000106627 001__ 106627
000106627 005__ 20220426091142.0
000106627 0247_ $$2doi$$a10.1002/smll.202000269
000106627 0248_ $$2sideral$$a119882
000106627 037__ $$aART-2020-119882
000106627 041__ $$aeng
000106627 100__ $$0(orcid)0000-0002-8842-9324$$aChiodini, Stefano$$uUniversidad de Zaragoza
000106627 245__ $$aBottom Effect in Atomic Force Microscopy Nanomechanics
000106627 260__ $$c2020
000106627 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106627 5203_ $$aIn this work, the influence of the rigid substrate on the determination of the sample Young''s modulus, the so-called bottom-effect artifact, is demonstrated by an atomic force microscopy force-spectroscopy experiment. The nanomechanical properties of a one-component supported lipid membrane (SLM) exhibiting areas of two different thicknesses are studied: While a standard contact mechanics model (Sneddon) provides two different elastic moduli for these two morphologies, it is shown that Garcia''s bottom-effect artifact correction yields a unique value, as expected for an intrinsic material property. Remarkably, it is demonstrated that the ratio between the contact radius (and not only the indentation) and the sample thickness is the key parameter addressing the relevance of the bottom-effect artifact. The experimental results are validated by finite element method simulations providing a solid support to Garcia''s theory. The amphiphilic nature of the investigated material is representative of several kinds of lipids, suggesting that the results have far reaching implications for determining the correct Young''s modulus of SLMs. The generality of Garcia''s bottom-effect artifact correction allows its application to every kind of supported soft film.
000106627 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E31-17R$$9info:eu-repo/grantAgreement/EUR/ERA-NET-COFUND/MagicCellGene Project 2016$$9info:eu-repo/grantAgreement/ES/MINECO/PCIN-2017-127
000106627 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000106627 590__ $$a13.281$$b2020
000106627 591__ $$aCHEMISTRY, PHYSICAL$$b14 / 162 = 0.086$$c2020$$dQ1$$eT1
000106627 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b25 / 333 = 0.075$$c2020$$dQ1$$eT1
000106627 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b13 / 106 = 0.123$$c2020$$dQ1$$eT1
000106627 591__ $$aPHYSICS, CONDENSED MATTER$$b7 / 69 = 0.101$$c2020$$dQ1$$eT1
000106627 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b18 / 178 = 0.101$$c2020$$dQ1$$eT1
000106627 591__ $$aPHYSICS, APPLIED$$b11 / 160 = 0.069$$c2020$$dQ1$$eT1
000106627 592__ $$a3.785$$b2020
000106627 593__ $$aBiomaterials$$c2020$$dQ1
000106627 593__ $$aBiotechnology$$c2020$$dQ1
000106627 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000106627 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000106627 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000106627 593__ $$aMedicine (miscellaneous)$$c2020$$dQ1
000106627 593__ $$aEngineering (miscellaneous)$$c2020$$dQ1
000106627 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000106627 700__ $$aRuiz-Rincón, Silvia
000106627 700__ $$aGarcia, P.D.
000106627 700__ $$0(orcid)0000-0001-9193-3874$$aMartin, Santiago$$uUniversidad de Zaragoza
000106627 700__ $$aKettelhoit, K.
000106627 700__ $$aArmenia, I.
000106627 700__ $$aWerz, D.B.
000106627 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000106627 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000106627 773__ $$g16, 35 (2020), 2000269 [8 pp]$$pSmall$$tSmall$$x1613-6810
000106627 8564_ $$s2399133$$uhttps://zaguan.unizar.es/record/106627/files/texto_completo.pdf$$yPostprint
000106627 8564_ $$s1017270$$uhttps://zaguan.unizar.es/record/106627/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000106627 909CO $$ooai:zaguan.unizar.es:106627$$particulos$$pdriver
000106627 951__ $$a2022-04-26-08:57:42
000106627 980__ $$aARTICLE