000106632 001__ 106632
000106632 005__ 20220111135614.0
000106632 0247_ $$2doi$$a10.1021/acsami.0c06725
000106632 0248_ $$2sideral$$a119899
000106632 037__ $$aART-2020-119899
000106632 041__ $$aeng
000106632 100__ $$0(orcid)0000-0003-2660-3726$$aLafuente, M.$$uUniversidad de Zaragoza
000106632 245__ $$aIn Situ Synthesis of SERS-Active Au@POM Nanostructures in a Microfluidic Device for Real-Time Detection of Water Pollutants
000106632 260__ $$c2020
000106632 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106632 5203_ $$aWe present a simple, versatile, and low-cost approach for the preparation of surface-enhanced Raman spectroscopy (SERS)-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the polydimethylsiloxane (PDMS) microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by scanning electron microscopy (SEM), UV-vis, Raman, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The SERS activity of the resulting Au@POM-coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using rhodamine R6G. The SERS response of Au@PW-based LoCs was found to be superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM-coated LoCs as analytical platforms for real-time detection of the organophosphorous pesticide paraoxon-methyl at 10-6 M concentration level.
000106632 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79419-R
000106632 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000106632 590__ $$a9.229$$b2020
000106632 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b21 / 106 = 0.198$$c2020$$dQ1$$eT1
000106632 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b44 / 333 = 0.132$$c2020$$dQ1$$eT1
000106632 592__ $$a2.535$$b2020
000106632 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000106632 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000106632 593__ $$aMedicine (miscellaneous)$$c2020$$dQ1
000106632 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000106632 700__ $$aPellejero, I.
000106632 700__ $$0(orcid)0000-0002-8787-117X$$aClemente, A.
000106632 700__ $$0(orcid)0000-0002-4931-1358$$aUrbiztondo, M.A.
000106632 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000106632 700__ $$aReinoso, S.
000106632 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000106632 700__ $$aGandía, L.M.
000106632 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000106632 773__ $$g12, 32 (2020), 36458-36467$$pACS appl. mater. interfaces$$tACS Applied Materials and Interfaces$$x1944-8244
000106632 8564_ $$s644151$$uhttps://zaguan.unizar.es/record/106632/files/texto_completo.pdf$$yPostprint
000106632 8564_ $$s1737104$$uhttps://zaguan.unizar.es/record/106632/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000106632 909CO $$ooai:zaguan.unizar.es:106632$$particulos$$pdriver
000106632 951__ $$a2022-01-11-13:53:28
000106632 980__ $$aARTICLE