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ABSTRACT
Point processes are often used to model the occurrence times of different phenomena,
such as earthquakes, heatwaves or spike trains. Many of those modelling problems
require to study the independence between two point processes, that in many cases
are nonhomogeneous. This work develops three families of tests to assess the in-
dependence between two nonhomogeneous point processes in time. They can be
applied to different types of processes (Poisson processes, cluster Poisson processes
and other more general point processes), and all together they cover a wide range of
situations appearing in real problems. The first family includes two tests for Pois-
son processes. The second family, with also two tests, is based on the close point
distance, and the third one includes two nonparametric tests based on a version for
nonhomogeneous processes in time of two cross dependence spatial functions. The
tests of the two last families are based on bootstrap and computational methods.

An extensive simulation study of the size and power of the tests is carried out
and, according to the results, some practical rules to select the most appropriate test
in different cases, are provided. The proposed tests are demonstrated on a real data
application about the occurrence of extreme heat events in three Spanish locations.
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1. Introduction

A point process in time (PP in short) is a random collection of points located on R+,
which represent the occurrence times of an event. Many real problems involve not
one, but two or more PPs, for example, the timing of trades and mid-quote changes
in stock exchange, the occurrence of climate extreme events in different locations, or
the synchrony detection in spike train analysis. The study of dependence between the
processes is important since independent processes can be modelled separately without
any loss of information, while the modelling of dependent PPs is more complicated.
For example, the study of independence between the processes in multi-site datasets
will allow us to determine if sites can be modelled separately, or more complex spatial
models have to be used.

Tests to assess independence between PPs are also a useful tool in statistical mod-
elling problems involving covariates. In effect, a common source of dependence is the
influence on several processes of the same or dependent variables, see for example [1]
or the extreme heat event analysis in Section 5. A usual approach to model this de-
pendence is to allow the parameters of the marginal models to be a function of those



covariates. Then, to analyse if the dependence is well captured by the covariates, the
null hypothesis of independent marginal models given the covariates has to be checked.
Independence is also a common assumption in statistical models, such as the common
Poisson shock processes [2], so that independence tests are required to validate those
models.

The analysis of independence between PPs has been mainly studied in the frame-
work of spatial processes. The well-known K and J functions quantify the interpoint
dependence in a PP, and their cross versions measure the dependence between two
PPs. They were first defined in the homogeneous case and extended to nonstationary
multivariate point processes [3,4]. There are some tests of independence for marked
spatial point processes [5,6]. Allard et al. [7] proposed a test to analyse local inde-
pendence in spatial PPs based on isotropy properties. In most cases, the spatial tools
cannot be straightforwardly applied to PPs in time, although some underlying ideas
can be adapted to the time framework, as we will see later.

The study of independence tests between PPs is also important in neurosciences,
to assess if two spike trains are dependent [8]. Tuleau-Malot et al. [9] proposed an
asymptotic test for Poisson processes, and Albert et al. [10] a bootstrap and permu-
tation test. Although this type of data are often nonstationary the previous tests are
developed for homogeneous processes. Another limitation is that they require a sample
of m i.i.d trials of the processes, and although this type of samples is common in the
study of spike trains, it is not in many other fields.

Not many tools for the study of dependence between nonhomogenous (NH) processes
have been developed, although homogeneity is seldom a reasonable assumption in real
problems. Dutilleul [11] proposed a graphical tool based on a Diggle’s randomization
but, as far as we know, only Abaurrea et al. [12] developed a formal tests to asses
independence in a NH framework, with a study of its size and power.

The aim of this work is to propose different statistical tests to study the inde-
pendence between two NH point processes in time, in different situations. Given the
difficulty of characterising the distribution of the statistic in this type of tests, boot-
strap and computational methods are used to obtain the p-values, as it is often done
in spatial PPs [13–15]. In this framework, we develop three families of tests which can
be applied to different types of point processes with a non random intensity (Poisson
processes, homogeneous and NH point processes, and others). Although the size and
power of the tests cannot be determined analytically, an extensive simulation study
is conducted to assess their performance [16,17]. This study also allows us to stablish
practical rules to select the most appropriate test in each situation.

The outline of the paper is as follows. Section 2 summarizes some properties of
PPs. Three families of independence tests are developed in Section 3, and their size
and power is thoroughly analysed in Section 4. Section 5 shows an application to
the study of the independence between the occurrence of extreme heat events, and
conclusions are discussed in Section 6.

2. Point processes in time

A point process in time N can be described in three equivalent ways: by the sequence
of occurrence times in R+, T1, T2, ..., Tn, by the interpoint distances, τi = Ti−Ti−1 for
i = 1, . . . , n, with T0 usually equal to 0, or by the counting measures defined by a set of
random variables N(A) representing the number of points in A, for each A ∈ R+. The
usual notation is N(t) = N((0, t]), and N(t) =

∑
i≥1 I(Ti≤t), where IB is the indicator
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variable of the set B. The intensity measure of the process, Λ, gives the expected
number of points, so that Λ ((0, t]) = E (N(t)). Its derivative function, provided it

exists, is the intensity function λ(t) = ∂Λ((0,t])
∂t . If λ(t) is constant, the process is

homogeneous, and NH otherwise. The archetypal PP is the Poisson process, where
N(A) ∼ Poisson(µA) with µA =

∫
A λ(t)dt, and, N(A1), . . . N(Ak) are independent

r.v. if Ai ∩Aj = ∅ ∀i 6= j.
Herein, we will consider vectors of two PPs (Nx, Ny) observed in the same time

interval (0, T ], where t1, . . . , tnx
and s1, . . . , sny

denote the nx and ny points in each
process. In general, Nx and Ny are not independent.

3. Tests of independence between point processes

Independence is a complex hypothesis, since both the marginal distribution of the
processes and their interaction are involved. A common approach to construct this
type of tests is to fix the observed marginal structure [15,18]. All the tests in this work
use this approach, and are constructed by keeping fixed the observed process Nx.

It is noteworthy that in all the suggested tests the null hypothesis is the indepen-
dence between processes Nx and Ny, and the alternative is the existence of any type
of random dependence between them. Some examples of common types of dependence
will be described in Section 4.2.1. Each family uses different statistics and requires dif-
ferent assumptions. The first family, denoted POISSON, assumes that Ny is a Poisson
process, and the distribution of the statistics is characterized under that assumption.
The other two families, CLOSE and CROSS, are based on the close point distance
and cross dependence functions, respectively, and their p-values are obtained using
bootstrap and computational methods.

3.1. POISSON family

The POISSON family of tests requires Ny to be a Poisson process with known intensity
λy(t). We keep fixed the observed process Nx, and under independence between Nx

and Ny, given that a point ti has occurred, the distribution of Ny, a Poisson(λy(t))
process, does not change. Consequently, the distribution of Yi, the number of points
in Ny in an interval Ii of length li around ti, is Poisson(µi) with µi =

∫
Ii
λy(t)dt, for

i = 1, . . . , nx. For simplicity, disjoint centred intervals of maximum length l around ti
are considered. Two tests based on this property are proposed.

Poisson test. Considering disjoint intervals around each ti and under the null, the
test statistic Y =

∑nx

i=1 Yi ∼ Poisson(µ) with µ =
∑nx

i=1 µi. The p-value is

pv = 2 min

[(
P (Y < yo) +

1

2
P (Y = yo)

)
,

(
P (Y > yo) +

1

2
P (Y = yo)

)]
,

where yo is the total number of points in Ny in the considered intervals. The p-value
of a discrete statistic only guarantees that the size is lower than the significance level,
but a study of the size of this test is carried out in Section 4.1.

Normal test. Under independence, and using disjoint intervals, Yi are independent
Poisson variables with E(Yi) = V ar(Yi) = µi. Defining Y ∗i = (Yi−µi)/

√
µi, we obtain

E(Y ∗i ) = 0 and V ar(Y ∗i ) = 1, but still they are not identically distributed. However,
those variables satisfy the Lyapunov condition, that states that given independent r.v.
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with null expectation an finite variance σ2
i , if for some δ > 0,

lim
n→∞

1

s2+δ
n

n∑
i=1

E(|Y ∗i |2+δ) = 0, (1)

with s2
n =

∑n
i=1 σ

2
i , then the central limit theorem (CLT) applies. In effect, the vari-

ables Y ∗i satisfy condition (1) with δ = 2, given that s2
n = n and E

[
(Yi − µi)4

]
=

µi(1 + 3µi), since Yi ∼ Poisson(µi), so that,

lim
n→∞

1

n2

n∑
i=1

E

[(
Yi − µi√

µi

)4
]

= lim
n→∞

1

n2

n∑
i=1

µi + 3µ2
i

µ2
i

≤ lim
n→∞

1

n

(
3 +

1

min1≤i≤n µi

)
= 0.

Then, applying the CLT,

Onx
=

1
√
nx

nx∑
i=1

Yi − µi√
µi

is asymptotically N(0, 1), and a test based on Onx
can be constructed. The p-value is

defined as,

pv = 2P (Z > |ȳo|)

with Z ∼ N(0, 1) and ȳo = 1√
nx

∑nx

i=1
yi−µi√
µi

.

Given the asymptotic distribution of the test, a simulation analysis is performed in
Appendix A to study the Normal approximation of Onx

in terms of the values of nx
and µi.

3.2. CLOSE family

The CLOSE family is based on the close point distance. The first test can be applied
to any process with a constant intensity (homogeneous processes). The second can be
used with NH processes but requires Ny to follow a known probability model with
a generation algorithm (parametric model herein). The concept of close points was
introduced by Abaurrea et al. [12]: sj in Ny is a close point of ti in Nx, if the intervals
to their previous points, sj−1 and ti−1, overlap, see Figure 1. The test aims to compare
the behaviour of the sets of close points in the observed PPs and in two independent
PPs with the same marginal distribution. The behaviour of the set is summarized by
the distances between ti and its close points, dxij = |ti − sj |, and their mean value
d̄xi.

A test based on a theoretical distribution is difficult to obtain, but a computational
statistical approach is used to construct a summary statistic and a p-value. The imple-
mentation of this approach requires a sample of R vectors of processesN∗r = (Nx, N

∗
y,r),

where Nx is the observed first process, and N∗y,r is a generated process with the same
distribution as Ny and independent of Nx; N∗y,r must be mutually independent.

Using (Nx, Ny) and the R pairs (Nx, N
∗
y,r), d̄xi and R mean distances d̄xir from the

independent processes are calculated for each ti ∈ Nx. Then, pi, the percentile rank
divided by 100 of each observed d̄xi in its corresponding sample of distances under
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Figure 1. Definition of close points: sj−1 and sj are close points of ti .

the null, are calculated, and a sample p1, . . . , pnx
is obtained. Hence, the problem

of testing independence is reduced to assess if p1, . . . , pnx
is a uniform but possibly

correlated sample. In effect, under the null, pi ∼ Uniform(0, 1) because they come
from percentiles ranks of i.i.d observations, but p1, . . . , pnx

may be correlated because
the sets of close points of nearby points in Nx may not be disjoint. To study the
uniform character of the sample, the statistic Dn of the Kolmogorov-Smirnov test is
considered. Since the distribution of this statistic in a correlated sample is unknown,
the empirical distribution is obtained by a computational approach based again on
the pairs (Nx, N

∗
y,r). Then, the only issue to apply this approach is to generate pairs

N∗r = (Nx, N
∗
y,r), and this can be done in different ways.

Lotwick-Silverman test (LoS). Processes N∗y,r are generated by the LoS ap-
proach [18], which does not require any assumption, not even to know the marginal
intensities, but it is only valid for homogeneous processes. In this approach, the time
interval (0, T ] is wrapped onto a circumference by identifying the opposite sides. Then,
fixing Nx, a new N∗y,r is generated by translating Ny a random uniform amount over
the circumference. This breaks any dependence between the processes and keeps the
marginal distributions, provided they do not change over time. Consequently, it is only
valid for processes with a constant intensity.

Parametric bootstrap test (PaB). The test by Abaurrea et al. [12] requires Ny

to follow a parametric model, that will be used to generate independent N∗y,r. If the
model parameters are known, it is a Monte Carlo approach, but if they have to be
estimated, it is a parametric bootstrap.

3.3. CROSS family

The CROSS family is based on statistics inspired by the spatial cross K and J func-
tions [4,19], adapted to PPs in time. These tests can be applied to any pair of point
processes, the only assumption is that λx(t) and λy(t) are known. The p-values of the
two proposed tests are calculated using a LoS approach.

3.3.1. Test statistic based on the cross K-function

In the case of two homogeneous PPs, Nx and Ny, the spatial cross function Kxy(r)
is defined as the expected value of the number of points in Ny within a distance r of
a randomly chosen point in Nx, divided by λy. This function can be adjusted to NH
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processes in the following way

Kxy(r) =
1

|B|
E

 ∑
ti∈Nx∩B

∑
sj∈Ny

I(|ti − sj | ≤ r)
λx(ti)λy(sj)

 r ≥ 0 (2)

where |B| is the area of B ∈ B0, the class of bounded Borel sets in R2 [20].
Given the definition in (2), a natural measure of the dependence between two PPs

in time, in a time interval of length 2r, is

K̃1,xy(r) =
1

T

∑
ti∈Nx∩(0,T )

∑
sj∈Ny

I(|ti − sj | ≤ r)
λx(ti)λy(sj)

0 ≤ r < T.

K̃1,xy(r) is adjusted to NH processes by scaling the occurrence of points sj in the
interval [ti − r, ti + r] by the intensity at that point λy(sj). However, with a highly

varying intensity, the mean intensity of Ny in [ti− r, ti + r],
∫ ti+r
ti−r λy(t)dt/2r, could be

a better scale factor. Hence, we propose a new measure,

K̃2,xy(r) =
1

|W |
∑

ti∈Nx∩W

∑
sj∈Ny

I(|ti − sj | ≤ r)
λx(ti)(

∫ ti+r
ti−r λy(t)dt/2r)

0 ≤ r < T

Since estimations of λx(t) and λy(t) are often needed, and PPs are usually observed

in discrete time, a common estimator of the mean intensity is
∑ti+r

t=ti−r λ̂y(t)/2r.
To summarize the dependence appearing in any value r, a reasonable statistic is,

Ki =
1

R

rR∑
r=r1

K̃i,xy(r)

2r
(3)

for i = 1, 2, and with r1, . . . , rR a grid of R values (r-grid). We emphasize that our aim
here is only to obtain a statistic able to discriminate between dependent and indepen-
dent processes, and that it is not needed to completely characterize its distribution
under the null, since the p-value will be obtained by a bootstrap method.

3.3.2. Test statistic based on the cross J function

The spatial cross J function Jxy(r) measures the dependence between Nx and Ny by
comparing the nearest point function Dxy(r) and the empty space function Fy(r),

Jxy(r) =
1−Dxy(r)

1− Fy(r)

if Fy(r) < 1. Dxy(r) is the distribution function of the distances from a point in Nx

to the nearest point in Ny, and Fy(r) of the distances from a point in the space to the
nearest point in Ny. Under independent PPs, the occurrence of a point in Ny is not
influenced by the occurrence of a point in Nx. Then, Dxy(r) = Fy(r), and Jxy(r) = 1
for any r. In a NH framework the J function is still useful if it is adjusted for the
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nonhomogeneous intensity as suggested by [4],

Dxy(r) = 1− E(tx)

 ∏
sj∈Ny

(
1− inft∈R2 λy(t)

λy(sj)
I{sj ∈ B(tx, r)}

)
where E(tx) is the expectation calculated with the conditional probability given that
a point of Nx occurs in tx [21] and B(tx, r) is the closed ball centred at tx with radius
r. Analogously, Fy(r) is,

Fy(r) = 1− E

 ∏
sj∈Ny

(
1− inft∈R2 λy(t)

λy(sj)
I{sj ∈ B(tx, r)}

) .
The difference between Dxy(r) and Fy(r) is that the expectation in Dxy(r) is condi-
tioned on the occurrence of a point in Nx.

Using the ideas of the spatial cross J function, we suggest the use of J̃xy(r) =
1−D̃xy(r)

1−F̃y(r)
as a measure to quantify the dependence between two PPs in time, in intervals

of length 2r, where D̃xy(r) is defined as,

D̃xy(r) = 1− 1∑
ti∈Nx∩Wr

1
λx(ti)

∑
ti∈Nx∩Wr

∏
sj∈Ny∩(ti−r,ti+r)

(
1− λ∗

y

λy(sj)

)
λx(ti)

where λ∗y = inft∈(0,T ] λy(t), index ti moves in the points in Nx which lie in the space
Wr = [r, T − r] and sj in the points in Ny which lie in (ti − r, ti + r). Analogously,

F̃y(r) is defined as,

F̃y(r) = 1− 1

#(L ∩Wr)

∑
lk∈L∩Wr

 ∏
sj∈Ny∩(lk−r,lk+r)

(
1−

λ∗y
λy(sj)

)
where L ⊆ (0, T ] is a finite grid with points lk (L-grid), and #(.) the number of
points in a set. If D̃xy(r) and F̃y(r) are applied to homogeneous PPs, the empirical
distribution functions of the corresponding distances are obtained.

To consider dependence in any value r, and since deviations of J̃xy(r) from 1 suggest
dependence, a reasonable summary statistic is

J =
1

R

rR∑
r=r1

|J̃xy(r)− 1|. (4)

3.3.3. A LoS approach to obtain the p-value

It is difficult to determine the distribution under the null of the statistics Ki, expres-
sion (3), and J , expression (4), but a LoS approach can be used. In this approach,
the observation space is wrapped onto a circumference, Nx is kept fixed and Ny is
randomly translated over the circumference to break the potential dependence. In NH
processes, the problem is that random translations change the marginal distribution of
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Table 1. Summary of the characteristics of the proposed independence tests.
Family Test Assumptions Statistic Distribution

POISSON Poisson test Ny Poisson process

with known λy

∑n
i=1 Yi Poisson

Normal test 1√
nx

∑nx
j=1

Yj−µj√
µj

Asymptotic Normal

CLOSE LoS test Ny homogeneous PP
KS statistic Dn

LoS approach

PaB test Ny parametric model with
known parameters

Parametric bootstrap

CROSS Ki tests
Known λx, λy

1
R

∑rR
r=r1

K̃i,xy(r)/2r
LoS approach

J test 1
R

∑rR
r=r1

|J̃xy(r)− 1|

the processes. However, since K̃i,xy and J̃xy are adjusted for the time-varying intensity,
this approach is still valid to obtain values of the statistic under the null, provided
that the intensity is translated with the process. Using the empirical distribution from
those samples, the p-value can be obtained. Lotwick and Silverman [18] and Cronie and
van Lieshout [4] applied a similar approach in homogeneous and NH spatial processes,
respectively.

The tests based on K1, K2 and J are denoted K1, K2 and J , and the influence of
r and L grids on their size and power is studied in Section 4.

The main characteristics of all the proposed tests are summarized in Table 1. All
the tests except LoS assume that λy(t) is known.

4. Size and power analysis

The aim of this section is to perform a simulation study of the size and power of each
test in terms of the intensity, the sample size nx, and in the case of the power, the type
and level of dependence. Three intensities are considered in the study: a constant λC

(homogeneous process), a log-linear intensity that increases in time, λI(t) = exp(a+bt),
and λF (t), the fitted intensity to a real dataset with a complex shape, including a non
monotonic trend and seasonal behaviour, see Figure 2. In all cases the mean intensity
in (0, T ], λ̄(t), is 0.01 but the variability is quite different, with a range equal to 0,
0.02 and 0.40 respectively. For simplicity, the same intensity is considered in Nx and
Ny.

In a simulation study the number of points in (0, T ] in a PP, nx, is random, but the
expected sample size n̄x = T λ̄(t) can be fixed. Since λ̄(t) = 0.01, T = 5000, 10000 or
20000 time units are used to obtain n̄x = 50, 100 and occasionally 200. The results for
significance levels, α1 = 0.05 and α2 = 0.1, are calculated.

0 2000 4000 6000 8000

0.
0

0.
1

0.
2

0.
3

0.
4

Time

In
te

ns
ity

Figure 2. Intensity function λF (t)
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Table 2. Size analysis of the POISSON and CLOSE tests, α1 = 0.05 and α2 = 0.10.

Test Poisson Normal PaB LoS
Int. nx α1 α2 α1 α2 α1 α2 α1 α2

λC 50 .05 .10 .05 .10 .05 .11 .06 .11
100 .05 .10 .05 .10 .05 .10 .06 .11

λI(t) 50 .05 .10 .05 .10 .06 .11 - -
100 .05 .10 .05 .10 .06 .10 - -

λF (t) 50 .05 .10 .05 .10 .06 .11 - -
100 .05 .10 .05 .09 .05 .11 - -

4.1. Size analysis

The simulation study is as follows: 1000 trajectories of two independent Poisson pro-
cesses, with intensities λx(t) and λy(t), are generated in (0, T ], and the considered test
is applied. The size at an α significance level is estimated as the rate of rejections at
that level in the 1000 repetitions.

The CLOSE tests, and the POISSON tests with the minimum l obtained to assume
a good Normal approximation, show an estimated size with values equal or very close
to the nominal level in all the settings, see Table 2.

In the CROSS family, the influence of the grids on the size is studied first. Four
r-grids are considered: r1 and r1b cover a small range of values, from 1 to around half
of the mean interpoint distance of the PPs, with 10 and 50 points respectively; r2 and
r2b cover a wider range from 1 to around five times the mean interpoint distance. Two
L-grids are considered in the J test: La is a sparse grid with points at a distance 50,
or 100 if the number of points in the grid is higher than 100, and Lb is a thick grid
with points every 2 time units. These grids are summarized in Table 3 and the results
in Table 4. They show that both L-grids lead to a similar size so that La, is used
herein. The estimated size of K2 test is adequate with all the intensities and r-grids,
only with λI(t) and r2b it is a bit high, 0.08 for α = 0.05. The estimated size of the J
test is satisfactory in homogeneous processes, the size with λI(t) doubles the nominal
value, and with λF (t), it is close to the nominal value only with the grids covering a
wide range of values, r2 and r2b. The estimated size of the K1 test is too high in all
the NH processes, specially with λF (t), consequently, only the K2 test is kept in the
analysis.

Table 3. r-grids and L-grids considered in the study of the CROSS family.

r-grid Sparse # points Thick # points
Short range r1=1,6,..., 46 10 r1b=1,2,..., 50 50
Long range r2=1,101,..., 451 10 r2b=1,11,..., 491 50
L-grid Sparse Thick
T=5000 La=1,51, 101,..., 4951 100 Lb=1,3,5..., 5000 2500
T=10000 or 20000 La=1,101,..., 9901 100 Lb=1,3, 5,..., 10000 5000
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Table 4. Effect of r and L-grids on the size of the CROSS tests; n̄x = 50 and grids r1, r1b, r2 and r2b. The

size of the J test is calculated with the grid La, for all r-grids, and with Lb for r1 and r2 (in brackets)

Test K1 K2 J
Int. r α1 α2 α1 α2 α1 α2

λC r1 .04 .09 .04 .09 .06 (.05) .12 (.11)
r1b .06 .10 .06 .10 .06 .11
r2 .04 .10 .04 .10 .05 (.05) .10 (.12)
r2b .05 .10 .04 .10 .05 .12

λI(t) r1 .07 .13 .06 .12 .09 (.10) .14 (.15)
r1b .08 .13 .06 .12 .10 .15
r2 .06 .13 .05 .11 .09 (.09) .18 (.18)
r2b .11 .18 .08 .15 .12 .19

λF (t) r1 .09 .20 .06 .12 .11 (.10) .18 (.17)
r1b .11 .20 .06 .12 .11 .18
r2 .06 .15 .06 .11 .06 (.06) .12 (.11)
r2b .09 .15 .05 .10 .05 .09

4.2. Power analysis

The power is estimated as the rate of rejections at an α level in 1000 repetitions. Since
the null hypothesis of all the tests is the independence between Nx and Ny, the tests are
studied under four different types of alternative hypotheses, which represent common
types of dependence structures appearing in real problems, and are described in Section
4.2.1. In each of those cases, high dependence (HD) and a low dependence (LD) levels
are considered. Moreover, the power is estimated under the settings determined by the
previous values of n̄x (determined by T ) and the three intensities. LD50 denotes the
setting with low dependence and n̄x = 50, and analogously LD100, HD50 and HD100.

There does not exist a general definition of dependence between PPs, but to some-
how quantify the dependence in the HD and LD levels, the correlation between the
number of points in the PPs is calculated in Appendix B. Al the results in this section
correspond to the power for α1 = 0.05, and are graphically summarized. The numeric
values and the power for α2 = 0.10 are shown in Appendix C.1.

4.2.1. Models for dependent PPs

Common Poisson shock process (CPS): It is a vector of two PPs with an underlying
Poisson process of shocks, which may yield points only in one or in both marginal
processes at the same time [22]. It can be decomposed into three independent processes
N(x), N(y) and N(xy), the processes of points occurring only in Nx, only in Ny, and
in both of them (simultaneous points), with intensities λ(x), λ(y) and λ(xy). The three
processes, and also Nx and Ny, are Poisson processes. Nx and Ny are independent if
and only if λ(xy) = 0. The HD and LD settings in this model correspond to λ(x) =
λ(y) = λ(xy)/2 and λ(x) = λ(y) = 2λ(xy), respectively.

Multivariate dependent Neyman-Scott process (MNS): A Neyman-Scott (NS) pro-
cess is a process of clusters of points such that the cluster centres are a Poisson process
[23]. We define a multivariate dependent Neyman-Scott process as a vector of NS pro-
cesses with the same centres. Here, the number of points in each cluster is Poisson(4),
and the distribution of the i.i.d.distances of the points in a cluster to its centre, is
Normal(0, σ). The HD and LD levels are obtained with σH = 20 and σL = 100.
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The CPS and the MNS models show a positive short-term dependence generated
by unobserved common shocks, which may trigger points in several PPs, but the way
the points are triggered is different. This dependence is quite common, for example
when a warm front provoke heatwaves in different locations.

Queueing Process (QUE): A queue system models the arrivals and the output times
in a waiting line with random serving times. Here, queues M/M/∞ and M(t)/M/∞
are considered to obtain homogeneous and NH processes. In both queues, the in-
puts and the outputs are dependent Poisson processes [24] and the serving times are
Exponential(µ). The HD and LD levels are obtained with µH = 20 and µL = 70. The
dependence in this model is a causal point to point relationship, where an event in
a process triggers the occurrence of an event in the other. Examples with this type
of dependence are the processes of the occurrence times of floods provoked by the
occurrence of an event of intense rainfall.

Poisson process with dependent marks (PDM): A Poisson process with discrete
marks is a process in which a variable taking values in {1, . . . , d} is attached to each
point, so that the marginal process j is formed by the points with mark j. The marginal
processes are Poisson if and only if the marks are independent [25]. Here, marks from
a 2-state Markov chain are used, and HD and LD levels are defined by the transition
matrices,

MH =

(
0.1 0.9
0.9 0.1

)
ML =

(
0.3 0.7
0.7 0.3

)
.

The PDM model appears when the occurrence of an event in one process boots or
blocks the occurrence of an event in the other. For example, the process of the growth
of a specie of plant which favours or prevents the growth of another plant in time. It
generates medium or long term dependence.

4.2.2. Power of the POISSON family

The POISSON tests require Ny to be a Poisson process, so that only CPS and QUE
models can be used. The top plots in Figure 3 summarize the power of the Poisson and
the Normal test for α = 0.05 under the settings defined by the intensities (λC , λI(t) and
λF (t)), the sample size and dependence level (LD50, H50 and LD100), and dependence
type (CPS and QUE). The power is obtained with an automatic selection of the interval
length l, the median of the interpoint distances in Ny, which leads to a valid Normal
approximation. The Normal test overperforms the Poisson test in all cases, so that we
will focus on this test herein.

Sample size and dependence level. The power of the Normal test is over 0.9 and 0.72
in HD50 and LD100 respectively, except under QUE with λF (t) where it is 0.74 and
0.26. The power always increases with the sample size and dependence level, even in
the previous worst case, where it is 0.51 in LD200.

Type of dependence and intensity. Under CPS, the power is similar for all the in-
tensities but, under QUE, it is lower with λF (t), specially in LD.

Effect of l on the power. The bottom plots in Figure 3 show the power of the Normal
test in the previous settings with interval lengths l = 26, 50, 100. Dependence in the
CPS model appears in the simultaneous points, so that it is expected that the power
will be higher using short intervals. Then, l = 14 is also considered in the settings
where the Normal approximation may be assumed, that is LD100 with λI(t) and all
the settings with λF (t), see Appendix A.
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Figure 3. Top: Power of the POISSON tests with α1 = 0.05 under CPS and QUE models, with an automatic
selection of l. Bottom: Effect of l on the power of the Normal test.

Under CPS the power is quite sensitive to l, and the best power is always obtained
with the shortest interval. The power is over 0.55 up to l = 50, in all the settings except
LD50 with λF (t). Under QUE the effect of l is much weaker, with a similar power in
all the l values, due to the long-term dependence of this model. It is noteworthy that
if a length l adapted to the type of dependence is used, for example a low value under
CPS, the power is higher than that obtained with an automatic selection of l.

4.2.3. Power of the CLOSE family

The CLOSE family can be applied to the four dependence models, but the LoS test
only to homogeneous PPs. Figure 4 shows the power in the previous settings. The LoS
test overperforms slightly the PaB test in LD50, but the improvement is negligible
otherwise, with a power over 0.84, except in LD100 with PDM where it is 0.58.

Sample size and dependence level. The power always increases with the sample size
and dependence level, and it is higher in HD50 than in LD100.

Type of dependence and intensity. The power with each intensity depends on the
type of dependence: under PDM and CPS, it is similar with all the intensities, while
under MNS and QUE, it is near 0.9 with λC and λI(t) in HD50 and LD100, while
λF (t) requires bigger samples. The CPS dependence is the most easily detected, with
a power around 0.8 in LD50, which increases to almost 1 in HD50 and LD100. The
power under PDM is lower, 0.28 in LD50, but increases to 0.8 in HD50 and LD200.

To sum up, with a high enough sample size, a good power is obtained in all cases.

4.2.4. Power of the CROSS family

The K2 and J tests require to know λx(t) and λy(t). Thus, they cannot be applied
to MNS model, whose intensities do not have an explicit expression. A study of the
power of the J test does not show any evidence of influence of the L-grid, so that La
is used.
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Figure 4. Power of the CLOSE family with α = 0.05 under the four dependence models.

First, the effect of the r-grid on the performance of the tests is analyzed. Figure 5
(left) summarizes the power in the most complicated setting, LD50, using the grids
r1, r1b, r2 and r2b. The J test with λI(t) is not included, since its estimated size was
not adequate. The power of K2 does not show relevant differences among the r-grids,
although r2b leads to the highest, or close to the highest, power under all dependence
models. Then, r2b is a good option, except with λI(t), where r2 should be preferred
since the size is slightly better. The J test is quite sensitive to the r-grid with λC and
under CPS with λF (t), where a power below 0.10 is obtained with r2 and r2b, and
around 0.9 with r1 and r1b. In the other settings, the power is low with all the r-grids.
Moreover, only r2b shows a correct size with λF (t). Figure 5 (right) summarizes the
power with the selected r-grids, and the following conclusions are obtained.

Sample size and dependence level. The power increases with the sample size and
dependence level in all cases, except for the J test under PDM with λF (t). In that
setting, the test K2 also improves slowly with the sample size.

Type of dependence and intensity. The power decreases with the complexity of the
intensity, and the highest power is always observed with λC , closely followed by λI(t).
The power under the dependence models is quite heterogeneous. The K2 test detects
all the dependence structures and specially CPS with a high power, except PDM with
a NH intensity. The J test is even more heterogeneous: its power is high with λC ,
except under PDM in LD50, but the test does not detect any dependence under CPS
and PDM with λF (t).

To sum up, theK2 test clearly outperforms the J test, since its power is similar under
CPS and QUE with λC and much higher otherwise. The J test is not recommended
in NH processes.

4.3. Comparison of the POISSON, CLOSE and CROSS families

This section compares the test with the best general performance in each family: the
Normal, the PaB and the K2 tests. The solid lines in Figure 6 summarize the power
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Figure 5. Power of the CROSS tests for α1 = 0.05. Left: Effect of the r-grid in setting LD50. Right: compar-
ison of different settings with the selected r-grid.

for α1 = 0.05 with the different intensities under CPS, QUE and PDM, in HD50 and
LD100. The power of the Normal test under CPS and QUE is good, specially in HD50,
but slightly lower than the other tests. The power of the PaB test in NH processes
is the highest except under QUE, where it is low with λF (t). The power of K2 is the
highest in homogeneous PPs and satisfactory otherwise, except under PDM. A good
property of the PaB test is that its power increases with the sample size much faster
than in K2. For example, under QUE with λF (t), the power of PaB increases to 0.70
in HD100 and 0.65 in LD200, approaching the K2 counterparts, 0.87 and 0.72. On
the other hand, the power of K2 increases slowly under PDM with λF (t), it is 0.34 in
HD100 and 0.22 in LD200, while the PaB counterparts are 0.98 and 0.81.

To sum up, none of the tests shows the best performance in all settings. The es-
timated power of PaB and K2 tests depends on the type of dependence but, if it is
unknown, we suggest the use of the K2 test in homogeneous PPs, and the PaB test if
Ny follows a NH parametric model. Table 5 summarizes the tests which can be applied
in each situation, and the recommended option if the dependence is unknown.

4.4. Size and power with estimated intensities

Most of the considered tests assume that λy(t) and, in some cases, λx(t), are known.
This is not usual in real problems, but in many cases, they can be estimated from
the observed process [26–28]. This section compares, in the settings in Section 4.3, the
tests implemented with the true intensities λx(t) and λy(t), and their estimated coun-
terparts. The homogeneous intensity is estimated as the mean number of points per
time unit, n/T . In NH processes two estimators are used: a nonparametric approach
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Figure 6. Power of the best tests for α1 = 0.05 with true and estimated intensities.

Table 5. Tests and conditions where they can be applied. The best option, under an unknown dependence

model, is in bold, and tests with a low power in grey.
Assumptions - Intensity Homogeneous (log) Linear Intensity General Intensity

Ny ∼ Poisson Normal Normal Normal

with λy(t) PaB LoS PaB PaB
K2 J K2 K2 J

Ny ∼ Parametric model PaB LoS PaB PaB
with λy(t) K2 J K2 K2 J

Known λx(t), λy(t) LoS

K2 J K2 K2 J

None LoS

that can be applied to any PP but requires m independent trajectories of PPs, and a
parametric approach for Poisson processes that only requires one trajectory.

Parametric estimation (PE). In Poisson processes where the intensity is a function
of known time-dependent covariates λ(t) = exp(xT (t)β), it can be estimated by condi-
tional maximum likelihood [27]. This approach can be straightly applied to CPS and
QUE models, where the marginal processes are Poisson, but not to the PDM model.

Nonparametric estimation (NPE). The NPE requires an i.i.d. sample of m trajecto-
ries Nj = (tj1, . . . , tjnj

). This is common in neurosciences, where the spike train issued
from a neuron can be recorded m times, repeating the same stimulus. The mean of the
empirical estimators λ̂j(t) obtained from each Nj using moving averages or kernels, is
a quite robust estimation.

A simulation study with estimated intensities, see Table 6, shows that the size of
the Normal and PaB tests in homogeneous PPs and in NH with PE is even lower than
the nominal value. The size of Normal and PaB tests with NPE and K2 test is similar
to the size with true intensities.

The previous Figure 6 compares the power with the true and the estimated intensi-
ties and shows that the results are equivalent, although with some minor differences.
The power of all tests in homogeneous PPs and the Normal and PaB tests in NH
processes is similar or slightly higher using the estimated intensities. The power of
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Table 6. Size of the selected tests using estimated intensities. NPE are obtained with m = 50 repetitions.
λC λI(t) λF (t)

Normal PaB K2 Normal PaB K2 Normal PaB K2

α PE NPE PE NPE PE NPE PE NPE PE NPE PE NPE

.05 .01 .02 .06 .01 .07 .01 .04 .06 .07 .00 .07 .02 .05 .07 .06

.10 .03 .07 .10 .02 .12 .04 .10 .12 .12 .01 .12 .04 .09 .12 .12

K2 with the true intensity and PE is equivalent, but it decreases slightly with NPE,
probably because this estimation is poorer and it is a nonparametric test. To sum up,
the tests perform similarly with the true and the estimated intensities, provided that
good estimators are used. The estimated size is lower or similar than its nominal value,
and the power is similar or slightly higher. The PaB test seems to be more robust than
K2 to the estimation approach.

5. An application: occurrence of extreme heat events

The previous tests are used here to analyse the pairwise dependence between the oc-
currence of extreme heat events (EHEs) in three Spanish locations, Barcelona (B),
Zaragoza (Z) and Huesca (H). The aim is to assess if the occurrence of the EHEs in
those locations is independent or to identify the factors which explain the dependence.
The locations are sited in a triangle with Barcelona on the East, around 250km away
from the others, and Huesca located 67km to the North of Zaragoza. The daily max-
imum temperatures in the warm season (May to September) are available from 1951
to 2016. The days which are not observed in the three series are considered as missing
observations, so that three series with 8262 complete observations are available. The
extreme heat events may affect or not the three locations depending on if they are
caused by large scale or local atmospheric situations.

An EHE is defined as a run of consecutive days where the temperature is over an
extreme threshold, and its occurrence point is the day of maximum temperature in the
run. The threshold is the 95th percentile of each series in the reference period (months
of June, July and August in 1981-2010): 31.3, 37.8 and 36.4o C in Barcelona, Zaragoza
and Huesca, where 121, 104 and 106 EHEs are observed respectively.

To quantify the dependence between the extremes, we calculate the correlation
between the number of EHEs in intervals of length l = 10 days for a short-term
dependence and l = 100 for medium-term dependence: %10

BZ = 0.33, %10
BH = 0.31 and

%10
ZH = 0.70, and %100

BZ = 0.55, %100
BH = 0.52 and %100

ZH = 0.68. All of them are significantly
different from zero, and show that there exist a pairwise dependence between the
locations, and that it is stronger between Zaragoza and Huesca.

Our aim is to assess if this dependence can be explained by the seasonal behaviour
of the phenomena (represented by an harmonic term) and a covariate representing the
local temperature situation [29]. To that aim, a NH Poisson process whose intensity
is a function of those covariates is fitted to each occurrence series, and all of them
are satisfactorily validated. The second step is to study if the Poisson processes are
independent, given the covariates which define their marginal intensities. If the tests
do not reject the null hypothesis, it is concluded that the dependence between the
EHE processes is explained by the considered covariates.

Since the validation analysis allows us to assume that the marginal processes are
Poisson with the fitted intensities, the Normal, the PaB and the K2 tests are used
to assess the pairwise independence, although according to the rules in Section 4.3,
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Table 7. P-values of the pairwise independence tests between the occurrence of EHEs in Barcelona, Zaragoza

and Huesca.
B-Z B-H Z-H

Normal PaB K2 Normal PaB K2 Normal PaB K2

pv .42 .20 .56 .30 .12 .40 .002 0 .002

the PaB test is the most adequate in this case. Table 7 shows the p-values of the
three pairwise comparisons. The Normal test is applied with length l = 20, which
guarantees the Normal approximation. The PaB and K2 tests are implemented with
1000 repetitions and the last one with an r-grid of 50 values from 1 to around 500. It
is also carried out with a grid focusing on short dependence, but a similar p-value is
obtained. The three tests lead to the same conclusion the non rejection of independence
in B-Z, and B-H (where and influential point is removed) and the rejection in Z-H.
Since all the tests are built by keeping fixed Nx, the p-values resulting from changing
the order of the locations are also calculated, and the decision is the same in all cases.
Then, it is concluded that the occurrence of EHEs in Barcelona and Zaragoza and in
Barcelona and Huesca is independent given the covariates, but those covariates do not
explain all the dependence between Zaragoza and Huesca, the closest locations.

6. Conclusions

The assessment of independence between nonhomogeneous PPs is a frequent need in
modelling problems. This work proposes three families of tests to assess the indepen-
dence between two PPs, Nx and Ny. All the tests are built by keeping fixed their
marginal structure but they are based on different assumptions, so that each one can
be applied to different PPs (Poisson proccesses, PPs with a parametric model, NH
processes, etc.) and dependence structures. All together they cover a wide range of
situations appearing in real problems.

The first family assumes that Ny is a Poisson process with intensity λy(t), and it is
based on the fact that, under independence, the conditional distribution of Ny|Nx is
the distribution of Ny. It includes two tests based on a Poisson and an asymptotically
Normal statistic. The second family includes two tests with the same statistic based
on the close point distance, and p-values obtained from a parametric bootstrap and a
Lotwick-Silverman approach. The first can be applied if Ny follows a parametric model,
while the second does not need any assumption but is only valid for homogeneous PPs.
The third family includes two tests whose statistics are based on a version of the spatial
cross K and J functions for PPs in time. They are nonparametric and only need to
know λx(t) and λy(t).

An extensive simulation study of the size and power of the tests is carried out.
This study of the power covers four common dependence structures appearing in real
modelling problems, so that it allows us to determine some practical rules to select
the most adequate test in a particular situation. Each dependence model is analysed
in different settings defined by two levels of dependence (low and high), three intensi-
ties (a constant, a log-linear time function and a complex function λF (t)), and three
sample sizes (50, 100 and 200). The bulk of the comparsions is carrried out using the
true intensities, but a study comparing the results with the true and the estimated
intensities shows that the size and power do not noticeably change when estimated
intensities are used. The main conclusions are:

� In the considered settings, the Normal test, the parametric bootstrap test, and
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the K2 test show better results, in terms of size and power, than the other tests
in their respective families.

� According to the simulation results, these three tests are well-sized and their
power increases with the sample size and dependence level.

� The lowest power is obtained with λF (t). The short-term dependence generated
by CPS model is the most easily detected: the estimated power of PaB and K2

tests is over 0.9 with n̄x = 50 and high dependence.
� None of the tests shows the highest power in all the settings, but some gen-

eral rules about the recommended test in the situations where the dependence
structure between the processes is unknown, can be stated:

◦ The PaB test shows the most stable power in general, and it increases fast
with the sample size. Its performance with estimated parameters is quite
stable under different estimators. It is recommended for NH processes, if
Ny follows a parametric model.
◦ The K2 test shows the best estimated power in homogeneous PPs. Its per-

formance does not highly depend on the considered r-grid It is recom-
mended in homogeneous PPs, or if Ny does not follow a parametric model.

- The Normal test is the fastest to compute and a good option with huge
sample sizes, but it can only be applied to Poisson processes.

If a particular dependence model can be assumed, it would be better to base
the election of the test on the results of the power for that model.

Notes

The data that support the findings of this study are available from the corresponding
author upon request.
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Appendix A. Normal approximation of the Normal test

In Section 3.1 it was proved that the statistic Onx
has an asymptotic Normal dis-

tribution under the null hypothesis of the test. Given the asymptotic character of
the result, the following simulation study is performed to characterise the conditions
where the Normal approximation can be reasonably used. The approximation depends
on nx, the number of points in Nx, and on the µi values, since the higher they are,
the more Normal is the distribution of the variables Yi, and the lower nx is needed.
The problem is that nx and µi values cannot be completely fixed in a setting, since
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Table A1. Minimum l and median of µ̄ leading to a valid Normal approximation of Onx .

Intensity nx l Median of µ̄

λx = λy = λC 50 26 .23
100 16 .15
200 8 .08

λx(t) = λy(t) = λI(t) 50 22 .24
100 12 .15
200 8 .10

λx(t) = λy(t) = λF (t) 50 14 .58
100 4 .29
200 2 .17

they are random (µi values are the integral of λy(t) over the l-length intervals around
the points txi

, which are random). However, we can fix the two main factors which
determine µi (λy(t) and l) and the expected value of nx,

n̄x = E(nx) = E[Nx(T )]) =

∫ T

0
λx(t)dt

and assuming that λ(t) is constant in each time unit, n̄x =
∑T

t=1 λx(t).
The simulation study aims to find, for different values n̄x, the minimum value µ̄ =∑nx

i=1 µi/nx that, in average, leads to a valid Normal approximation. That means that
for a given λy(t), we have to find the minimum l leading to a valid approximation.

Each setting is defined by λx(t), λy(t) and the value T which gives the considered
n̄x. The three intensities described in Section 4.1, all with mean λ̄(t) = 0.01, are
considered. For simplicity, the same intensity is considered in the two processes. The
steps of the validation are,

1. A trajectory Nx1 of a Poisson process with intensity λx(t) is generated in (0, T ].
2. An independent trajectory Nyi of a Poisson process Ny with intensity λy(t) is

generated in the same period. Since λy(t) is usually unknown in real problems,

the estimator λ̂yi(t) is calculated using the approach by Cebrián et al. [27]. The

value of the statistic Onx
for Nx1 and Nyi, using λ̂yi(t), is obtained.

3. Step 2 is repeated 100 times, so that a sample of 100 values of the statistic under
the null hypothesis is obtained.

4. Using the sample from Step 3, the Anderson-Darling test is applied to assess if
the statistic under the null follows a N(0, 1) distribution.

This process is repeated 1000 times. A setting leads to a valid Normal approximation
if the number of rejections at level α = .01 in the 1000 runs is lower or equal than 10.

Table A1 shows for the three intensities and for n̄x = 50, 100, 200, the minimum
interval length which leads to a valid Normal approximation and the median of the µ̄
values in the 1000 runs. In homogeneous processes, the Normal approximation works
for µ̄ values around 0.23 with n̄x = 50, but the value decreases to µ̄ = 0.08 with
n̄x = 200. In nonhomogeneous processes with λF (t), the µ̄ value increases to 0.58 with
n̄x = 50, but it decreases to less than 0.20 with n̄x = 200. The results confirm that
to get a better Normal approximation, we can increase the mean sample size n̄x or
increase the µ̄ values. Since the intensity of a process cannot be changed, to obtain
high enough µ̄ values, longer l values have to be used.
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Table B1. Correlation measures in LD and HD levels under the dependence models

Dep. LD HD
Int. I50 I200 I50 I200

CPS .31 .32 .65 .65
MNS .36 .71 .78 .88
QUE .27 .65 .61 .88
PDM .14 .30 .27 .61

The Normal approximation is quite robust to the considered estimator, since the
same analysis was carried out using a simple empirical estimator of the intensity
function, [27], and analogous results were obtained.

Appendix B. Correlation generated under dependence models

In order to compare the high and low dependence levels defined in each of the four
dependence models, and to evaluate the difficulty to detect dependence in the differ-
ent settings, it would be useful to quantify the dependence generated in each case.
The considered independence tests are built by fixing the marginal structures, and
since the same dependence models are used with λC , λI(t) and λF (t), the depen-
dence level is only characterized in the homogeneous case, which is the easiest one.
To somehow quantify the dependence between the PPs, we calculate the correlation
coefficient between the number of points in Nx and Ny in intervals Il of length l,
ρxy,Il = Cor(XIl , YIl). Given the discrete character of XIl and YIl , and that we aim
to quantify not only the linear correlation but any type of dependence, the Spearman
coefficient is used.

Table B1 shows ρ̂xy,Il in each dependence model, for their corresponding LD and HD
settings, with intervals of length 50 and 200 (half and double of the mean interpoint
distance) which measure the short and long term dependence, respectively. The sample
size is always higher than 500 since periods of length T = 100000 are used. The
estimator ρ̂xy,Il is calculated as the median of the sample correlations in 1000 runs.
The results show that the dependence under each model is quite different. The CPS
model only generates short term dependence so that the correlation in I50 and I200

is very similar. QUE and MNS models generate short and/or long term dependence
depending on their parameters so that, under LD level, the correlation in interval
I200 doubles the correlation in I50, suggesting that mainly long term dependence is
generated in that case. PDM model generates long term dependence, which is more
difficult to be detected, even in the HD setting.

Appendix C. Results of the analysis of the power

C.1. Power of the tests

The values of the power for α1 = 0.05 plotted in all the figures in Section 4.2 are
summarized in tables. The power for α2 = 0.10 is also shown in these tables.

Table C1 shows the numerical results plotted in Figure 3. The top table shows the
power of the POISSON family (Poisson and Normal tests) with the automatic selection
of l, under the dependence models CPS and QUE for α1 = 0.05 and α2 = 0.10 in the
three settings LD50, HD50 and LD100 with the three intensities. The bottom table
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Table C1. Power of the POISSON tests. Top: with an automatic selection of l. Bottom: Effect of l on the

power of the Normal test, α1 = 0.05

Int. λC λI(t) λF (t)
Test Poisson Normal Poisson Normal Poisson Normal

α1 α2 α1 α2 α1 α2 α1 α2 α1 α2 α1 α2

CPS LD50 .38 .49 .48 .57 .36 .48 .54 .63 .29 .39 .64 .71
HD50 .79 .86 .90 .92 .79 .86 .92 .95 .58 .68 .92 .94
LD100 .57 .67 .72 .78 .58 .68 .76 .84 .46 .55 .84 .88

QUE LD50 .42 .56 .56 .68 .29 .44 .52 .62 .13 .22 .24 .35
HD50 .92 .95 .97 .98 .91 .95 .98 .99 .39 .52 .74 .82
LD100 .72 .83 .86 .92 .59 .71 .82 .88 .14 .22 .26 .36

CPS QUE
Int. setting l=14 26 50 100 l= 26 50 100

λC LD50 - .93 .67 .34 .49 .58 .52
HD50 - 1 1 .82 1 1 .96
LD100 - 1 .91 .52 .77 .86 .82

λI(t) LD50 - .89 .56 .30 .45 .52 .50
HD50 - 1 .98 .72 1 1 .95
LD100 1 .99 .87 .50 .71 .80 .78

λF (t) LD50 .66 .53 .42 .34 .25 .29 .31
HD50 .98 .93 .86 .77 .74 .77 .71
LD100 .84 .68 .55 .45 .27 .30 .30

summarizes the power of the Normal test for α1 = 0.05 in the previous settings, for
different values of l.

Table C2 shows the numerical results plotted in Figure 4, that is the power of the
CLOSE family (PaB and LoS tests) under the four dependence models, for α1 = 0.05
and α2 = 0.10 in the usual settings and with the three intensities.

Table C3 shows the numerical results plotted in Figure 5, that is the power of the
CROSS family (K2 and J tests) under the dependence models CPS, QUE, and PDM,
with the three intensities, and for α1 = 0.05 and α2 = 0.10. The top table shows the
power of the CROSS tests in setting LD50 with the four considered r-grids, r1, r1b, r2
and r2b. The bottom table shows the power of the tests with the r grid suggested for
the previous analysis under different settings: LD50, HD50, LD100, and LD200 and
HD100 when necessary.

22



Table C2. Power of the CLOSE family

Int. λC λI(t) λF (t)
Test PaB LoS PaB PaB

setting α1 α2 α1 α2 α1 α2 α1 α2

CPS LD50 .79 .87 .91 .96 .78 .87 .78 .89
HD50 1 1 1 1 1 1 1 1
LD100 .98 .99 1 1 .98 1 .98 1

QUE LD50 .64 .79 .90 .97 .55 .71 .18 .29
HD50 .94 .98 1 1 .89 .95 .27 .44
LD100 .96 .99 1 1 .90 .97 .32 .48

PDM LD50 .29 .43 .30 .45 .28 .44 .26 .36
HD50 .87 .93 .88 .93 .86 .94 .70 .83
LD100 .56 .70 .57 .70 .60 .73 .46 .62

MNS LD50 .41 .62 .70 .85 .24 .43 .26 .48
HD50 .95 .98 .97 .99 .90 .96 .65 .82
LD100 .84 .93 .97 1 .70 .85 .46 .65

Table C3. Power of the CROSS family

r-grid r1 r1b r2 r2b
Int. Dep. α1 α2 α1 α2 α1 α2 α1 α2

K2 λC CPS 1 1 1 1 1 1 1 1
QUE .80 .91 .83 .92 .72 .87 .98 1
PDM .44 .59 .52 .64 .27 .39 .56 .70

λI(t) CPS .96 .98 .91 .95 .98 .99 .90 .94
QUE .70 .82 .73 .83 .75 .95 .96 .99
PDM .24 .35 .27 .39 .19 .34 .37 .48

λF (t) CPS .74 .84 .67 .78 .82 .88 .62 .70
QUE .36 .50 .36 .51 .43 .68 .56 .71
PDM .19 .31 .16 .28 .17 .27 .18 .28

J λC CPS .94 (.92) .96 (.96) .93 .96 .13 (.11) .26 (.26) .06 .18
QUE .88 (.87) .94 (.93) .89 .95 .13 (.14) .40 (.42) .08 .36
PDM .33 (.32) .43 (.42) .32 .42 .06 (.06) .13 (.12) .04 .09

λF (t) CPS 1 (1) 1 (1) 1 1 .09 (.07) .34 (.33) .05 .29
QUE .32 (.32) .44 (.44) .33 .46 .36 (.38) .48 (.48) .36 .49
PDM .01 (.01) .02 (.02) .02 .02 .01 (.01) .03 (.02) .02 .05

Int. λC λI(t) λF (t)
Test J (r1b) K2 (r2b) K2 (r2) J (r2b) K2 (r2b)

Dep. setting α1 α2 α1 α2 α1 α2 α1 α2 α1 α2

CPS LD50 .93 .96 1 1 .98 .99 .05 .29 .62 .70
HD50 1 1 1 1 1 1 .12 .50 .93 .96
LD100 1 1 1 1 1 1 .10 .43 .72 .78

QUE LD50 .89 .95 .98 1 .75 .95 .36 .49 .56 .71
HD50 1 1 1 1 .98 1 .54 .65 .84 .92
LD100 .98 .99 1 1 .96 1 .44 .56 .64 .78

PDM LD50 .32 .42 .56 .70 .19 .34 .02 .05 .18 .28
HD50 .80 .86 .98 .99 .36 .56 .03 .06 .27 .42
LD200 .72 .81 .98 .99 .39 .54 .01 .01 .20 .33
HD100 .98 .99 1 1 .56 .76 .00 .01 .34 .48
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C.2. Power comparison with true and estimated intensities

This section shows the results of the simulation study in Section 4.4 to compare the
power of the tests implemented with true and estimated intensities. Table C4 summa-
rizes the values of the power plotted in Figure 6, that is the power of the best test in
each family, Normal, PaB and K2, with the three intensities, in settings HD50 and
LD100, for α1 = 0.05 and with true and estimated intensities. In the NH processes,
the power using both the parametric and nonparametric estimators is compared.

Table C4. Power of selected tests using the true and the estimated intensities for α1 = 0.05

Test Normal PaB K2

Dep. CPS QUE CPS QUE PDM CPS QUE PDM

HD50 λC .90 .97 1 .94 .87 1 1 .98

λ̂C .96 1 1 .99 .91 1 1 .98

λI(t) .92 .98 1 .89 .86 1 .98 .36

λ̂I(t) (PE) .98 1 1 .96 - 1 .97 -

λ̂I(t) (NPE) .90 .99 1 .89 .87 .96 .78 .28

λF (t) .92 .74 1 .27 .70 .93 .84 .27

λ̂F (t) (PE) .98 .70 1 .23 - .91 .84 -

λ̂F (t) (NPE) .94 .79 1 .34 .84 .84 .73 .29

LD100 λC .72 .86 .98 .96 .56 1 1 .83

λ̂C .78 .92 .98 .99 .58 1 1 .82

λI(t) .76 .82 .98 .90 .60 1 .96 .28

λ̂I(t) (PE) .89 .88 .98 .94 - 1 .96 -

λ̂I(t) (NPE) .86 .81 .98 .90 .57 .83 .72 .18

λF (t) .84 .26 .98 .32 .46 .72 .64 .20

λ̂F (t) (PE) .92 .25 .98 .28 - .70 .61 -

λ̂F (t) (NPE) .92 .41 .99 .39 .56 .63 .43 .19
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