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Abstract—Photometric bundle adjustment (PBA) accurately estimates
geometry from video. However, current PBA systems have a temporary
map that cannot manage scene reobservations. We present, direct sparse
mapping, a full monocular visual simultaneous localization and mapping
(SLAM) based on PBA. Its persistent map handles reobservations, yielding
the most accurate results up to date on EuRoC for a direct method.

Index Terms—Photometric bundle adjustment (PBA), three-dimensional
(3-D) vision, VSLAM.

I. INTRODUCTION

Photometric bundle adjustment (PBA) has proven to be an effective
method for estimating scene geometry and camera motion in visual
odometry (VO) [1]. As a direct optimization, PBA minimizes the
photometric error of map point observations over a local sliding window
of active keyframes. The number of active keyframes is limited to avoid
large computations. Points are sampled across image pixels with locally
high gradient module, such as edges and weak intensity variations. They
are associated to only one keyframe where they are initialized. In the rest
of keyframes, there is not an explicit and fixed data association, because
the PBA recomputes the correspondences as a part of the optimization.
Thus, direct methods do not rely on the repeatability of selected points
and are able to operate in scenes with low texture but with contours.

Current PBA-based methods are only able to do VO, which builds a
temporary map to precisely estimate the camera pose. They use a sliding
window that selects close in time active keyframes, marginalizing map
points that leave the field of view. This strategy reduces the computation
complexity by removing old cameras and points while maintaining the
system consistent to unobservable degrees of freedom, i.e., absolute
pose and scale. Hence, if the camera revisits already mapped areas, the
PBA cannot reuse marginalized map points and it is forced to duplicate
them. This is a severe limitation: the system cannot benefit from the
highly informative reobservations of map points, and this causes motion
drift and structure inconsistencies.
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In contrast, VSLAM methods build a persistent map of the scene,
and continuously process map point reobservations. Instead of using
a sliding window and marginalization, they retain keyframes and map
points with a fixed location in the model and select the active keyframes
and map points according to covisibility criteria, i.e., they observe
several map points in common. This results in a network of keyframes
where the connectivity is based on whether they observe the same scene
region even if they are far in time. The fixation strategy maintains the
system consistent to unobservable degrees of freedom (gauge freedom)
and it enables the reuse of map points. Thus, VSLAM approaches can
extract the rich information of map point reobservations reducing the
drift in the estimates.

Transforming PBA-based direct VO systems into VSLAM is not
straightforward because there are several challenges to solve. First,
when the camera revisits already mapped areas, the system has to
select active keyframes that include map point reobservations. They
are difficult to obtain because there are not point correspondences
between keyframes. At the same time, we have to guarantee accurate
map expansion during exploration. We propose to select the active
keyframes according to a combination of temporal and covisibility
criteria. In this way, the PBA includes the optimization keyframes
that observe the active scene region with high parallax even if they
are far in time. Second, the PBA includes map points and keyframes
distant in time and, hence, affected by the estimation drift. Normally,
the photometric convergence radius is around 1–2 pixels due to image
linearization and, thus, a standard PBA cannot compensate the drift. We
propose a multiscale PBA optimization to handle successfully these
convergence difficulties. Third, we have to ensure the robustness of
the PBA against spurious observations. They mainly arise from the
widely separated active keyframes—in contrast to the close keyframes
of VO—which render occlusions and scene reflections that violate
the photo-consistency assumption. We incorporate a robust influence
function based on the t-distribution into the PBA to handle the adverse
effect of these observations.

We present a new direct VSLAM system, direct sparse mapping
(DSM). Up to our knowledge, this is the first fully direct monocular
VSLAM method that is able not only to detect point reobservations
but also to extract the rich information they provide (see Fig. 1). In
summary, we make the following contributions.

1) A persistent map that allows to reuse existing map information
directly with the photometric formulation.

2) The local map covisibility window (LMCW) criteria to select the
active keyframes that observe the same scene region, even if they
are not close in time, and the map point reobservations.

3) We show that the PBA needs a coarse-to-fine scheme to conver-
gence. This exploits the rich geometrical information provided
by point reobservations from keyframes rendering high parallax.

4) We show that a t-distribution based robust influence function
together with a pixel-wise outlier management strategy increases
the PBA consistency against outliers derived from the activation
of distant keyframes.

5) An experimental validation of DSM in the EuRoC dataset [2].
We report quantitative results of the camera trajectory and, for the
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Fig. 1. Estimated map by DSM with (bottom) and without (top) point reob-
servations in the V2_01_easy sequence of the EuRoC MAV dataset. DSM can
produce consistent maps without duplicates.

first time, of the reconstructed map. We obtain the most accurate
results among direct monocular methods so far.

6) We make our implementation publicly available.1

II. RELATED WORK

The first real-time monocular VSLAM methods were indirect ap-
proaches, using FAST and Harris corners associated across images
in the form of 2-D fixed correspondences. The 3-D geometry was
estimated minimizing the reprojection error. They relied on the re-
peatability of the corner detectors and required rich visual texture.
Thanks to the feature descriptors, they associate distant images. Davison
et al. [3] presented MonoSLAM, which recovers the scene geometry
in an extended kalmann filter (EKF)-based framework, later extended
in [4] to include a parametrization in inverse depth. Klein and Murray
in parallel tracking and mapping (PTAM) [5] proposed for the first
time to parallelize the tracking and mapping tasks, demonstrating the
viability of using a bundle adjustment (BA) scheme to maintain a
persistent map in small workspaces. Later, Strasdat et al. [6] proposed
a double window optimization to extend the potential of feature-based
VSLAM to long-term applications. It combines a local BA with a global
pose-graph optimization using covisibility constraints based on point
matches. Following these works, ORB-SLAM [7] presented, which is
the reference solution among indirect VSLAM approaches. Up to date,
it is the most accurate monocular VSLAM method in many scenarios.
The key aspect of its precision comes from the management of map
point reobservations in the BA using an appearance-based covisibility
graph. Similarly, DSM transfers the main ideas of indirect VSLAM
techniques, to direct systems significantly increasing the accuracy of
their estimates. As a direct approach, DSM does not compute explicit
point matches and, thus, cannot build an appearance-based covisibility
graph. Instead, DSM relies on geometric constraints to build covisibility
connections between far in time keyframes. In addition, it works with
a smaller window of covisible keyframes than ORB-SLAM to control
the computational limitations.

Recently, VO approaches have shown impressive performance. semi-
direct visual odometry (SVO) [8] proposed a hybrid approach to build
a semidirect VO system. It uses direct techniques to track and trian-
gulate points but ultimately optimizes the reprojection error of those
points in the background. open keyframe-based visual-inertial SLAM
(OKVIS) [9] presented a feature-based visual-inertial odometry system
that continuously optimizes the geometry of a local map marginalizing
the rest. Recently, Engel et al. [1] made a breakthrough with their direct
sparse odometry (DSO), the first fully direct VO approach that jointly
optimizes motion and structure formulating a PBA and including a pho-
tometric calibration into the model. Inspired by OKVIS, DSO performs

1[Online]. Available: https://github.com/jzubizarreta/dsm

the optimization over a sliding window, where old keyframes as well
as points that leave the field of view of the camera are marginalized.
It has shown impressive odometry performance and it is the reference
among direct VO methods. However, as a pure VO approach, DSO
cannot reuse map points once they are marginalized, which causes
camera localization drift and map inconsistencies. DSM uses the same
photometric model of DSO and goes one step further to build the first
fully direct VSLAM solution with a persistent map.

Many VO systems have been extended to cope with loop closures.
Most propose to include a feature-based bag of binary words to de-
tect loop closures and estimate pose constraints between keyframes,
following [10]. Then, a pose-graph optimization finds a correction for
the keyframe trajectory. visual inertial SLAM (VINS)-mono [11] uses
a similar front-end to OKVIS but includes additional binary robust
independent elementary features (BRIEF) features to perform loop
closure. large-scale direct monocular SLAM (LSD)-SLAM [12] was
the first direct monocular VO for large-scale environments. The method
recovers semidense depth maps using small-baseline stereo compar-
isons and reduces accumulated drift with a pose-graph optimization.
Loop closures are detected using FAB-MAP [13], an appearance loop
detection algorithm, which uses different features to those of the direct
odometry. Direct sparse odometry with loop closure (LDSO) [14]
extended DSO with a conventional ORB bag of words to detect loop
closures and reduce the trajectory drift by pose-graph optimization.
All these methods have the next drawbacks: 1) they use a different
objective function and points to those of the odometry; 2) loop closure
detection relies on feature repeatability, missing many corrections; 3)
the error correction is distributed equally over keyframes, which may
not be the optimal solution; 4) although the trajectory is spatially
corrected, existing information from map points is not reused and,
thus, ignored during the optimization. In contrast, full VSLAM systems
such as ORB-SLAM and DSM reuse the map information thanks to its
persistent map. The reobservations are processed with their standard BA
(either geometric or photometric), resulting in more accurate estimates.
Thanks to the improvement in accuracy, the need of loop closure
detection and correction is postponed to trajectories longer than in their
VO counterparts.

Moreover, dense visual odometry (DVO) [15] proposed a proba-
bilistic formulation for direct image alignment. Inspired by [16], they
show the robustness of using a t-distribution to manage the influence of
noise and outliers. Babu et al. [17] demonstrated that the t-distribution
represents well photometric errors while not geometric errors. We
incorporate these ideas into the sparse photometric model together with
a novel outlier management strategy. In this way, we make the nonlinear
PBA optimization robust to spurious point observations. They normally
appear as a result of widely separated active keyframes and lack of
explicit point matches.

III. DIRECT MAPPING

The proposed VSLAM system consists of a tracking
front-end (see Section VI) and an optimization back-end (see
Section III-B). The front-end tracks frames and points, and also
provides the coarse initialization for the PBA. The back-end determines
which keyframes form the local window (see Section IV) and jointly
optimizes all the active keyframes and map point parameters. Similarly
to most VSLAM systems [1], [5], [7], the front-end and the back-end
run in two parallel threads.

1) The tracking thread obtains the camera pose at frame rate. It also
decides when the map needs to grow by marking some of the
tracked frames as keyframes.

2) The mapping thread processes all new frames to track points
from active keyframes. Besides, if the new frame is marked as a
keyframe, the local window is recalculated, new points are acti-
vated and the PBA optimizes motion (keyframes) and structure
(points) together using active keyframes. Finally, it maintains
the model globally consistent, i.e., removes outliers, detects
occlusions, and avoids point duplications (see Section V-B).
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The persistent map is composed of keyfames that are activated or
deactivated according to covisibility criteria with the latest keyframe.
The absolute pose of a keyframe i is represented by the transformation
matrix Ti ∈ SE(3). For each keyframe, we select as candidate points
those with a locally high gradient module and spread over the image.
Each map point p is created in a keyframe (see Section VI) and its pose
is coded as its inverse depth ρ = p−1

z . Thus, for each keyframe, we store
the raw image and the associated map points. We assume all images to
be undistorted. We use the pinhole model to project a point from 3-D
space to the image plane, u = π(p) = K(px/pz, py/pz, 1)

T , where
K is the camera matrix. Its inverse is also defined when the inverse
depth of the point is known p = π−1(u, ρ) = ρ−1K−1(ux, uy, 1)

T .
The LMCW (see Section IV) selects which keyframes are active

and forms the local window. Once a keyframe is active, all its pa-
rameters (pose and affine light model) and associated points (inverse
depth) are optimized by the PBA. Otherwise, they remain fixed to
maintain the system consistent to unobservable degrees of freedom.
During optimization, we will use ξ ∈ SE(3)n × R2n+m to represent
the set of optimized parameters (n keyframes and m points) and
δξ ∈ se(3)n × R2n+m to denote the increments. Moreover, we use
the left-compositional convention for all optimization increments, i.e.,
ξ(t+1) = δξ(t) � ξ(t). This direct VSLAM framework enables to build
a persistent map and reuse existing map information from old keyframes
directly in the photometric bundle adjustment.

A. Photometric Model

The same photometric function, the one proposed in [1], is used
in the whole system, i.e., geometry initialization (camera and point
tracking), local windowed PBA, and map reuse. For each point p, we
evaluate the sum of square intensity differences rk over a small patch
Np around it between the host Ii and target Ij images. We include an
affine brightness transfer model to handle the camera automatic gain
control and changes in scene illumination. The observation of a point
p in the keyframe Ij is coded by

Ep =
∑

uk∈Np

wk

(
(Ii[uk]− bi)− eai

eaj
(Ij [u

′
k]− bj)

)2

(1)

where uk is each of the pixels in the patch; u′
k is the projection

of uk in the target frame with its inverse depth ρk, given by u′
k =

π(Tj,i · π−1(uk, ρk)) with Tj,i = T−1
j Ti; ai, bi, aj , bj the affine

brightness functions for each frame; and wk = wrkwgk a combination
of the robust influence function wrk and a gradient dependent weight
wgk

wgk =
c2

c2+ ‖ ∇I ‖22
(2)

which works as a heuristic covariance in the maximum likelihood
estimation, reducing the influence of high gradient pixels due to noise.
To sum up, the photometric cost function (1) depends on geometric
(Ti,Tj , ρ) and photometric parameters (ai, bi, aj , bj).

B. Photometric Bundle Adjustment

Every time a new keyframe is created, all model parameters are
optimized by minimizing the error from (1) over the LMCW of active
keyframes K. The total error is given by

E =
∑

Ii∈K

∑

p∈Pi

∑

j∈obs(p)

∑

uk∈Np

wkr
2
k(ξ) (3)

where Pi is the set of points in Ii and obs(p) the set of observations
for p. Note that the LMCW reuses map point observations for which
the initial solution is not inside the convergence radius and, thus, the
PBA is not able to correct. Hence, we propose to use a coarse-to-fine
optimization scheme over all active keyframes. In each level, we iterate
until convergence and use the estimated geometry as an initialization
for the next level. The same points are used across all levels and each

Fig. 2. LMCW example with Nw = 7 and the latest keyframe being created
(red). It is composed of Nt = 4 temporal (blue) and Nc = 3 covisible (orange)
active keyframes.

level is treated independently, i.e., neither the influence function nor
outlier decisions are propagated across the levels (see Section V). In
this way, we are able to handle larger camera and point increments δξ
with the photometric model.

We minimize (3) using the iteratively reweighted Levenberg–
Marquardt algorithm. From an initial estimate ξ(0), each iteration t
computes weights wk and photometric errors rk to estimate an incre-
ment δξ(t) by solving for the minimum of a second-order approxima-
tion of (3), with fixed weights

δξ(t) = −H−1b (4)

with H = JTWJ+ λdiag(JTWJ), b = JTWr and W ∈ Rm×m

is a diagonal matrix with the weights wk, r is the error vector, and
J ∈ Rm×d is the Jacobian of the error vector with respect to a left-
composed increment given by

Jk =
∂rk(δξ � ξ(t))

∂δξ

∣∣∣∣
δξ=0

. (5)

The PBA is implemented using Ceres optimization library [18]
with analytic derivatives. Image gradients are computed using central
pixel differences at integer values. For subpixel intensity and gradient
evaluation, bilinear interpolation is applied. We take advantage of the
so-called primary structure and use the Schur complement trick to solve
the reduced problem [19]. The gauge freedoms are controlled fixing all
other keyframes that are covisible with the active ones.

IV. LMCW: LOCAL MAP COVISIBILITY WINDOW

This section presents the LMCW and the strategy to select its active
keyframes and active map points. It is a combination of temporal and
covisible criteria with respect to the latest keyframe being created. The
LMCW is composed of two main parts: the temporal and the covisible.
Fig. 2 shows the LMCW selection strategy.

The first part is composed of Nt temporally connected keyframes
that form a sliding window such as in [1]. This part is critical during
exploration because it initializes new points (see Section VI) and main-
tains the accuracy in odometry. Whenever a new keyframe is created,
we insert it into the temporal part and remove another one. Thus, we
maintain fixed size temporal keyframes. The strategy that selects the
removed keyframe from the temporal part is summarized as follows.

1) Keep the last two keyframes (I1 and I2) to ensure the odom-
etry accuracy during challenging exploratory motions, such as
rotations. It avoids premature fixation of keyframes location,
guaranteeing that keyframes are well-optimized beforehand.

2) The remaining keyframes are evenly distributed in space. We
drop the keyframe Ii that maximizes

s(Ii) =
√

d(I0, Ii)
Nt∑
j=1

(d (Ii, Ij))
−1 (6)
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where d(Ii, Ij) is the L2 distance between keyframes Ii and Ij .
This strategy favors observations rendering high parallax into the
PBA, which increases the accuracy.

The second part is composed of Nc covisible keyframes with those
in the temporal part. Additionally, we seek to fill the latest keyframe I0
with reobserved map points, favoring map points imaged in depleted
areas (image areas where no other map points are imaged). Our strategy
to achieve this goal is summarized as follows.

1) Compute the distance map to identify the depleted areas. All the
map points from the temporal part are projected into the latest
keyframe, then the distance map registers, for every pixel, theL2

distance to its closest map point projection.
2) Select a keyframe, among the list of old keyframes, that maxi-

mizes the number of projected points in the depleted areas using
the distance map. We discard points that form a viewing angle
above a threshold to detect and remove potential occluded points
as early as possible.

3) Update the distance map to identify the new depleted areas.
4) Iterate from (2) until Nc covisible keyframes are selected or no

more suitable keyframes are found.
The covisible part incorporates already mapped areas in the LMCW

before activating new map points. The proposed strategy avoids map
point duplications ensuring the map consistency. The values of Nt and
Nc are tuned experimentally in Section VII.

V. ROBUST NONLINEAR PBA

The LMCW selects widely separated active keyframes according to
geometric criteria without any consideration about the actual photo-
consistency between the images of the map points in the selected
keyframes. Hence, it is possible that some of the points do not ren-
der photo-consistent images, because they suffer, for example, from
occlusions or scene reflections.

To make our PBA robust with respect to this lack of photo-
consistency, we propose an outliers management strategy based on the
photometric error distribution, from which we derive the appropriate
weights for (3). According to the probabilistic approach, optimizing
(3) is equivalent to minimizing the negative log-likelihood of model
parameters ξ given independent and equally distributed errors rk

ξ∗ = argmin
ξ

−
n∑

k

log p(rk | ξ). (7)

The minimum of (7) is computed equating their derivatives to zero.
This is equivalent to minimizing the reweighted least-squares (3) with
the following weights:

w(rk) = −∂ log p(rk)

∂rk

1

rk
. (8)

Therefore, the solution is directly affected by the photometric error
distribution p(rk) (see [15] for further details). Next we consider
different distributions.

Gaussian distribution: If errors are assumed to be normally dis-
tributed around zero N (0, σ2

n), the model of error distribution is
p(rk) ∝ exp(r2k/σ

2
n). This model leads to a constant distribution of

weights, which is a standard least-squares minimization. Thus, it treats
all points equally and outliers cannot be neutralized

wn(rk) =
1

σ2
n

. (9)

Student’s t-distribution: Recently, Kerl et al. [15] analyzed the dis-
tribution of dense photometric errors for RGB-D odometry. It showed
that the t-distribution explains dense photometric errors better than a
normal distribution, providing a suitable weight function

wt(rk) =
ν + 1

ν + ( rk
σt
)2
, when μ = 0. (10)

Fig. 3. Probabilistic error modeling. The top row shows the case where most of
the map points are photo-consistent, then both normal and t-distribution models
fit well the photometric errors. The bottom row shows a challenging situation
where covisible reobservations introduce many outliers due to occlusions, the
t-distribution fits the observed errors better than the normal. On the left, the
keyframe along with the point depth map after outlier removal.

We have experimentally studied the sparse photometric errors and we
conclude that the t-distribution also explains the sparse model properly
(see Fig. 3). In contrast to the normal distribution, the t-distribution
quickly drops the weights as errors move to the tails, assigning a lower
weight to outliers. Besides, instead of fixing the value of the degrees
of freedom ν = 5 as in [15], we study the behavior of the model when
ν is fitted together with the scale σt (see Section VII). To fit the t-
distribution, we minimize the negative log-likelihood of the probability
density function with respect to ν andσt using the gradient free iterative
Nelder–Mead method [20]. Besides, we filter out the gross outliers
before fitting the t-distribution. We approximate the scale value σ̂ using
the median absolute deviation (MAD) as σ̂ = 1.4826 MAD and reject
errors that rk > 3σ̂.

M-estimators—Huber: Whether the distribution of errors is hard to
know or it is assumed to be normally distributed, using M-estimators is a
popular solution. One of the most popular ones is the Huber estimator, as
it does not totally remove high error measurements but it decreases their
influence, which is crucial for reobservation processing. The Huber
weighting function is defined as

wh(rk) =

{
1
σ2
n

if |rk| < λ

λ

σ2
n |rk | otherwise

(11)

where λ is usually fixed or dynamically changed each time step with
the value λ = 1.345σn for N (0, σ2

n). In this case, Huber gives linear
influence to the outliers.

A. Implementation of the Probabilistic Model Into the PBA

We have studied the error distribution in each keyframe and con-
cluded that there are differences between them. These variations might
come from motion blur, occlusions or noise (see Fig. 3 and the accom-
panying video). Hence, we fit the error distribution for each keyframe
separately using all the observations from active points in that keyframe.
This allows to adapt the PBA to different situations, e.g., certain error
values might be considered as an outlier in a regular keyframe but inlier
in a challenging one due to motion blur.

Computing the error distribution and, thus, the weight distribution,
each iteration changes the objective function [see (7)] and the per-
formance of the optimization might degrade. We propose to compute
the error distribution only at the beginning of each pyramid level and
maintain it fixed during all the optimization steps. At the end of the
PBA, the error distribution is recomputed again using the photometric
errors obtained from the best geometry solution ξ∗.
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B. Outlier Management

It is crucial to detect and remove outlier observations as soon as
possible to maintain the PBA stability. To achieve this, we exploit the
information from each observation, which includes measurements from
eight different pixels. We propose to build a mask for each point and
mark each pixel measurement rk as inlier or outlier. This helps handling
points in depth discontinuities where other simultaneous localization
and mapping (SLAM) approaches typically struggle. To consider a
pixel measurement as inlier, the photometric error has to be lower than
the 95% percentile of the error distribution of the target keyframe.
For challenging keyframes, the threshold will be higher, being more
permissive, whereas for regular ones, it will be lower, being more
restrictive. When the current local PBA is finished, we count the number
of inlier pixels in the mask. Whenever an observation contains a number
of outlier pixels larger than a 30%, the observation is marked as an
outlier and removed from the list of observations of the point. Besides,
during the optimization, if the number of outlier pixels is larger than
60%, the observation is directly discarded from the current optimization
step, i.e., w(r) = 0.

We also detect and remove outlier points from the map. We propose
to control the number of observations in each point to decide if it
is retained. To retain a new point, it must be observed in all the
new keyframes after its creation; when it has been observed in three
keyframes, it is considered a mature point. Mature points are removed
if the number of observations falls below 3.

VI. FRONT-END

A. Frame Tracking

Each new frame is tracked against a local map, which is updated
after every new keyframe decision. The local map is formed with
active points from the LMCW referenced to the latest keyframe. The
frame pose and its affine brightness transfer model are computed by
minimizing (1) in which the map points and the latest keyframe remain
fixed. The initial estimation is provided by a velocity model. We use a
coarse-to-fine optimization, as proposed in the PBA, to handle initial
guesses with large errors. We use the same robust influence function of
Section V to reduce the impact of high photometric errors. In addition,
we use the inverse compositional approach [21] to avoid re-evaluating
Jacobians each iteration and reduce the computational cost.

B. New Keyframe Decision

Whenever we move toward unexplored areas, the map is expanded
with a new keyframe. We use three different criteria with respect to the
latest keyframe to decide if the tracked frame becomes a keyframe.

1) The map point visibility ratio between the latest keyframe and
the tracked frame, i.e., su = N−1

∑
min(pz/p′z, 1), where N

is the total number of visible points in the latest keyframe, pz
the point inverse depth in the latest keyframe and p′z the point
inverse depth in the tracked frame. The score is formulated to
create more keyframes if the camera moves closer.

2) The tracked frame parallax with respect to the latest keyframe,
defined as the ratio between the frame translation t and the mean
inverse depth of the tracking local map ρ̄: st =‖ tρ̄ ‖2.

3) The illumination change, measured as the relative brightness
transfer function between the tracked frame and the latest
keyframe, i.e., sa = |ak − ai|.

A heuristic score based on the weighted combination of these criteria
determines if the tracked frame is selected as a new keyframe: wusu +
wtst + wasa > 1.

C. New Map Point Tracking

During exploration, the system requires to create new map points.
Each keyframe contains a list of candidate points that are initialized

Fig. 4. Number of pyramid levels Np. RMS ATE (left) and processing times
(right) compared with the RT (real-time) for different Np.

and activated if so decided. We initialize the inverse depth of these
candidate points using consecutive new tracked frames. To do so, we
search along the epipolar line to find the correspondence with minimum
photometric error [see (1)]. Only distinctive points with low uncertainty
will be activated and inserted into the PBA.

Note that this delayed strategy requires several correspondences to
obtain a good initialization as we are working with small baselines
that render low parallax. To guarantee that we have enough initialized
candidates to activate, we maintain candidate points from a keyframe
until this is dropped from the temporal part of the LMCW. We only
activate points that belong to image areas depleted from points (see
Section IV). Thus, when revisiting already mapped scene regions, only
a few new points will be activated, as we will reuse existing map points.

VII. RESULTS

The proposed system is validated in the EuRoC MAV dataset [2]. It
has three scenarios, two rooms (V1, V2) and a machine hall (MH),
with very challenging motions and changes in illumination. It also
includes the 3-D reconstruction groundtruth. We study the benefits
of the VSLAM scheme of DSM with a version, DSM-SW (sliding-
window), which uses only temporally connected keyframes as in [1].
We compare our approach against state-of-the-art algorithms such as
ORB-SLAM [7], DSO [1], and LDSO [14]. We evaluate the rms
absolute trajectory error (ATE) and the point to surface error (PSE).
The ATE is computed using the keyframe trajectory for each sequence
after Sim(3) alignment with the groundtruth. The PSE is estimated
measuring the distance of the reconstructed model to the groundtruth
surface after the trajectory alignment. The results are shown using
normalized cumulative error plots, which provide the percentage of
runs/points with an error below a certain threshold. These graphics
provide both information about the accuracy and robustness of the
evaluated method. All experiments are executed using a standard PC
with an Intel Core i7-7700 K CPU and 32 GB of RAM.

A. Parameter Analysis and Tuning

This section presents an experimental analysis of the main parame-
ters and options defining the DSM performance. To cover more cases,
we run different experiments for left and the right cameras of the stereo
rig, and both in the forward and in the backward direction. We run each
sequence 5 times, for a total of 220 experiments.

1) Coarse-to-Fine PBA: We evaluate the effect of changing the
number of pyramid levels Np during the PBA. Fig. 4 shows the results
for DSM-SW and DSM. Without the coarse-to-fine scheme, DSM-SW
performs better than DSM. Here, DSM is not able to benefit from point
reobservations due to the accumulated drift. However, DSM is able to
reuse map points for higher number of pyramid levels and it clearly
achieves better accuracy. Although a coarse-to-fine strategy certainly
increases the accuracy of DSM, there is significantly less improvement
for DSM-SW. This is the expected behavior as DSM requires larger

Authorized licensed use limited to: University of Exeter. Downloaded on June 17,2020 at 10:55:27 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

Fig. 5. Robust influence function. Comparison of the rms ATE between a
Gaussian-based M-estimator (Huber) and the t-distribution.

Fig. 6. LMCW Nw = Nt +Nc. RMS ATE when changing the number of
temporal Nt and covisible Nc keyframes.

convergence radius to process reobservations while DSM-SW does not.
Note how DSM is able to process approximately the 80% of runs with
an rms ATE below 0.1 m, whereas DSM-SW only gets 40% of runs.
Moreover, we see that using Np = 1 with a sliding window increases
the performance. We also observe that increasing the number of levels
after Np = 2 for DSM does not increase accuracy but increases the
runtime significantly.

Including reobservations in the PBA has little effect on the processing
time. In contrast, the number of pyramids approximately increases the
runtime by 50% for each level. Thus, we use Np = 2 as default, which
achieves the best balance between efficiency and accuracy.

2) Robust Influence Function: We study the effect of the se-
lected model of weight distribution. Fig. 5 shows the results for the
t-distribution and Huber models. In contrast to [15], we evaluate the
influence of the model when the degrees of freedom ν are estimated
together with the scale σ. For Huber, we study when the constant is
fixed to λ = 9 and when it is dynamically changed with the MAD value.
Interestingly, there is no significant difference between using fixed or
dynamic values on both distribution models. However, the t-distribution
performs better in challenging situations providing higher robustness
than Huber. This comes from the fact that the t-distribution quickly
drops the weights as errors move to the tails, whereas the Huber model
does not. We use the complete t-distribution model as default settings
owing to its flexibility handling challenging situations.

3) Number of Covisible Keyframes in the LMCW: We observe
that increasing the number of covisible keyframes Nc increases the tra-
jectory accuracy (see Fig. 6). With those covisible keyframes, the PBA
is able to handle point reobservations and reduce the drift. However,
the system requires temporally connected keyframes Nt to guarantee
the robustness of odometry. Taking few temporal keyframes drastically
reduces the accuracy. This is due to the fact that the temporal part
ensures that new keyframes are well-optimized and that enough new
points are initialized during exploration. Thus, we use the combination
of Nt = 4 and Nc = 3 as default settings, which achieves the best
balance between precision and robustness.

B. Quantitative Results

This section presents a comparison of DSM against ORB-SLAM [7],
DSO [1], and LDSO [14]. We report the results published in [22]

TABLE I
RMS ATE [m] USING FORWARD VIDEOS FOR LEFT (L) AND RIGHT (R)

SEQUENCES

(×) means failure and (-) no available data.

for ORB-SLAM, in [1] for DSO and we use the open-source im-
plementation for LDSO. All results are obtained using a sequential
implementation without enforcing real-time operation using Nw = 7
active keyframes for all direct methods. We run on default settings all
sequences both forward and backward, ten times each, using left and
right videos separately for a total of 440 runs.

1) Trajectory Error: Table I reports the median errors for each
forward sequence. Overall, we see that DSM-SW performs similarly
to DSO. This is expected as both methods are based on the same
sliding-window approach without a multiscale PBA. However, DSM-
SW successfully executes all MH sequence, whereas DSO fails in
MH_03_medium. This is probably due to the use of a more robust
influence function in DSM-SW. DSM achieves higher accuracy in
almost all sequences compared to the rest of direct approaches, DSO,
LDSO, and DSM-SW. DSO and LDSO only achieve slightly higher
accuracy in a few sequences. ORB-SLAM obtains better results in V1
and V2, but DSM achieves the best performance for the MH sequences.
Note that in contrast to ORB-SLAM, we do not incorporate any place
recognition, pose-graph or relocalization modules. This shows that
the high precision of DSM is due to point reobservations and proves
that DSM can be achieved with only seven keyframes comparable to
results of ORB-SLAM that uses tens of cameras in the local BA. In the
sequence V1_03_difficult, DSM achieves an rms ATE of only 7.6 cm,
which is by far the best performance among all the approaches tested.
This sequence contains very rapid motions and illumination changes,
which demonstrates the robustness of the proposed method. Besides,
we successfully manage to complete all sequences and obtain an rms
ATE below 0.1 m for all of them, except V2_03_difficult, where all of
the compared approaches fail.

In addition, we have also evaluated the improvement due to a final
global PBA at the end of each sequence. We have observed that the
global PBA converges in a few iterations and only improves slightly
the RMSE ATE, but with a significant increase in the computational
cost. For instance, in the sequence V2_02_medium, the global PBA
optimizes 50 times more parameters with a processing time two orders
of magnitude higher. The accuracy of the proposed direct local mapping
scheme is very close to the result of a global PBA, but at a small fraction
of the computational cost.
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Fig. 7. Full evaluation results. For each sequence (X-axis) we plot the rms
ATE [m] in each iteration (Y-axis), with a total of 440 runs.

Fig. 8. RMS ATE for LDSO and DSM.

Fig. 9. VSLAM versus VO + Pose-Graph. RMS ATE after processing each
keyframe in the trajectory. It shows the time evolution of the error. While a
feature-based pose-graph strategy may miss many loop closures, a VSLAM
scheme continuously reuses existing information to provide more accurate and
reliable estimates in time.

2) Mapping Versus Pose-Graph: Comparing LDSO and DSM
shows the differences in using a VO scheme with a pose-graph in
contrast to a VSLAM scheme. Fig. 7 shows the rms ATE for all
the evaluated sequences for LDSO and DSM. Overall, we observe
that DSM achieves better accuracy. We also see that reusing exist-
ing map points allows completing successfully a higher percentage
of sequences. We build a persistent map and reuse map points to
support the odometry estimation instead of permanently marginalizing
all points that leave the local window. This can also be observed in
Fig. 8. Although DSM is able to process 80% of sequences with an
rms ATE bellow 0.1 m, LDSO can only handle 50% of runs under
this limit.

Moreover, we have observed that in some sequences, LDSO misses
many available loop closures due to lack of feature matches. This makes
the odometry drift until a larger correction loop is detected, causing
a temporally inconsistent trajectory and structure estimations. Fig. 9
shows the evolution of the rms ATE along the trajectory. The effect
of missing loop closures with a feature-based pose-graph strategy can
be seen. In contrast, building a persistent map enables reusing existing
map information continuously, which maintains the trajectory accuracy
stable in time. Although the final rms ATE is similar in both systems, the

Fig. 10. Map error. For each scene we show the accumulated PSE distribution
using all the reconstructed 3-D points for all runs. Solid lines (—) present easy
sequences, dashed lines (—) medium and dotted lines (· · ·) difficult ones for
each scene.

TABLE II
PROCESSING TIME AND KEYFRAME FRECUENCY.

odometry using a VSLAM approach is more accurate and, thus, more
reliable. This clearly shows that using a VSLAM scheme provides better
accuracy performance compared to a VO scheme with a pose-graph.

3) Map Error: Fig. 10 shows the distance between the recon-
structed points and the groundtruth surface. We compare all the se-
quences against LDSO except in V2_03_difficult where LDSO fails.
Clearly, incorporating map point reobservations into the PBA increases
not only the trajectory accuracy, but also the reconstruction precision.
Although the final trajectory rms ATE is similar in some sequences,
such as in V1_01_easy, the map is without a doubt more accurate in
DSM. Besides, we have observed that LDSO creates ten times more
points than DSM for these sequences, due to the fact that DSM reuses
existing map points avoiding duplications.

4) Processing Time: Table II reports the processing time required
for each part of the method, as well as the used keyframe period time.
In our current initial implementation, PBA is the bottleneck of the
processing cost. We observe that it should be twice faster to obtain the
required keyframe creation rate. It is possible to improve the runtime
significantly using SIMD instructions to process each patch. Besides,
many of the operations can be parallelized as they are independent for
each point. We believe using these upgrades could make DSM run in
real-time applications since the mapping thread is not required to run
at frame rate but at keyframe rate.

C. Qualitative Results

Figs. 1 and 11 show some 3-D maps obtained with DSM. In con-
trast to sliding-window based approaches, incorporating covisibility
constraints avoid duplicating points and builds a consistent map. DSM
estimates a precise camera trajectory and 3-D reconstruction even in the
most difficult sequences such as V1_03_difficult and MH_05_difficult
(see accompanying video).

VIII. DISCUSSION AND FUTURE WORK

We have demonstrated the benefits of building a persistent map
instead of just estimating the camera odometry with a temporary map.
Both the accuracy of the trajectory and the reconstructed map improve
by reusing map information in the photometric model. DSM manages
to process scene reobservations and successfully completes 10 out of
11 sequences with an rms ATE below 0.1 m in the challenging EuRoC
dataset without requiring any loop closure detection and correction.
During long-term sequences in the same environment, DSM provides
reliable estimates as long as point reobservations are successfully
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Fig. 11. Qualitative examples. V1_03_difficult (left) and MH_05_difficult (right) sequences. The trajectory is displayed in red.

processed. It would be interesting to add map maintenance strategies,
such as removal of redundant keyframes and points, to ensure long-term
operation efficiency and allow to perform a feasible global bundle
adjustment as in [7]. Besides, we have shown that the t-distribution
fits well the sparse photometric errors, yielding a more robust PBA.
However, it would be interesting to evaluate it against other alternatives
such as the Cauchy M-estimator.

Even with a persistent map, it is not possible to handle all reobser-
vations in all situations. In large trajectory scenarios, the accumulated
drift makes it impossible to detect map point reobservations with
geometric techniques alone. Sometimes map point reobservations do
not even fall in the camera field of view because of the large drift, e.g.,
in a highway loop. In these cases, a place recognition module, which
exploits the image appearance, would be useful to detect loop closures.
Then, a pose-graph optimization will serve as an initialization for the
PBA. Therefore, we believe that combining map reuse capabilities
with a place recognition module, such as previously done with indirect
techniques in [6] and [7], is the best alternative. In any case, we
think that a pose-graph should only be used as a coarse initialization
technique for the PBA, which is the optimization technique that actually
exploits all the available geometric information in a VSLAM system.

IX. CONCLUSION

In this article, we presented a novel fully direct VSLAM method,
which is capable of building a persistent map by reusing map points
from already visited scene regions. To obtain this, we presented a
new local window selection strategy using covisibility criteria, which
enables to include map point reobservations into the PBA. We demon-
strated that a coarse-to-fine strategy is required to process point reob-
servations with the photometric model. In addition, we incorporated a
robust influence function based on the t-distribution, which increases
the robustness of the whole system against spurious observation. As a
result, we used the same objective function and map points for all the op-
erations in the system. We demonstrated in the EuRoC MAV dataset that
the proposed method reduces both the estimated trajectory and map er-
ror while avoiding inconsistent map point duplications at the same time.
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