000106619 001__ 106619
000106619 005__ 20220921131008.0
000106619 0247_ $$2doi$$a10.1016/j.jfoodeng.2020.110261
000106619 0248_ $$2sideral$$a119076
000106619 037__ $$aART-2021-119076
000106619 041__ $$aeng
000106619 100__ $$0(orcid)0000-0001-9471-8520$$aLorente-Bailo, Silvia$$uUniversidad de Zaragoza
000106619 245__ $$aModeling domestic pancake cooking incorporating the rheological properties of the batter. Application to seven batter recipes
000106619 260__ $$c2021
000106619 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106619 5203_ $$aA 2D axisymmetric model for coupled transient heat and mass transfer was developed to simulate pancake cooking on a domestic induction hob. Unlike previous models, the current model considers a variable thermal contact conductance resulting from the crust formation at the bottom of the batter. It aims to take into account the heat transfer phenomena between the pan surface and the batter influenced by the physicochemical changes that the batter undergoes during the cooking process. To quantify the variation of the heat flow that this change in the structure of the batter involves, a normalized relationship between batter viscosity and the temperature was introduced in the model. The performance of seven cereal and legume flour-based batters was evaluated in an experimental setup. The proposed model is capable of adequately predicting the weight loss and the average surface temperature of the batter using parameters related with the rheological properties of the batter and its composition.
000106619 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2017-5965-6$$9info:eu-repo/grantAgreement/ES/DGA/T24-17R$$9info:eu-repo/grantAgreement/ES/DGA/T07-17R
000106619 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000106619 590__ $$a6.203$$b2021
000106619 592__ $$a1.115$$b2021
000106619 594__ $$a10.5$$b2021
000106619 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b26 / 143 = 0.182$$c2021$$dQ1$$eT1
000106619 593__ $$aFood Science$$c2021$$dQ1
000106619 591__ $$aENGINEERING, CHEMICAL$$b29 / 142 = 0.204$$c2021$$dQ1$$eT1
000106619 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000106619 700__ $$aEtayo, Íñigo$$uUniversidad de Zaragoza
000106619 700__ $$0(orcid)0000-0001-6013-3399$$aSalvador, María L.$$uUniversidad de Zaragoza
000106619 700__ $$0(orcid)0000-0001-5765-2972$$aFerrer-Mairal, Ana$$uUniversidad de Zaragoza
000106619 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez, Miguel Ángel$$uUniversidad de Zaragoza
000106619 700__ $$0(orcid)0000-0001-9713-1813$$aCalvo, Begoña$$uUniversidad de Zaragoza
000106619 700__ $$0(orcid)0000-0002-6870-0594$$aGrasa, Jorge$$uUniversidad de Zaragoza
000106619 7102_ $$15007$$2520$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ingen.Sistemas y Automát.
000106619 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000106619 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000106619 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000106619 773__ $$g291 (2021), 110261 1-10$$pJ. food eng.$$tJOURNAL OF FOOD ENGINEERING$$x0260-8774
000106619 8564_ $$s2048601$$uhttps://zaguan.unizar.es/record/106619/files/texto_completo.pdf$$yPostprint
000106619 8564_ $$s1524243$$uhttps://zaguan.unizar.es/record/106619/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000106619 909CO $$ooai:zaguan.unizar.es:106619$$particulos$$pdriver
000106619 951__ $$a2022-09-21-10:02:08
000106619 980__ $$aARTICLE