000106613 001__ 106613
000106613 005__ 20211216131134.0
000106613 0247_ $$2doi$$a10.3233/JAE-209114
000106613 0248_ $$2sideral$$a119969
000106613 037__ $$aART-2020-119969
000106613 041__ $$aeng
000106613 100__ $$0(orcid)0000-0001-7530-2343$$aPérez-Tarragona, M.$$uUniversidad de Zaragoza
000106613 245__ $$aA front-end PFC stage for improved performance of flexible induction heating appliances
000106613 260__ $$c2020
000106613 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106613 5203_ $$aFlexible cooking surfaces, eg. fully active surfaces, have gained lately an increasing importance in the domestic induction heating. Multi-inverter structures are a cost-efficient solution to develop this technology. However, they add control restrictions that can be solved with a power factor corrector (PFC) stage as proposed in this work. The proposed converter and modulation strategy work with zero voltage switching (ZVS), decreasing the switching losses, enabling a higher working frequency and, therefore, decreasing the magnetic devices size. The bus voltage is controllable and can be increased, easing the load power control and decreasing current through load and inverter and, so, the power losses. Besides, the switching frequency is constant in the mains cycle and can be modified to synchronize the load inverter and the PFC stage avoiding intermodulation noise. A 3.6 kW prototype has been implemented fulfilling the EMC requirements. The experimental waveforms and efficiency have been measured to prove the feasibility of this proposal.
000106613 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/TEC2016-78358-R$$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2017-5965-6$$9info:eu-repo/grantAgreement/ES/MEC/FPU15-01590$$9info:eu-repo/grantAgreement/ES/DGA/FSE
000106613 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000106613 590__ $$a0.706$$b2020
000106613 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b256 / 273 = 0.938$$c2020$$dQ4$$eT3
000106613 591__ $$aPHYSICS, APPLIED$$b153 / 160 = 0.956$$c2020$$dQ4$$eT3
000106613 591__ $$aMECHANICS$$b127 / 135 = 0.941$$c2020$$dQ4$$eT3
000106613 592__ $$a0.238$$b2020
000106613 593__ $$aCondensed Matter Physics$$c2020$$dQ3
000106613 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ3
000106613 593__ $$aMechanics of Materials$$c2020$$dQ3
000106613 593__ $$aMechanical Engineering$$c2020$$dQ3
000106613 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ3
000106613 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000106613 700__ $$0(orcid)0000-0001-8399-4650$$aSarnago, H.$$uUniversidad de Zaragoza
000106613 700__ $$0(orcid)0000-0002-1284-9007$$aLucía, Ó.$$uUniversidad de Zaragoza
000106613 700__ $$0(orcid)0000-0002-9655-5531$$aBurdío, J.M.$$uUniversidad de Zaragoza
000106613 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000106613 773__ $$g63, S1 (2020), S115-S121$$pInt. j. appl. electromagn. mech.$$tInternational journal of applied electromagnetics and mechanics$$x1383-5416
000106613 8564_ $$s387317$$uhttps://zaguan.unizar.es/record/106613/files/texto_completo.pdf$$yPostprint
000106613 8564_ $$s1925714$$uhttps://zaguan.unizar.es/record/106613/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000106613 909CO $$ooai:zaguan.unizar.es:106613$$particulos$$pdriver
000106613 951__ $$a2021-12-16-13:04:31
000106613 980__ $$aARTICLE