Polymorphisms of the melatonin receptor 1A (MTNR1A) gene influence the age at first mating in autumn-born ram-lambs and sexual activity of adult rams in spring

J.A. Abecia¹, M.C. Mura², M. Carvajal-Serna¹, L. Pulinas², A. Macías³, A. Casao¹, R. Pérez-Pe¹, V. Carcangiu²

¹IUCA, Universidad de Zaragoza, Spain
²Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
³Asociación Nacional de Ganaderos de la Raza Rasa Aragonesa (ANGRA), Cabañera Real, s/n, 50800 Zuera, Zaragoza, Spain

*Corresponding author. IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain

E-mail address: alf@unizar.es (J.A. Abecia).
ABSTRACT

The aim of this study was to determine whether polymorphisms of the melatonin receptor 1A (MTNR1A) gene influence the age at first mating in autumn-born ram-lambs and influence the out-of-season sexual activity of adult rams. In experiment 1, 24 Rasa Aragonesa ram-lambs born in September were genotyped for their RsaI and MnlI allelic variants of the MTNR1A gene, and the date of their first mounting with ejaculation after a period of semen collection training was documented. In experiment 2, the reproductive behavior, testicle size, and plasma testosterone concentrations of 18 adult rams (6 rams for each RsaI genotype) were recorded at the beginning (March) and end (May) of the seasonal anestrus. The number of days of training to achieve the first mating with ejaculation in T/T (C/C: 85.17±12.08 C/T: 86.60±18.87; T/T: 26.50±24.50 d; P<0.05), and G/G ram-lambs (G/G: 51.57±14.99; A/G: 95.58±10.95 d; P<0.05) was significantly fewer than it was in the other genotypes. Likewise, for the RsaI genotype, 55% of the vulva-sniffing (P<0.001), 48% of the approaches (P<0.01), 48% of the mountings (P<0.05) and 49% total activities (P<0.001) were performed by T/T rams in March, and 50% of the sexual events in May (P<0.001). For the MnlI variant, G/G rams performed a significantly (P<0.001) larger proportion of the vulva-sniffing (41%), approaches (46%) and total activities (40%) in March, and 52% of the vulva-sniffing (P<0.001), 43%, of the approaches (P<0.001), 46% of the mountings (P<0.05), and 47% of the total activities (P<0.001) in May. Scrotal circumference, testicular volume, and plasma testosterone concentrations did not differ significantly among genotypes. Results confirmed that the polymorphisms of the MTNR1A gene sequence can influence reproductive performance in young and adult rams. Autumn-born ram-lambs that carried the T/T or G/G genotype had an advanced ability to reproduce, and T/T or G/G adult rams exhibited the most intense reproductive behavior. Genotyping might be a useful procedure for identifying the correct and rational use of rams in modern sheep farming.

Keywords: sheep, melatonin, receptor, sexual activity
1. Introduction

The synchronization of reproductive activity and living environment are important requirements for the survival of wild animals. In particular, small ruminants reproduce seasonally and their offspring are born in spring, which is the most favorable time of the year for their growth and survival. Sheep and goats maintained at temperate latitudes under natural conditions are sexually active in autumn, which leads to births in spring [1].

In Mediterranean areas, an advance in lambing at the beginning of autumn increases farm incomes, significantly, by reducing the length of the unproductive period in sheep, although it requires that reproduction occurs in spring, which is the non-breeding season [2]. Under natural variations in day-length at temperate latitudes, female small ruminant exhibit highly repeatable and distinct anovulatory and anestrous periods, and males exhibit significant variability in reproductive behavior and spermatogenetic activity from early autumn to mid-summer [3]. Photoperiod is the main environmental factor that influences those seasonal patterns [4]. Long days inhibit and short days stimulate sexual activity in sheep [5]. The light detected by the retina is translated into a neuroendocrine message by the epiphysis through the secretion of melatonin [6]. Blood concentrations of that hormone are low in day-light and high at night, thus, it is an organic informer of photoperiod [7-8].

In females of many mammals, melatonin influences seasonal reproductive activity through its effects on the pars tuberalis (review: [9]). Melatonin acts on specific receptors in various nuclei in the central nervous system including those that regulate reproduction [10]. In mammals, several types of melatonin receptors have been identified, but MT1, only, appears to be involved in the regulation of reproductive activity [11-12]. The MT1 receptor belongs to the G protein-coupled receptor family, and its gene has been cloned [13] and mapped in several animal species [14]. The melatonin receptor 1A (MTNR1A) gene exhibits several polymorphic sites, which are associated with seasonal reproductive activity in ewes [15-16] and other mammals [17-19]. Although males exhibit a seasonal pattern in sexual activity, it is unknown whether those polymorphisms influence the reproductive performance of rams. Melatonin production occurs in testis and melatonin receptors have been described in various testicular regions by our group [20]; therefore, we hypothesized whether polymorphisms of the melatonin receptor gene differ in their effects on reproductive seasonality in rams. To test that hypothesis, timing of first mating
in autumn-born ram-lambs and the sexual activity of adult Rasa Aragonesa rams in spring, carrying different polymorphisms of the \textit{MTNR1A} gene, have been studied.

2. Material and methods

The experiment was conducted at the experimental farm of the University of Zaragoza, Spain (41°40'N). The Ethics Committee for Animal Experiments at the University of Zaragoza approved the procedures performed in the study. The care and use of animals were in accordance with the Spanish Policy for Animal Protection RD1201/05, which meets the European Union Directive 2010/63 on the protection of animals used for experimental and other scientific purposes.

2.1. Experiment 1

Twenty-four Rasa Aragonesa ram-lambs born in early September were genotyped for the Rsal and MnlI allelic variants of the \textit{MTNR1A} gene (Table 1). At the age (±S.D.) of 5±0.3 mo (Feb) (live weight: 33.4±0.2 kg), the rams were initiated into semen collection training, which occurred every 10 d for six months until the end of July. Each session lasted 20 min or until two ejaculates were obtained from the ram, whichever occurred first. Rams were individually exposed to one immobilized female in estrus, which had been induced by intravaginal sponges that contained 40 mg of flurogestone acetate and an i.m. injection of 400 IU of eCG (Syncro-Part, CEVA Salud Animal, Spain) at pessary withdrawal, 14 d later. The same technician was present with the animals throughout the training period. The semen collection materials and procedures followed Evans and Maxwell [21]. Rams were housed in a group and fed to meet their maintenance requirements. The date of the first mounting with ejaculation of each ram was documented, and the time between the onset of the training period (6 February) and the date of first mounting was calculated.

2.2. Experiment 2

Eighteen sexually-experienced 2.5 year-old Rasa Aragonesa rams (live weight: 89.2±5.7 kg) were selected from among 39 animals (Table 2) based on their Rsal polymorphism: genotype C/C (n=6), C/T (n=6), and T/T (n=6). Based on their MnlI allele, rams were classified as G/G (n=9), G/A (n=3), or A/A (n=6). Rams were housed as a single group, which was isolated from another group of rams and ewes, and fed to meet
their maintenance requirements. Rams had not undergone any previous serving capacity test, and some sporadic homosexual behavior had been observed.

In late March and late May, individual serving-capacity tests [22-23] were performed. To that end, to induce synchronized estrus, 40 adult Rasa Aragonesa ewes received intravaginal pessaries for 12 d and 300 IU eCG i.m. (Syncro-Part, CEVA Salud Animal, Spain). Forty-eight hours later (20 Mar and 20 May), ewes were used in an individual ram serving-capacity test. For 20 min, individual rams were exposed to five estrous ewes in a 15-m² pen and the following information was recorded: the number of acts of flehmen (elevating the head and upper lip feedback in response to taste and odor of ewe urine or ambient odor), ano-genital sniffing (sniff in the genital region of ewe), approaches (rubbing, licking, or superficially nibbling the flank of the ewe with intensity), attempted mounting (stands behind the ewe and moves with the intention to copulate, with front legs in the air, but not placed safely on the ewe), and mounting (intrusion of the penis into vagina of ewe with one or more thrusts and, thereby, ejaculation can occur, which is indicated by the backward elevation of the ram's head). The definitions of sexual events followed Calderón-Leyva et al. [24].

The day before the sexual-capacity test, scrotal circumference (SC) was measured. To estimate testicular volume (TV), testicle width and length were measured and TV was calculated as \(0.0396 \times (\text{average testis length}) \times (\text{scrotal circumference})^2\) [25]. To measure plasma testosterone concentrations, a blood sample was collected (08:00 am) by jugular venipuncture, placed into a heparinized tube, and centrifuged at 3,500 \(\times\) g for 30 min. The plasma fraction was stored at \(-20^\circ\text{C}\) until testosterone concentrations were measured.

2.3. Blood sampling and DNA analysis

To identify the individual allelic variants, DNA analysis was performed using whole blood from each ram. Blood samples (10 ml) were collected from the jugular vein into vacuum tubes that contained ethylenediaminetetra acetic acid (EDTA) as an anticoagulant. The DNA was extracted using a genomic DNA extraction kit (NucleoSpin® Blood, Macherey-Nagel, Germany). Polymerase chain reaction (PCR) was performed on 150 ng of genomic DNA from each ram and specific primers (Sigma Genosys Ltd., Pampisford, Cambs, UK) according to Messer et al. [14]. The primers were positions 285 to 304 (sense primer 5’ – TGT GTT TGT GGT GAG CCT GG – 3’) and 1108 to 1089 (antisense primer: 5’ – ATG GAG AGG GTT TGC GTT TA – 3’) [13]
(GenBank accession number U14109). Thereafter, we referenced to the newest ovine
MTNR1A gene sequence included in the latest ovine genome version (Oar_rambouillet_v1.0 - GenBank assembly accession number: GCA_002742125.1).
The PCR reaction was performed according to Mura et al. [26]. The PCR products were
subjected to a double restriction enzyme analysis involving the MnlI and RsaI
endonucleases (New England Biolabs, Beverly, MA, USA). The MnlI restriction enzyme
recognizes an A to a G substitution at position g.17355452, and RsaI recognizes a C to a
T substitution at position g.17355458 of the GCA_002742125.1 genome sequence
(corresponding, respectively, to position 612 and 606 of the older MTNR1A exon II
U14109 nucleotide sequence). The digestion reactions were performed according to
Carcangiu et al. [16].

2.4. Sequencing

To determine whether the variants identified by endonucleases digestion were
associated with other nucleotide substitutions, the PCR products for each genotype were
sequenced by an Applied Biosystems 3730 DNA Analyzer (Perkin-Elmer Applied
Biosystems, Foster City, CA, USA). To confirm the correspondences among the known
nucleotide changes and identify other possible substitutions, the sequences were aligned
and compared with the ovine sequence GenBank U14109 and GCA_002742125.1. The
homology searches were performed through BLAST (National Centre for Biotechnology
Information: https://blast.ncbi.nlm.nih.gov/Blast.cgi). To align the sequences, the
CLUSTALW tool was used (http://www.genome.jp/tools-bin/clustalw).

2.5. Hormonal assay

Plasma testosterone concentrations were measured in duplicate by direct
radioimmunoassay [27]. Sensitivity was 0.3 ng/ml. Samples were run in a single assay
(intra-assay CV = 6%).

2.6. Statistical analysis

In experiment 1, statistically significant differences among genotypes in the
timing of first mating, and in the number of days of training until the first mating were
identified by a log-rank test for trend and a 2-way ANOVA, respectively.

In experiment 2, statistically significant differences among genotypes in
proportions of events performed were identified by X² tests. Differences in SC and TV
were assessed by ANOVA, with genotype variant as the main effect. To calculate
statistical differences among genotypes for SC and TV, an ANOVA was used. To assess
the statistical significance of differences in SC and TV between March and May, a Paired
T-test for related samples was used.

3. Results

3.1. Experiment 1

At the end of the experiment (July), the proportion of the rams which mated at
least once and remained sexually active throughout the experiment was 70.8%. Five of
the rams (5 C/C, 0 C/T, 0 T/T of the RsaI genotype; P<0.001) (1 A/A, 2 A/G, and 2 G/G
for the MnlI genotype, P>0.05) did not respond to the female stimulus neither ejaculate.

Among the RsaI genotypes, T/T rams (26.50±24.50 d) required significantly
(P<0.05) fewer days of training to achieve their first ejaculation with the AV than did the
other genotypes (C/C: 85.17± 12.08 d, C/T: 86.60±18.87 d) (Fig. 1). Among the MnlI
genotypes, the number of days of training until the first mounting was significantly
(P<0.05) less in the G/G rams (51.57±14.99 d) than it was in the A/G genotype.
(95.58±10.95 d).

3.2. Experiment 2

In March and May, T/T rams exhibited a significantly higher level of sexual
activity than did the other genotypes (Fig. 2); specifically, 55% of the vulva-sniffing
(P<0.001), 48% of the approaches (P<0.01), 48% of the mountings (P<0.05), and 49% of
total activities (P<0.001) in March, and 50% of all sexual events in May (P<0.001).
Among the MnlI genotypes, G/G rams performed a significantly (P<0.001) higher
proportion of the vulva-sniffing (41%), approaches (46%), and total activities (40%) in
March, and 52% of the vulva-sniffing (P<0.001), 43% of the approaches (P<0.001), 46%
of the mountings (P<0.05), and 47% of total activities (P<0.001) in May.

Scrotal circumference, TV, and plasma testosterone concentrations did not differ
significantly among genotypes (Table 3). In March and May, some of the genotypes
exhibited a significant (P<0.05) increase in SC (C/C, G/G, and A/A) and or TV (C/C,
G/G, and T/T). Testosterone concentrations did not differ significantly among genotypes
(Table 3).
4. Discussion

Results of this experiment show that T/T and G/G genotypes of the MTNR1A gene were associated with an earlier mating activity of ram-lambs, and a more intensive reproductive behavior of adult rams in spring. The genotypic and allelic frequencies of the MTNR1A gene observed in this study were similar to those reported for the same breed [28], with small differences probably due to the smaller number of animals included in the present study. The frequency of the mutant allele G at position g.17355452 G>A of the MTNR1A gene exon II sequence in our study was similar to those found in other sheep breeds [16,29-30]. Our results, moreover, showed that at the position g.17355458 C>T, the frequency of the T allele was higher than it is in the Sarda breed, but very similar to those in some Indian and Egyptian sheep breeds [31-33].

In our study, the two MTNR1A gene loci appeared to influence the reproductive behavior of Rasa Aragonesa rams. In particular, the T/T genotype at position g.17355458 C>T had a positive effect on the sexual performance of young and adult rams. Young rams that carried the T/T genotype were advanced in their ability to reproduce, and adult males exhibited higher reproductive behavior in March and May than did the other genotypes. Published data on those phenomena in rams are unavailable; however, a correlation between the T/T genotype and a high proportion of cyclic sheep between January and August has been observed in Rasa Aragonesa and in some Slovenian ewes [34-35]. In one study, the C/C genotype had a more advanced reproductive recovery in spring than did the C/T and the T/T genotype in Sarda ewes [16].

In Rasa Aragonesa, the polymorphism at position g.17355452 G>A appeared to be involved in the reproductive performance of young and adult rams. Specifically, ram-lambs that carried the G/G genotype were advanced considerably in the age at first mounting, and adult G/G rams performed significantly disproportionally more of the reproductive behaviors (vulva-sniffing, approaches, mountings, and total activities) than did the other genotypes. Although there is no published information on the effects of this genotype in rams, in ewes of several sheep breeds, the G/G genotype appears to have the best reproductive recovery, ovulatory cyclicity throughout the year, and reproductive response to treatment with melatonin or synthetic progestins [17,36-38]. It is uncertain why those two SNPs influence reproductive behavior because they do not involve amino acid substitutions; however, variation g.17355452G>A is linked to g.17355358C>T substitution, which produces an amino acid change, and might affect the melatonin
transmission system, as reported also by other authors [39]. Sensitivity to photoperiod and thus to melatonin, might be affected by genotype, which would make G/G ewes the most responsive to the onset of reproductive activity. Consequently, it can be hypothesized that also in males the different genotypes could influence the reproductive performance as found in the present research. In addition, melatonin receptors have been identified in various testicular areas [20], which underscores the importance of melatonin in testicular function. Indeed, because of its antioxidant properties, melatonin can protect spermatozoa from apoptosis [40-41]. Furthermore, the in vitro reduction of nitric oxide levels in ram spermatozoa by melatonin treatment, modulates capacitation by cAMP [42]. Possibly, in our study, changes in melatonin message transmission caused by the polymorphism have improved ram reproductive activity and sexual behavior.

For the g.17355452G>A and the g.17355458C>T polymorphisms, blood testosterone concentrations in adult rams did not differ significantly among genotypes; however, in May, rams that carried the T/T or G/G variants had the highest testosterone circulating levels. Possibly, the animals that carried those variants were preparing for reproductive recovery earlier than were the animals that had the other genetic variants. Data about SC and TV in g.17355458C>T locus for different genotypes are difficult to explain. In fact, from March to May, rams carrying the T/T genotype significantly increased their TV, while C/C rams increased both SC and TV. However, the values registered in May were similar for both the above-mentioned genotypes, which suggests a similar preparation of the reproductive system for sexual recovery. This little difference in the observed parameters would require a longer observation period to achieve a more accurate evaluation. Regarding the g.17355452G>A locus, G/G rams exhibited a significant increase in SC and TV from March to May, while A/A rams only increased their SC. The values exhibited by G/G rams were higher for both parameters, confirming their better sexual behavior and reproductive recovery. The role of the polymorphisms of the MTNR1A gene might be better clarified by extending observations in a greater number of animals for longer periods, including semen quality analysis.

5. Conclusions

This study confirmed that the polymorphisms at the MTNR1A gene sequence influenced the reproductive performance of young and adult Rasa Aragonesa rams. The T/T and G/G genotypes were associated with an advance in the ability of autumn-born
ram-lambs to reproduce, and an improvement in the reproductive behavior of adult rams. Genotyping might be a useful procedure for identifying the correct and rational use of rams in modern sheep farming.

Declaration of competing interest

The authors have no conflicts of interest to declare.

CRediT authorship contribution statement

J.A. Abecia: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft, Visualization, Supervision, Project administration, Funding acquisition, Writing - review&editing. M.C. Mura: Conceptualization, Methodology, Writing - Original Draft, Supervision, Writing -review&editing. M. Carvajal-Serna: Formal analysis, Investigation, Visualization. L. Pulinas: Conceptualization, Methodology, Investigation, Writing - Original Draft. A. Macias: Resources, Investigation. A. Casao: Formal analysis, Investigation, Visualization. R. Pérez-Pe: Formal analysis, Investigation. V. Carcangiu: Conceptualization, Methodology, Writing - Original Draft, Supervision, Funding acquisition, Writing -review&editing.

Acknowledgments

The work was supported by Ministerio de Ciencia y Tecnología (Spain), grant number AGL2017-82118-R, and by a RAS research project entitled RIPROGENOV (Italy). We thank José Antonio Ruiz and Antonio Barrio for their help in the care of the animals, and Bruce MacWhirter for the English revision of the manuscript.

References

https://doi.org/10.1051/rnd:19880307.

long days versus mammals breeding during short days. Anim Reprod Sci

https://doi.org./10.1016/b978-0-12-571140-1.50010-4.

[6] Goldman BD. Mammalian photoperiodic system: formal properties and
neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms

Photorefractoriness in mammals: dissociating a seasonal timer from the circadian-

S. Daily rhythm of blood melatonin concentrations in sheep of different ages. Biol

[9] Dardente H. Melatonin-dependent timing of seasonal reproduction by the pars
tuberalis: pivotal roles for long daylengths and thyroid hormones. J
2826.2011.02250.x

premammillary hypothalamic area of the ewe: anatomical characterization of a
melatonin target area mediating seasonal reproduction. Biol Reprod

necessary for reproductive and circadian responses to melatonin in Siberian
https://doi.org/10.1210/mend.10.11.8923472.

Melatonin receptor antagonists block melatonin-mediated phase advances of

[30] Saxena VK, Jha BK, Meena AS, Naqvi SM. Characterization of MTNR1A gene in terms of genetic variability in a panel of subtemperate and subtropical Indian

Table 1

Genotypes of the rams in a study of the effects of polymorphisms of the melatonin receptor 1A gene on the timing of first mating in autumn-born Rasa Aragonesa ram-lambs ($n = 24$).

<table>
<thead>
<tr>
<th>Allele</th>
<th>C/C</th>
<th>C/T</th>
<th>T/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/G</td>
<td>25.00%</td>
<td>4.17%</td>
<td>8.33%</td>
</tr>
<tr>
<td>G/A</td>
<td>41.67%</td>
<td>16.67%</td>
<td>0.00%</td>
</tr>
<tr>
<td>A/A</td>
<td>4.17%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Allele frequency

C = 0.81 T = 0.19 G = 0.67 A = 0.33
Table 2

Genotypes of the initial group of 39 Rasa Aragonesa rams from which 24 individuals were used in a study of the effects of polymorphisms of the melatonin receptor 1A gene on sexual activity in adult rams in spring.

<table>
<thead>
<tr>
<th>Allele</th>
<th>C/C</th>
<th>C/T</th>
<th>T/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mnll</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>19</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>G/G</td>
<td>48.70</td>
<td>0.00</td>
<td>20.51</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G/A</td>
<td>12.82</td>
<td>2.56</td>
<td>0.00</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>A/A</td>
<td>0.00</td>
<td>12.82</td>
<td>2.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allele frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = 0.69 T = 0.31 G = 0.77 A = 0.23</td>
</tr>
</tbody>
</table>
Table 3

Mean (±S.E.M.) scrotal circumference (cm), testicular volume (cm³), and plasma testosterone concentration (ng/ml) of Rasa Aragonesa rams and the polymorphisms of the melatonin receptor 1A gene (a,b denotes statistical differences between months P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>RsaI</th>
<th>March</th>
<th>May</th>
<th>March</th>
<th>May</th>
<th>March</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C/C (6)</td>
<td>30.8±0.8</td>
<td>34.6±0.7</td>
<td>345.4±24.3</td>
<td>508.7±32.3</td>
<td>7.0±1.6</td>
<td>8.3±2.5</td>
</tr>
<tr>
<td></td>
<td>C/T (6)</td>
<td>32.3±1.5</td>
<td>33.8±0.9</td>
<td>393.8±33.8</td>
<td>446.0±39.6</td>
<td>8.1±2.5</td>
<td>9.4±2.9</td>
</tr>
<tr>
<td></td>
<td>T/T (6)</td>
<td>31.6±0.8</td>
<td>34.7±0.7</td>
<td>373.3±22.7</td>
<td>504.3±27.1</td>
<td>8.2±1.7</td>
<td>10.8±2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MnlI</th>
<th>March</th>
<th>May</th>
<th>March</th>
<th>May</th>
<th>March</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G/G (9)</td>
<td>31.3±0.7</td>
<td>34.5±0.6</td>
<td>360.4±21.1</td>
<td>500.4±26.4</td>
<td>7.8±1.4</td>
<td>9.6±2.0</td>
</tr>
<tr>
<td></td>
<td>A/G (3)</td>
<td>34.2±2.5</td>
<td>33.8±0.4</td>
<td>418.8±49.4</td>
<td>445.7±41.6</td>
<td>7.2±2.3</td>
<td>9.7±2.8</td>
</tr>
<tr>
<td></td>
<td>A/A (6)</td>
<td>30.7±0.7</td>
<td>34.4±0.9</td>
<td>362.6±25.5</td>
<td>484.9±42.3</td>
<td>8.9±2.9</td>
<td>8.6±4.5</td>
</tr>
</tbody>
</table>
Fig. 1. Distribution (%) of the first mating by rams with an estrus-synchronized ewe, ejaculating into an artificial vagina, and the polymorphism of the melatonin receptor 1A gene that they carried (▲C/C; ■ C/T; ● T/T; Δ G/G; □ A/G; ○ A/A).

Fig. 2. Proportion (%) of flehmen, anogenital sniffing, approaches, mounting attempts, and mountings in a 20-min individual serving capacity test (one ram-lamb with three estrous ewes) by Rasa Aragonesa rams and the polymorphisms of the melatonin receptor 1A gene.