostile actor: it can be an attacker, an unaware user who uses the system in the wrong way or the
environment that hinders the system being in operation.

mitigates Dependency It is a direct relationship between a strategy that aim at mitigating a misuse case and the misuse case.

resistance – (Generalisation: strategy) It is a strategy aimed at repealing an attack or masking an accidental fault (Ellison et al.,
1999).

recovery – (Generalisation: strategy) It is a strategy aimed at restoring the service after an intrusion or failure (Ellison et al., 1999).
Tag
affects It is a set of consequence on the services that were threatened by the misuse cases mitigated by the strategy. Each

consequence is expressed in terms of (positive) impact on the value of a QoS index.
MTTR (Mean Time To Recover) It is the time to undergo recovery.

recognition – (Generalisation: strategy) It is a strategy aimed at detecting an attack/fault and evaluating the damage (Ellison et al.,
1999).

service Use case It is an essential service provided by the system that must survive even when it is infiltrated, compromised or
crashed (Ellison et al., 1999).

Tag
indices It is a set of Quality of Service (QoS) requirements associated to the service. Each QoS requirement is expressed in

terms of a performance, dependability or security index.

serviceModeDefinition Constraint It is a specification of the global service modes of the system.
Tag
formula It is a set of global service modes. Each service mode is a logical expression that defines the QoS requirements of the

system in terms of minimum/maximum acceptable values for the QoS indexes associated to the essential services.

serviceSM Use case It is an abstract stereotype that may represent either a misuse case or a survivability strategy.

strategy Use case (Generalisation: serviceSM) It is an abstract stereotype that represents a survivability strategy.
Tag
successsProb Probability of succeeding.

threatens Dependency It is a direct relationship between a misuse case that threatens an essential service and the service.
Table A.7
Survivability assessment model extensions.
Stereotype/Tag Extension Description

mode State A global service mode.
Tag
severity The severity level of the service mode: the

higher is the level the more degraded mode is.

scenario Transition The system changes from a global service
mode to another global service mode.

Tag
path It is a sequence of misuse cases/recovery

strategies that causes the change of a service
mode.

Definition 1. A state machine is a tuple SM = ⟨S, T , C, [⟩, π, ω⟩,
where:

• S is the set of service modes.
• T is the set of transitions representing the changes of service

mode.
• C = T ∪ R is the set of (mis)use cases, which is partitioned

into the set of threats T (misuse cases), and the set of
recovery strategies R (strategy use cases).

• The service mode change function [⟩ : T → S × S associates
to each transition t ∈ T a pair of service modes (s, s′), where
s is the leaving service mode and s′ is the entering service
mode. The change from service mode s to service mode s′ is
denoted by: s[t⟩s′.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js
Table A.8
Survivability types.
Datatype/Attribute Description

MSActivation It is a misuse/strategy activation.
Attribute
service The misuse case or the survivability strategy.
value The state value associated to the service.
step The step number, representing a state of the global

system, that includes this service value.

affectConsequence It is the consequence on a QoS index.
Attribute
index The name of the QoS index.
set The value set to the QoS index.
inc The increment to the current value of the QoS index

(positive consequence due to a recovery strategy).
dec The decrement to the current value of the QoS index

(negative consequence due to a misuse case).

duration Mean duration.
Attribute
value Time value.
unit Time unit.

index QoS index.
Attribute
name The name of the QoS index.
kind The type of value domain.
values The value domain.
initial The initial value.

indexKind Index value domain
integerInterval An integer interval.
enum Enumeration.

• The priority function π : S → N assigns a natural number
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

to each service mode: the lower is the priority, the more de-
graded is the service mode. The priority function π defines

22 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

D
a
t

P

S
s
{

r

S

i
t

a total ordering of the service modes and s0 ∈ S such that
π (s0) = maxs∈Sπ (s) is the best service mode.

• Let O = T × {TRUE, FALSE}
⋃

R × {OK , ENABLED, KO} be
the set of the possible threat/recovery strategy states, the
function ω : T → On assigns to each transition t ∈ T , where
s[t⟩s′, a sequence of threat/recovery strategy occurrences
(τ1, . . . , τn), where τi ∈ O, that causes the change of service
mode from s to s′. We denote by |(τ , ω(t))|, the number of
occurrences of τ ∈ O in the sequence occurrence ω(t) of
transition t ∈ T .

efinition 2. Let SM = ⟨S, T , C, [⟩, π, ω⟩ be a state machine,
service mode s′ ∈ S is reachable from a service mode s ∈ S if

here exists a sequence of transitions σ ≡ (t0, t1, . . . , tn), where
ti ∈ T , i = 0, . . . , n, that leads from s to s′, i.e.:

s[t0⟩s0[t1⟩s1[. . . ⟩sn−1[tn⟩s′ ≡ s[σ ⟩s′.

In the following, each query template or property, listed in
Table 3, is formally defined using the notation just introduced.

Property 1 (Reversibility). Let SM = ⟨S, T , C, [⟩, π, ω⟩ be a state
machine and x ∈ S a service mode. Then, it is always possible
to recover to x iff ∀s ∈ SM \ {x} such that π (s) < π (x), ∃σ ≡

(t0, t1, . . . , tn) : s[σ ⟩x.

roperty 2 (Strong reversibility). Let SM = ⟨S, T , C, [⟩, π, ω⟩ be
a state machine and x ∈ S a service mode. Then, it is always
possible to recover to x without further degradation iff ∀s ∈

SM \ {x} such that π (s) < π (x), ∃σ ≡ (t0, t1, . . . , tn) : s[σ ⟩x ≡

s[t0⟩s0[t1⟩s1[. . . ⟩sn−1[tn⟩x and ∀i = 0, . . . , n − 1 : π (s) < π (si).

Property 3 (Recoverability). Let SM = ⟨S, T , C, [⟩, π, ω⟩ be a state
machine, s, s′ ∈ S two service modes, where π (s′) < π (s). Then, it
is always possible to recover to s from s′ iff ∃σ ≡ (t0, t1, . . . , tn) :

s[σ ⟩s′.

Property 4 (Strong recoverability). Let SM = ⟨S, T , C, [⟩, π, ω⟩

be a state machine and s, s′ ∈ S two service modes, where
π (s′) < π (s). Then, it is always possible to recover to s from s′
without further degradation iff ∃σ ≡ (t0, t1, . . . , tn) : s′[σ ⟩s ≡

s′[t0⟩s0[t1⟩s1[. . . ⟩sn−1[tn⟩s and ∀i = 0, . . . , n − 1 : π (s′) < π (si).

Property 5 (Threat consequence — single occurrence). Let SM =

⟨S, T , C, [⟩, π, ω⟩ be a state machine and τ ∈ T a threat. Then, a
single occurrence of τ ≡ (τ , TRUE) provokes a system degrada-
tion iff ∃t ∈ T : si[t⟩sj such that:

1. π (sj) < π (si),
2. |(τ , ω(t))| = 1, and
3. ∀τ ′

∈ T \ {τ } : (τ ′, TRUE) ̸∈ ω(t).

Property 6 (Threat consequence — multiple occurrence). Let SM =

⟨S, T , C, [⟩, π, ω⟩ be a state machine and τ ∈ T a threat. Then,
a multiple occurrence of τ ≡ (τ , TRUE) provokes a system
degradation iff ∃t ∈ T : si[t⟩sj such that:

1. π (sj) < π (si),
2. |(τ , ω(t))| ≥ 1, and
3. ∀τ ′

∈ T \ {τ } : (τ ′, TRUE) ̸∈ ω(t).

Property 7 (Security level threat impact — single occurrence). Let
M = ⟨S, T , C, [⟩, π, ω⟩ be a state machine, s0 ∈ S the best
ervice mode and τ ∈ T a threat. Let us denote by target(s0) =

s ∈ SM | ∃t ∈ T : s0[t⟩s}, the set of service modes that can be
eached directly from s0. Then, the set Ŝ ⊆ target(s0):

ˆ = {s | ∃t ∈ T : s0[t⟩s, ∃ (τ , TRUE) ∈ ω(t) : |((τ , TRUE), ω(t))|
= 1, ̸ ∃ τ ′

∈ T \ {τ } : (τ ′, TRUE) ∈ ω(t)}

s the set of service modes reached by a single occurrence of the
hreat τ ∈ T from the best service mode s .
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.js

0

Property 8 (Security level threat impact — multiple occurrence). Let
SM = ⟨S, T , C, [⟩, π, ω⟩ be a state machine, s0 ∈ S the best
service mode and τ ∈ T a threat. Let us denote by target(s0) =

{s ∈ SM | ∃t ∈ T : s0[t⟩s}, the set of service modes that can be
reached directly from s0. Then, the set Ŝ ⊆ target(s0):

Ŝ = {s | ∃t ∈ T : s0[t⟩s, ∃ (τ , TRUE) ∈ ω(t) : |((τ , TRUE), ω(t))|
≥ 1, ̸ ∃ τ ′

∈ T \ {τ } : (τ ′, TRUE) ∈ ω(t)}

is the set of service modes reached by multiple occurrences of the
threat τ ∈ T from the best service mode s0.

Property 9 (Threat scenario). Let SM = ⟨S, T , C, [⟩, π, ω⟩ be a
state machine, s0 ∈ S the best service mode and s ∈ S, s ̸= s0
a service mode. Given a sequence of transitions σ ≡ (t0, . . . , tn)
that leads from s0 to s, i.e., s0[σ ⟩s, the set T (σ) = {τ ∈ T :

∃ti ∈ σ , (τ , TRUE) ∈ ω(ti)} contains the threats that cause
the service degradation to s from the best service s0. Then, the
smallest set of threats T ∗ that leads to s from s0 satisfies the
equality:

|T |
∗

= min
σ :s0[σ ⟩s

{|T (σ)|}

Property 10 (Recovery feasibility). Let SM = ⟨S, T , C, [⟩, π, ω⟩ be
a state machine and ρ ∈ R a recovery strategy. Then, ρ is feasible
iff ∃t ∈ T : s[t⟩s′ where π (s) < π (s′) such that ∃(ρ,OK) ∈ ω(t).

Property 11 (Multiple recovery). Let SM = ⟨S, T , C, [⟩, π, ω⟩ be a
state machine and ρ1, . . . , ρn ∈ R, n recovery strategies. Then,
the n survivability strategies are always needed together iff ∀t ∈

T : s[t⟩s′ where π (s) < π (s′) such that ∃i ∈ {1, . . . , n} : (ρi,OK) ∈

ω(t) H⇒ ∀j ∈ {1, . . . , n} \ {i} : (ρj,OK) ∈ ω(t).

Property 12 (Recovery mutual exclusion). Let SM = ⟨S, T , C, [⟩,

π, ω⟩ be a state machine and ρ1, . . . , ρn ∈ R, a subset of recovery
strategies. Given a transition t ∈ T : s[t⟩s′, let us denote by
R(t) = {ρ ∈ R : (ρ,OK) ∈ ω(t)}, the set of recovery strategies
that causes the change of service mode from s to s′. Then, the
subset of recovery strategies are never carried out together iff:

̸ ∃s ∈ S : {ρ1, . . . , ρn} ⊆

⋃
t∈T :s[t⟩s′

R(t).

Property 13 (Threat/recovery effectiveness). Let SM = ⟨S, T , C, [⟩,

π, ω⟩ be a state machine, τ ∈ T a threat and ρ ∈ R a recovery
strategy. Then, the strategy ρ is effective to mitigate the threat τ

iff

∀s ∈ S, ∀t ∈ T : s[t⟩s′, (τ , TRUE) ∈ ω(t),
̸ ∃(τ ′, TRUE) ∈ ω(t), τ ′

̸= τ H⇒

∃t ′ ∈ T : s′[t ′⟩s′′, (r,OK) ∈ ω(t ′), ̸ ∃(r ′,OK) ∈ ω(t ′), r ′
̸= r

where π (s′) < π (s′′).

Property 14 (Best set of strategies in a service mode). Let SM =

⟨S, T , C, [⟩, π, ω⟩ be a state machine, s0 ∈ S the best service
mode and sn ∈ S, sn ̸= s0 a service mode. Given a sequence
of transitions σ ≡ (tn, . . . , t1) (ti ∈ T , i = 1, . . . , n) that leads
sn to s0, i.e., sn[tn⟩sn−1[. . . ⟩s1[t1⟩s0 ≡ sn[σ > s0, where π (si) <

π (si−1), i = n, . . . , 1, let R(σ) = {ρ ∈ R | ∃ti ∈ σ : (ρ,OK) ∈

ω(ti)} be the set of recovery strategies that occurred in σ . Then,
the smallest set of strategies R∗ that leads to the best service
mode satisfies the equality:

|R|
∗

= min
σ :s[σ ⟩s0

{|R(σ)|}
and formal verification of survivability properties: Application to cyber–physical
s.2020.110746.

where |X | is the cardinality of the set X .

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 23
Appendix C. Kripke model of the running example

This appendix includes the complete Kripke model of the running example.

-- Process modules

MODULE ExchangeInformation(p_Jamming ,p_ChooseAlternativeCommunication ,p_RestoreOriginalCommunication ,
p_ManipulateInformation ,p_RestoreOriginalData)

VAR
avail: 0..100;
integLevel: 0..100;

ASSIGN
init(avail) := 100;
init(integLevel) := 100;
next(avail) := case
(p_Jamming = TRUE) & (p_ChooseAlternativeCommunication = KO) & (avail >= (10 + 0)): avail - 10;
(p_ChooseAlternativeCommunication = OK) & (avail <= (100 - 10)): avail + 10;
(p_Jamming = TRUE) & (p_RestoreOriginalCommunication = KO) & (avail >= (10 + 0)): avail - 10;
(p_RestoreOriginalCommunication = OK) & (avail < 100): 100;
TRUE: avail;

esac;
next(integLevel) := case
(p_ManipulateInformation = TRUE) & (p_RestoreOriginalData = KO) & (integLevel > 50): 50;
(p_RestoreOriginalData = OK) & (integLevel < 100): 100;
TRUE: integLevel;

esac;

MODULE UpdateMap(p_DestroyNode ,p_Reconfigure ,p_ManipulateInformation ,p_RestoreOriginalData)
VAR
avail: 0..100;
integLevel: 0..100;

ASSIGN
init(avail) := 100;
init(integLevel) := 100;
next(avail) := case
(p_DestroyNode = TRUE) & (p_Reconfigure = KO) & (avail > 0): 0;
(p_Reconfigure = OK) & (avail < 100): 100;
TRUE: avail;

esac;
next(integLevel) := case
(p_DestroyNode = TRUE) & (p_Reconfigure = KO) & (integLevel > 10): 10;
(p_Reconfigure = OK) & (integLevel < 90): 90;
(p_ManipulateInformation = TRUE) & (p_RestoreOriginalData = KO) & (integLevel > 50): 50;
(p_RestoreOriginalData = OK) & (integLevel < 100): 100;
TRUE: integLevel;

esac;

-- Main module
MODULE main
VAR
Jamming: boolean;
ManipulateInformation: boolean;
DestroyNode: boolean;
RestoreOriginalCommunication: {ENABLED, OK, KO};
ChooseAlternativeCommunication: {ENABLED, OK, KO};
RestoreOriginalData: {ENABLED, OK, KO};
Reconfigure: {ENABLED, OK, KO};
proc_ExchangeInformation: ExchangeInformation(Jamming,ChooseAlternativeCommunication ,

RestoreOriginalCommunication , ManipulateInformation ,RestoreOriginalData);
proc_UpdateMap: UpdateMap(DestroyNode ,Reconfigure ,ManipulateInformation ,RestoreOriginalData);

ASSIGN
init(Jamming) := FALSE;
next(Jamming) := case
(Jamming_inhibitor = TRUE): FALSE;
(Jamming_inhibitor = FALSE): {TRUE, FALSE};

esac;
init(ManipulateInformation) := FALSE;
next(ManipulateInformation) := case
(ManipulateInformation_inhibitor = TRUE): FALSE;
(ManipulateInformation_inhibitor = FALSE): {TRUE, FALSE};

esac;
init(DestroyNode) := FALSE;
next(DestroyNode) := case
(DestroyNode_inhibitor = TRUE): FALSE;
(DestroyNode_inhibitor = FALSE): {TRUE, FALSE};

esac;
init(RestoreOriginalCommunication) := KO;
init(ChooseAlternativeCommunication) := KO;
init(RestoreOriginalData) := KO;
init(Reconfigure) := KO;
next(RestoreOriginalCommunication) := case
(RestoreOriginalCommunication = KO) & ((Jamming = TRUE)): ENABLED;
(RestoreOriginalCommunication = ENABLED): {ENABLED, OK};
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling and formal verification of survivability properties: Application to cyber–physical
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.jss.2020.110746.

24 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

A

A

B

B

B

B

B

B

B

(RestoreOriginalCommunication = OK): KO;
TRUE: RestoreOriginalCommunication;

esac;
next(ChooseAlternativeCommunication) := case
(ChooseAlternativeCommunication = KO) & ((Jamming = TRUE)): ENABLED;
(ChooseAlternativeCommunication = ENABLED): {ENABLED, OK};
(ChooseAlternativeCommunication = OK): KO;
TRUE: ChooseAlternativeCommunication;

esac;
next(RestoreOriginalData) := case
(RestoreOriginalData = KO) & ((ManipulateInformation = TRUE)): ENABLED;
(RestoreOriginalData = ENABLED): {ENABLED, OK};
(RestoreOriginalData = OK): KO;
TRUE: RestoreOriginalData;

esac;
next(Reconfigure) := case
(Reconfigure = KO) & ((DestroyNode = TRUE)): ENABLED;
(Reconfigure = ENABLED): {ENABLED, OK};
(Reconfigure = OK): KO;
TRUE: Reconfigure;

esac;

-- Inhibit Symbols
DEFINE
Jamming_inhibitor := FALSE;
ManipulateInformation_inhibitor := FALSE;
DestroyNode_inhibitor := FALSE;

-- SM Symbols
DEFINE
GS0 := (proc_ExchangeInformation.avail > 90) & (proc_ExchangeInformation.integLevel > 60) &

(proc_UpdateMap.avail > 90) & (proc_UpdateMap.integLevel > 60);
GS1 := !(GS0) & (proc_ExchangeInformation.avail > 80) &

(proc_ExchangeInformation.integLevel > 60) & (proc_UpdateMap.avail > 80) &
(proc_UpdateMap.integLevel > 60);

GS2 := !(GS0 | GS1) & (proc_ExchangeInformation.avail > 50) &
(proc_ExchangeInformation.integLevel > 30) & (proc_UpdateMap.avail > 50) &
(proc_UpdateMap.integLevel > 30);

GS3 := !(GS0 | GS1 | GS2);

-- Properties
CTLSPEC AG (GS0 -> AX(!GS1))
CTLSPEC AG (GS0 -> AX(!GS2))
CTLSPEC AG (GS0 -> AX(!GS3))
CTLSPEC AG (GS1 -> AX(!GS0))
CTLSPEC AG (GS1 -> AX(!GS2))
CTLSPEC AG (GS1 -> AX(!GS3))
CTLSPEC AG (GS2 -> AX(!GS0))
CTLSPEC AG (GS2 -> AX(!GS1))
CTLSPEC AG (GS2 -> AX(!GS3))
CTLSPEC AG (GS3 -> AX(!GS0))
CTLSPEC AG (GS3 -> AX(!GS1))
CTLSPEC AG (GS3 -> AX(!GS2))

References

Alexander, I., 2003. Misuse cases: use cases with hostile intent. IEEE Softw. 20,
58–66.

lrajeh, D., Kramer, J., Russo, A., Uchitel, S., 2013. Elaborating requirements using
model checking and inductive learning. IEEE Trans. Softw. Eng. 39, 361–383.

yyub, Bilal, Klir, George, 2006. Uncertainty Modeling and Analysis in
Engineering and the Sciences. Chapman & Hall, Taylor and Francis Group.

ehm, P., Benoit, P., Faivre, A., Meynadier, J.M., 1999. Météor: A successful
application of B in a large project. In: Lecture Notes in Computer Science.
In: (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 1708, pp. 369–387.

enerecetti, M., De Guglielmo, R., Gentile, U., Marrone, S., Mazzocca, N., Nar-
done, R., Peron, A., Velardi, L., Vittorini, V., 2017. Dynamic state machines
for modelling railway control systems. Sci. Comput. Program. 133, 116–153.

ernardi, S., Dranca, L., Merseguer, J., 2016. A model-driven approach to sur-
vivability requirement assessment for critical systems. Proc. Inst. Mech. Eng.
Part O: J. Risk Reliab. 230, 485–501.

ernardi, S., Merseguer, J., Petriu, D.C., 2013. Model-Driven Dependability
Assessment of Software Systems. Springer Berlin Heidelberg.

iagi, M., Carnevali, L., Tarani, F., Vicario, E., 2018. Model-based quantitative
evaluation of repair procedures in gas distribution networks. ACM Trans.
Cyber-Phys. Syst. 3, 19:1–19:26.

iere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y., 2003. Bounded model
checking. Adv. Comput. 58, 117–148.

iggs, G., Sakamoto, T., Kotoku, T., 2016. A profile and tool for modelling
safety information with design information in SysML. Softw. Syst. Model.
15, 147–178.

Bures, T., Weyns, D., Schmer, B., Tovar, E., Boden, E., Gabor, T., Gerostathopou-
los, I., Gupta, P., Kang, E., Knauss, A., Patel, P., Rashid, A., Ruchkin, I.,
Sukkerd, R., Tsigkanos, C., 2017. Software engineering for smart cyber-
physical systems: Challenges and promising solutions. SIGSOFT Softw. Eng.
Notes 42, 19–24.

Calinescu, R., Kikuchi, S., Johnson, K., 2012. Compositional reverification of prob-
abilistic safety properties for large-scale complex it systems. In: Calinescu, R.,
Garlan, D. (Eds.), Large-Scale Complex IT Systems. Development, Operation
and Management. Springer, Berlin, Heidelberg, pp. 303–329.

CENELEC, 2011. CENELEC EN 50128 Railway Applications - Communication,
Signalling and Processing Systems - Software for Railway Control and
Protection Systems.

Cheng, Betty HC, Atlee, Joanne M, 2007. Research directions in requirements
engineering. Future of Software Engineering (FOSE’07). IEEE, pp. 285–303.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A., 2002. NuSMV 2: An open source tool for symbolic
model checking. Lecture Notes in Comput. Sci. 2404, 359–364.

Dörr, J, Kerkow, D, Von Knethen, A, Paech, B, 2003. Eliciting efficiency require-
ments with use cases. In: Ninth international workshop on requirements
engineering: foundation for software quality. In conjunction with CAiSE. 3.

Drago, A., Marrone, S., Mazzocca, N., Nardone, R., Tedesco, A., Vittorini, V., 2019.
A model-driven approach for vulnerability evaluation of modern physical
protection systems. Softw. Syst. Model. 18, 523–556.

Eisenberg, D.A., Alderson, D.L., Kitsak, M., Ganin, A., Linkov, I., 2018. Network
foundation for command and control (c2) systems: Literature review. IEEE
Access 6, 68782–68794.

Ellison, R.J., Linger, R.C., Longstaff, T.A., Mead, N.R., 1999. Survivable network
system analysis: A case study. IEEE Softw. 16, 70–77.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling and formal verification of survivability properties: Application to cyber–physical
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.jss.2020.110746.

http://refhub.elsevier.com/S0164-1212(20)30171-0/sb1
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb1
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb2
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb2
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb3
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb3
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb5
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb5
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb5
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb6
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb6
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb6
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb8
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb8
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb8
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb9
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb9
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb10
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb10
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb10
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb13
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb13
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb13
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb15
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb15
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb15
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb16
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb16
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb16
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb17
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb17
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb17
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb18
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb18
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb18
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb19
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb19

S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx 25
Fiterău-Broştean, P., Janssen, R., Vaandrager, F., 2016. Combining model learning
and model checking to analyze TCP implementations. In: A. Chaud-
huri, Swaratand Farzan (Ed.), Computer Aided Verification. Springer
International Publishing, Cham, pp. 454–471.

Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., Sezer, S., 2017. Stpa-safesec:
Safety and security analysis for cyber-physical systems. J. Inf. Secur. Appl.
34, 183–196.

Friedenthal, S., Moore, A., Steiner, R., 2008. A Practical Guide to SysML: Systems
Modeling Language. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P., 2001. Model checking
early requirements specifications in Tropos. In: Proceedings Fifth IEEE
International Symposium on Requirements Engineering, pp. 174–181.

Gargantini, A., Heitmeyer, C., 1999. Using model checking to generate tests from
requirements specifications. SIGSOFT Softw. Eng. Notes 24, 146–162.

Gastin, P., Moro, P., 2007. Minimal counterexample generation for SPIN. In:
Bošnački, D., Edelkamp, S. (Eds.), Model Checking Software. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 24–38.

Gentile, U., Bernardi, S., Marrone, S., Merseguer, J., Vittorini, V., 2017. A
model driven approach for assessing survivability requirements of critical
infrastructures. J. High Speed Netw. 23, 175–186.

Georg, G., Anastasakis, K., Bordbar, B., Houmb, S.H., Ray, I., Toahchoodee, M.,
2010. Verification and trade-off analysis of security properties in UML system
models. IEEE Trans. Softw. Eng. 36, 338–356.

Ghallab, M., Nau, D., Traverso, P., 2004. Automated planning: Theory and practice.
Gharib, M., Lollini, P., Ceccarelli, A., Bondavalli, A., 2019. Engineering func-

tional safety requirements for automotive systems: A cyber-physical-social
approach. In: Yu, D., Nguyen, V., Jiang, C. (Eds.), 19th IEEE International
Symposium on High Assurance Systems Engineering, HASE 2019, Hangzhou,
China, January (2019) 3-5. IEEE, pp. 74–81.

Goertzel, K., Feldman, L., 2009. Software survivability: Where safety and security
converge. In: AIAA Infotech@Aerospace Conference.

Houmb, S.H., Georg, G., St, S.H., Collins, F., France, R., 2007. An integrated security
verification and security solution design trade-off analysis. In: Integrating
Security and Software Engineering: Advances and Future Visions. IDEA Group
Publishing, pp. 190–219.

Howard, G., Butler, M., Colley, J., Sassone, V., 2017. Formal analysis of safety
and security requirements of critical systems supported by an extended stpa
methodology. In: 2017 IEEE European Symposium on Security and Privacy
Workshops (EuroS PW). pp. 174–180.

Humayed, A., Lin, J., Li, F., Luo, B., 2017. Cyber-physical systems security – a
survey. IEEE Internet Things J. 4, 1802–1831.

International Electrotechnical Commission, 1998. IEC 61508: Functional Safety
of Electrical/electronic/programmable electronic safety-related systems.

ISO 26262, 2011. Road Vehicles - Functional Safety. ISO.
Jürjens, J., 2002. Umlsec: Extending UML for secure systems development. In:

Proceedings of the 5th International Conference on the Unified Modeling
Language, UML ’02. Springer-Verlag, London, UK, pp. 412–425.

Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S.,
Slobodová, A., Taylor, C., Frolov, V., Reeber, E., Naik, A., 2009. Replacing
testing with formal verification in intel R⃝ coretm i7 processor execution
engine validation. In: Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
In: LNCS, vol. 5643, pp. 414–429.

Knight, J.C., Strunk, E.A., 2004. Achieving critical system survivability through
software architectures. In: de Lemos, R., Gacek, C., Romanovsky, A. (Eds.),
Architecting Dependable Systems II. Springer, Berlin, Heidelberg, pp. 51–78.

Koh, K., Seong, P., 2009. SMV model-based safety analysis of software
requirements. Reliab. Eng. Syst. Saf. 94, 320–331.

Kushnet, D., 2013. The real story of stuxnet. IEEE Spectr..
Kwiatkowska, M., Norman, G., Parker, D., 2011. PRISM 4.0: Verification of

probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (Eds.), Proc.
23rd International Conference on Computer Aided Verification (CAV’11). In:
LNCS, vol. 6806, Springer, pp. 585–591.

Lagarde, F., Espinoza, H., Terrier, F., Gérard, S., 2007. Improving UML profile
design practices by leveraging conceptual domain models. In: 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2007).
ACM, Atlanta (USA), pp. 445–448.

Leveson, N., Dulac, N., 2005. Safety and risk-driven design in complex systems-
of-systems. In: A Collection of Technical Papers - 1st Space Exploration
Conference: Continuing the Voyage of Discovery, Vol. 1. pp. 584–608.

Lodderstedt, T., Basin, D., Doser, J., 2002. SecureUML: A UML-based modeling
language for model-driven security. In: Jézéque, l.J., Hussmann, H., Cook, S.
(Eds.), The Unified Modeling Language. UML 2002. In: Lecture Notes in

Lopatkin, I., Iliasov, A., Romanovsky, A., Prokhorova, Y., Troubitsyna, E., 2011.
Patterns for representing FMEA in formal specification of control systems.
In: Proceedings of IEEE International Symposium on High Assurance Systems
Engineering, pp. 146–151.

Lund, M.S., Solhaug, B., Stølen, K., 2011. Foundations of Security Analysis and
Design VI. Springer-Verlag, Berlin, Heidelberg, pp. 231–274.

Marrone, S., Rodrí, R., Nardone, R., Flammini, F., Vittorini, V., 2015. On synergies
of cyber and physical security modelling in vulnerability assessment of
railway systems. Comput. Electr. Eng. 47, 275–285.

Masrur, A., Kit, M., Matě, V., Bures, T., Hardt, W., 2016. Component-based
design of cyber-physical applications with safety-critical requirements.
Microprocess. Microsyst. 42.

Méry, D., Singh, N., 2015. Analyzing requirements using environment modelling.
In: Lecture Notes in Computer Science. In: (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9185, pp.
345–357.

Mouratidis, H., 2011. Secure Software Systems Engineering: The Secure Tropos
Approach (Invited Paper), Vol. 6. JSW.

OMG-MARTE, 2011. UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems. Version 1.1, formal/11-06-02, OMG.

Oracle, 2019. Website. URL: https://www.oracle.com/technetwork/java/index.
html.

Pavlidis, M., Islam, S., Mouratidis, H., 2012. A CASE tool to support automated
modelling and analysis of security requirements, based on secure tropos.
In: Nurcan, S. (Ed.), IS Olympics: Information Systems in a Diverse World.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 95–109.

Raja Ramesh, M., Satyananda Reddy, C., 2016. A survey on security requirement
elicitation methods: Classification, merits and demerits. Int. J. Appl. Eng. Res.
11, 64–70.

Rodríguez, R.J., Merseguer, J., Bernardi, S., 2014. Modelling security of critical
infrastructures: A survivability assessment. Comput. J..

Roudier, Y., Idrees, M., Apvrille, L., 2013. Towards the model-driven engineering
of security requirements for embedded systems. In: 2013 3rd Interna-
tional Workshop on Model-Driven Requirements Engineering, MoDRE 2013
- Proceedings. pp. 55–64.

Scholz, S., Thramboulidis, K., 2013. Integration of model-based engineering with
system safety analysis. Int. J. Ind. Syst. Eng. 15, 193–215.

Selic, B., 2003. The pragmatics of model-driven development. IEEE Softw. 20,
19–25.

Selic, B., 2007. A systematic approach to domain-specific language design using
UML. In: Tenth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2007), 7-9 May (2007). IEEE Computer Society,
Santorini Island, Greece, pp. 2–9.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J., 2002. Automated generation
and analysis of attack graphs. In: Proceedings of the IEEE Computer Society
Symposium on Research in Security and Privacy, pp. 273–284.

Song, Jingyu, Zhao, Haidan, Li, Xueliang, Yang, Yi, Liu, Chang, Li, Haifeng, 2019.
A new software failure analysis method based on the system reliability
modeling. In: 2019 IEEE 8th Joint International Information Technology and
Artificial Intelligence Conference (ITAIC). IEEE, pp. 1143–1149.

Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., Lopez, J., 2018. A survey
of iot-enabled cyberattacks: Assessing attack paths to critical infrastructures
and services. IEEE Commun. Surv. Tutor. 20, 3453–3495.

The Eclipse Foundation, 2019. Website. URL: http://www.eclipse.org/oxygen/.
The Object Management Group (OMG), 2018. Model-Driven Architecture Spec-

ification and Standardisation. Technical Report, URL: http://www.omg.org/
mda/.

Troubitsyna, E., 2008. Elicitation and specification of safety requirements. In: 3rd
International Conference on Systems, ICONS 2008. pp. 202–207.

Ullah, S., Iqbal, M., Khan, A.M., 2011. A survey on issues in non-functional
requirements elicitation. In: International Conference on Computer Networks
and Information Technology. pp. 333–340.

UML2, 2017. Unified Modeling Language: Infrastructure. Version 2.5.1, OMG
document: formal/2017-12-05.

Vilela, J., Castro, J., Martins, L., Gorschek, T., 2017. Integration between require-
ments engineering and safety analysis: A systematic literature review. J. Syst.
Softw. 125, 68–92.

Vittorini, V., Marrone, S., Mazzocca, N., Nardone, R., Drago, A., 2015. A model-
driven process for physical protection system design and vulnerability
evaluation. Top. Saf. Risk Reliab. Qual. 27, 143–169.

Wang, H., Zhong, D., Zhao, T., 2019. Avionics system failure analysis and
verification based on model checking. Eng. Fail. Anal. 105, 373–385.

Yoo, J., Kim, T., Cha, S., Lee, J.S., Son, H., 2005. A formal software requirements
specification method for digital nuclear plant protection systems. J. Syst.
Softw. 74, 73–83.

Zacchia Lun, Y., D’Innocenzo, A., Smarra, F., Malavolta, I., Benedetto, M., 2018.
State of the art of cyber-physical systems security: an automatic control
perspective. J. Syst. Softw. 149.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling and formal verification of survivability properties: Application to cyber–physical
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.jss.2020.110746.

Computer Science, vol. 2460, Springer, Berlin, Heidelberg.

http://refhub.elsevier.com/S0164-1212(20)30171-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb21
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb21
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb21
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb22
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb22
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb22
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb24
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb24
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb25
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb25
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb25
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb26
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb26
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb26
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb27
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb27
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb27
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb28
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb30
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb30
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb33
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb33
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb34
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb34
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb35
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb38
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb38
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb38
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb39
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb39
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb40
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb46
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb46
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb47
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb47
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb47
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb48
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb48
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb48
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb51
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb51
https://www.oracle.com/technetwork/java/index.html
https://www.oracle.com/technetwork/java/index.html
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb53
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb53
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb53
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb53
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb54
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb54
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb54
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb57
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb57
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb58
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb58
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb59
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb59
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb59
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb59
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb62
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb62
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb62
http://www.eclipse.org/oxygen/
http://www.omg.org/mda/
http://www.omg.org/mda/
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb66
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb66
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb66
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb67
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb67
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb68
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb68
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb68
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb69
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb69
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb69
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb70
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb70
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb71
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb71
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb71
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb72
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb72
http://refhub.elsevier.com/S0164-1212(20)30171-0/sb72

26 S. Bernardi, U. Gentile, S. Marrone et al. / The Journal of Systems & Software xxx (xxxx) xxx

s
c
a

Simona Bernardi is an Assistant Professor in the
Department of Computer Science and Systems En-
gineering at the University of Zaragoza, Spain. She
received a MS degree in mathematics and a Ph.D.
degree in computer science, in 1997 and 2003, re-
spectively, both from the University of Torino, Italy.
Her research interests are in the area of software
engineering, in particular model driven engineering,
verification and validation of performance, dependabil-
ity and survivability software requirements, and formal
methods for the modelling and analysis of software

ystems. She has served as a referee for international journals and as a program
ommittee member for several international conferences and workshops. She is
member of the IEEE-SMC Homeland Security technical committee.

Ugo Gentile got his Ph.D. in Computer and Automation
Engineer at the University of Naples Federico II focusing
his research on verification and validation of safety-
critical systems. After being a senior postdoctoral
researcher at the European Organization for Nuclear
Research (CERN) (Geneva, Switzerland), he is currently
Data Scientist in the Digital Food Safety Department
at Nestlé Research (Lausanne, Switzerland). His main
research topics include the application of machine
and deep learning for the data analysis of complex
industrial systems and the application of model-driven

principles to support the life cycle of ICT systems and infrastructures. He has
authored different publications in international peer-reviewed journals and has
been actively involved in several European projects on the topics.

Stefano Marrone is an assistant professor in Com-
puter Engineering at Università della Campania ‘‘Luigi
Vanvitelli", Italy. His interests include the definition
of model driven processes for the design and the
analysis of transportation control systems, complex
communication networks and critical infrastructures.
He is involved in research projects with both academic
and industrial partners.

José Merseguer received the B.S. and M.S. degrees
in computer science and software engineering from
the Technical University of Valencia, Spain, and the
Ph.D. degree in computer science from the University
of Zaragoza, Spain. He is with the Department of
Computer Science and Systems Engineering at the Uni-
versity of Zaragoza, Spain, where he teaches software
engineering courses at graduate and undergraduate
levels. He was the director of the Computer Science
Master at the University of Zaragoza. His main research
interests include performance and dependability anal-

ysis of software systems. He has developed postdoctoral research with Prof. M.
Woodside at Carleton University, Ottawa, ON, Canada, and with Prof. R. Lutz
at Iowa State University, Ames, IA, USA. He has been a Visiting Researcher
with the University of Turin, with the University of Cagliari, and with the
Politecnico di Milano, Italy. He is also a member of the Aragon Institute of
Engineering Research. He has been serving as a referee for international journals
and as a Program Committee member for several international conferences
and workshops. He is co-author of the book ‘‘Model-driven dependability
assessment of software-systems’’, Springer, and has advised three Ph.D. doctoral
thesis.

Roberto Nardone is an Assistant Professor at the Uni-
versity Mediterranea of Reggio Calabria. He received
his M.Sc. and Ph.D. in Computer Engineering, in 2009
and 2013, respectively, both from the University of
Naples, Italy. His research interests include quantitative
evaluation of non-functional properties, with a par-
ticular focus on dependability, security, performability
assessment and threat propagation analysis. He has
been involved in research projects with both academic
and industrial partners. He served as a referee and
editor for international journals and as a program

committee member for several international conferences and workshops.
Please cite this article as: S. Bernardi, U. Gentile, S. Marrone et al., Security modelling and formal verification of survivability properties: Application to cyber–physical
systems. The Journal of Systems & Software (2020) 110746, https://doi.org/10.1016/j.jss.2020.110746.

	Security modelling and formal verification of survivability properties: Application to cyber–physical systems
	Introduction
	Background and related works
	Background on survivability modelling and model-checkingtechniques
	Related works

	Methodology overview
	Modelling and generation phases
	Modelling phase
	Generation phase

	Verification phase
	Properties and the query template repository
	The surreal framework

	The case study
	Assumptions and threats to validity
	Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Survivability profile
	Appendix B. Formalisation of the properties
	Appendix C. Kripke model of the running example
	References

