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2Département de Physique, LabSIMO, Faculté des Sciences, Université Ibn Tofail
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Abstract

We investigate the critical behaviors of four-dimensional Kerr-AdS black holes

from quintessential Dark Energy (DE) contributions. Using a moduli space, coor-

dinated by the DE state parameter ω and the quintessence field intensity α, we deal

with three different (ω)-models. By elaborating analytical formulas of rele-

vant thermodynamical quantities denoted by X(ω), we find significant similarities

and distinctions. Precisely, for the (−1
3)-model, we show that DE contributions

stabilise such black holes. For the (−1)-model, however, we get a reversed DE

effect. In the (−2
3)-model, Kerr-AdS black holes reveal a resistance regarding

the usual DE effects. Exploiting the explicit formulas of such thermody-

namical quantities, we give certain physical interpretations for thermal

behaviors. Although such relevant distinctions, we show that the (ω)-models

involve similar universal ratios associated with certain critical thermodynamical

quantities. Then, we analyse the photon orbits in the presence of DE.
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1 Introduction

Recently, black hole thermodynamic systems have been extensively investigated using

different approaches including analytic and numerical ones [1, 2, 3, 4, 5, 6, 7]. These

efforts have been supported by the fact that such systems have various similarities with

known thermodynamic models. Such similarities appear naturally in the study of black

holes in AdS geometries in different dimensions. The corresponding thermodynamical

properties have been discussed first in [8]. After, this has been generalised to other

solutions including charged and rotating AdS black holes. In particular, it has been

revealed that the charged AdS black holes involve Van der Waals like phase transitions.

Concretely, various investigations have been elaborated by interpreting the cosmological

constant as the pressure and its conjugate as the volume [9, 10, 11]. In this way, it has

been obtained a nice relation between the behavior of the RN-AdS black hole systems

and the Van der Waals fluids [12, 13, 14]. Precisely, the associated P-V criticality can

be linked to the liquid-gas statistical systems. This type of criticality, depending on

the AdS black hole space-time dimension, provides non trivial behavioral results [15, 16,

17]. Furthermore, several phase transitions of various black holes have been explored.

Concretely, the second order phase transition of four-dimensional Kerr-AdS black holes

has been investigated in [18, 19]. Critical phenomena of extended Kerr-AdS black holes in

the phase space have been also studied in [20]. Specifically, many numerical approaches

have been developed to compute the involved thermodynamical quantities including the

Gibbs free energy. The latter has been considered as a relevant quantity to discuss the

corresponding Kerr-AdS black hole phase transitions.

More recently, dark matter (DM) and dark energy (DE) have been implemented in

the study of black hole thermodynamics by extending the associated space parameter

describing non trivial contributions [21, 22, 23, 24, 25]. It is realised that DE, being

still an open subject question, has been approached using the ratio quantity ω = pdark
ρdark

,

interpreted as the equation of state. Various DE contributions have been investigated

in terms of such a ratio belonging to the range [−1, 0[. Effectively, the quintessence,

with intensity α, corresponding to the range
[
−1,−1

3

]
considered as a scalar field having

negative pressure has been introduced to investigate the DE effects on the black hole

physics [26, 27, 28]. Among others, it has been suggested that DE can be considered as

a cooling mechanism affecting the black hole thermodynamical behaviors [29, 30].

The aim of this work is to contribute to these activities by studying critical behaviors

of the four-dimensional Kerr-AdS black holes from quintessential DE. The present study
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is made in terms of the DE moduli space parameterized by α and ω. These two parame-

ters, together with the angular velocity Ω, control the four-dimensional Kerr-AdS black

hole transition behaviors. More precisely, we investigate three different models based on

particular values of ω by giving analytical formulas of the corresponding thermody-

namical quantities referred to as Xω. Among others, we obtain significant similarities

and distinctions for such (ω)-models. For the (−1
3
)-models, DE contributions stabilise

the four-dimensional Kerr-AdS black hole. However, for both (−2
3
) and (−1)-models,

we observe significant distinctions. For instance, the (−1)-model exhibits a reversed DE

effect regarding the associated thermodynamical quantities. Dealing with (−2
3
)-model,

we find that the Kerr-AdS black holes resist the DE effects. Analysing the (ω)-model

results, we discuss the associated thermal behaviour and certain universalities of

critical phase transition points. Moreover, we investigate the DE effect on the

photon orbits for the three (ω)-models and make contacts with some known

results. In this work, we use dimensionless units ~ = c = G = kβ = 1.

The organisation of the paper is as follows. In section 2, we present a concise review on

the ordinary properties of four-dimensional Kerr-AdS black holes which will be exploited

to discuss the DE effect in section 3. Some results and discussions on thermal behaviors

and certain phase transition points, in terms of universality ratios, are given in section 4.

In section 5, we inspect the DE effect on the photon orbits for the three (ω)-

models and make contact with some known results. The last section is devoted

to conclusion and open questions.

2 Ordinary Kerr-AdS black hole phase transitions

Before studying the behavior of four-dimensional Kerr-AdS black holes in the presence

of quintessential DE, we first give a concise review on its ordinary thermodynamic phase

structure properties. Following [31, 32, 33], the Kerr-AdS black hole is considered as a

rotating solution which can be derived from the Gibbons-Hawking action. According to

[34], the Kerr-AdS metric of the four dimensional rotating black hole reads as

ds2 =
Σ2

∆r

dr2 +
Σ2

∆θ

dθ2 +
∆θsin

2θ

Σ2
(a
dt

Ξ
− (r2 − a2)

dφ

Ξ
)2 − ∆r

Σ2
(
dt

Ξ
− a sin2 θ

dφ

Ξ
)2, (2.1)

where one has the following form

∆r = r2 − 2Mr + a2 +
r2

`2
(r2 + a2), ∆θ = 1− a2

`2
cos2 θ,

Ξ = 1− a2

`2
, Σ2 = r2 + a2 cos2 θ.

(2.2)
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In thermodynamical activities, ` representing the AdS curvature can be related to the

pressure P given by

P =
3

8π`2
= − Λ

8π
. (2.3)

The metric parameters m and a, appearing in the previous equations, are linked to the

black hole mass M and the angular momentum J , respectively

M =
m

Ξ2
, J =

am

Ξ2
. (2.4)

The mass of the black hole M can be determined by imposing the constraint ∆r(r+) = 0.

Indeed, we find

M =
(r2

+ + a2)(r2
+ + `2)

2r+`2
. (2.5)

Following [35], the Bekenstein-Hawking entropy reads as

S = π
(r2

+ + a2)

Ξ
. (2.6)

Using ∆r(r+) = 0, (2.4) and (2.6), one can get an extended Smarr formula for the

Kerr-AdS black hole in four-dimensions. Concretely, the calculation gives the following

result

M(S, J) =

(
π

4S

{
4SJ2

π`2
+ 4J2 +

[
S2

π2`2
+
S

π

]2}) 1
2

. (2.7)

To get elegant relations, it is convenient to use a suitable scaling redefinition T` →
T , M

`
→ M , J

`2
→ J , S

`2
→ S, Ω` → Ω. In this way, ` no longer appears in the

thermodynamical quantities [18]. To study the Kerr-AdS balck hole thermodynamical

properties, one should compute the associated quantities using known laws [36]. It is

noted that the first law of thermodynamics of such a black hole is expressed as

dM = TdS + ΩdJ, (2.8)

where T is the Hawking temperature. Here, Ω denotes the difference between the an-

gular velocities at the event horizon (Ωh) and at infinity (Ω∞) [37]. Following [18], the

temperature, for instance, reads as

T (S, J) =
1

8πM

(
1− 4π2J2

S2
+

4S

π
+

3S2

π2

)
. (2.9)
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Using the above scale redefinitions, the other needed quantities can be computed. Ac-

cording to [18], they are listed as follows

M2(S, J) =
S

4π
+
πJ2

S
+ J2 +

S

2π

(
S

π
+

S2

2π2

)
, (2.10)

Ω =
πJ

MS

(
1 +

S

π

)
, (2.11)

J

S
=

MΩ

π + S
, (2.12)

a =
J

M
=
SΩ

π

(
1 +

S

π

)−1

. (2.13)

Substituting (2.12) in (2.10), one can write M2 in terms of S and Ω

M2(S,Ω) =
S

4π

1 + 2S
π

(1 + S
2π

)

1− Ω2S
π(1+S

π
)

. (2.14)

Putting (2.14) in (2.9), one gets the semi-classical temperature

T (S,Ω) =

√
S(π + S)3

(π + S − SΩ2)

[
π2 − 2πS(Ω2 − 2)− 3S2(Ω2 − 1)

4π
3
2S(π + S)2

]
. (2.15)

The reality condition of T being required by

π + S − SΩ2 > 0 (2.16)

constraints Ω2 < 1 + π
S

. This yields a restriction on Ω for the entropy fixed values.

Other thermodynamical properties of the black hole can be approached by exploiting

the semi-classical specific heat at constant angular velocity [18]. Applying the relation

CΩ = T
(
∂S
∂T

)
Ω

= T

( ∂T∂S )
Ω

, one obtains

CΩ(S,Ω) =
2S(π + S)(π + S − SΩ2) (π2 − 2πS(Ω2 − 2)− 3S2(Ω2 − 1))

(π + S)3(3S − π)− 6S2(π + S)2Ω2 + S3(4π + 3S)Ω4
. (2.17)

To examine the phase transition phenomena, the above temperature expression (2.15)

and the specific heat capacity (2.17) will be used. The corresponding behaviors are il-

lustrated in figure 1.

It follows from figure 1 that the semi-classical Hawking temperature T is continuous as

a function of the semi-classical entropy S. Moreover, it is observed that, for a fixed

Ω value, there is no first order phase transition occurring in the Kerr-AdS black hole

physics. However, it involves a minimum at the point Smin = 1.09761 corresponding to
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
S0.24
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0.30
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α=0

0.5 1.0 1.5 2.0 2.5 3.0
S

-40

-20

0

20

40
CΩ

Figure 1: The semi-classical Hawking temperature (T ) and the specific heat (CΩ) in

terms of the entropy (S) for Ω = 0.3.

the minimal temperature Tmin = 0.26933 under which no black hole can survive. Fur-

thermore, the discontinuity of the specific heat CΩ appears at the critical value of the

entropy Sc = Smin = 1.09761. At such a critical value, the specific heat CΩ changes from

negative infinity to positive infinity. Since the entropy is proportional to the square of

the black hole mass, the critical point Sc separates two branches of the Kerr-AdS black

holes. The first one associated with a small black hole mass is considered thermody-

namically as an unstable one possessing a negative specific heat (CΩ < 0). However,

the second branch concerning the large black hole mass is interpreted as a stable phase

involving a positive specific heat (CΩ > 0).

Having discussed the case of the Kerr-AdS black holes in the absence of DE, we are situ-

ated to investigate the effect of DE by considering different quintessential contributions.

3 Kerr-AdS black hole phase transitions from quintessence

contributions

In this section, we study DE effects on the previous four dimensional Kerr-AdS black hole

physics. This study will be done in terms of new parameters related to DE contributions.

In particular, a close inspection shows that the parameter space of the black holeM can

be factorized in two sectors

M =MOBH ×Mec. (3.1)

The first sector is associated with the parameters of the ordinary balck holes (OBH)

MOBH ≡ {J,M,Q} , (3.2)

7
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where Q is the charge. For the neutral black hole (Q = 0), this can be reduced to the

Kerr black hole parameterized only by J and M

MOBH ≡ {J,M} , (3.3)

that we are interested in. The second sectorMec concerns extra contributions associated

with outside horizon contributions including DE, DM and other non trivial ones.

In the present work, we consider only DE contributions via a quintessence scalar field. In

this way, the second sectorMec is controlled by two parameters α and ω corresponding to

the quintessence intensity and the DE state parameter, respectively. For generic values

of α, the dealt with models should depend only on certain values of ω. Here, however,

we pay attention to some particular cases. General values of ω, needing non trivial

reflections, could be considered as an investigation projet. We hope to come back to it

in the future.

In the rest of the paper, we would like to examine three different (ω)-models of the

Kerr-AdS black hole behaviors. To determine the corresponding metric, we first consider

the usual results associated with spherically symmetric Schwarzschild black hole solution

in quintessential dark energy. Then, we use Newman-Janis algorithm to get Kerr black

hole metric surrounded by quintessential DE. For more interpretations, discussions of this

method and its physical implications can be found in [38, 39, 40, 41]. The Schwarzschild

black hole can be described by the following metric

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2, (3.4)

where the metric function f(r) is given by

f(r) = 1− 2M

r
− α

r3ω+1
. (3.5)

More details on such calculations can be found in [42]. The expression of the associated

metric is written as

ds2 =
Σ2

∆r

dr2 +
Σ2

∆θ

dθ2 +
∆θsin

2θ

Σ2
(a
dt

Ξ
− (r2 − a2)

dφ

Ξ
)2 − ∆r

Σ2
(
dt

Ξ
− a sin2 θ

dφ

Ξ
)2, (3.6)

In this case, one has

∆r = r2 − 2Mr + a2 +
r2

`2
(r2 + a2)− αr1−3ω. (3.7)

In what follows, the corresponding thermodynamical quantities that we will obtain in-

volve a subscript indicating the values of ω. We refer to them as X(ω)(S,Ω, α) where α

is a positive normalisation factor associated with DE intensity.

8
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3.1 Model with DE state parameter ω = −1
3

To study the behavior of the four dimensional Kerr-AdS black holes in the presence of

DE for the value ω = −1
3
, we should first elaborate the generalized Smarr formula by

using the expressions (2.4), (2.6) and the condition ∆r(r+) = 0. For (−1
3
)-model, the

computations give

M (−1/3)(S, J, α) =

(
π

4S

{
4SJ2

π`2
+ 4J2 +

[
S2

π2`2
+
S

π
− αS

π

]2}) 1
2

. (3.8)

Exploiting the previous scaling redefinitions, the thermal temperature of the Kerr-AdS

black holes, in the presence of DE, reads as

T (−1/3)(S, J, α) =
∂M

∂S
=

1

8πM

(
(α− 1)2 − 4αS

π
− 4π2J2

S2
+

4S

π
+

3S2

π2

)
. (3.9)

Similarly, the other involved thermodynamics quantities can be computed. In particular,

the mass square is given by

(
M (−1/3)(S, J, α)

)2
=

S

4π
+
πJ2

S
+ J2 +

S

2π

(
S

π
+

S2

2π2
+
α2

2
− α

(
S

π
+ 1

))
. (3.10)

Putting the angular momentum, given in (2.12), into (3.10), we can obtain the expression

of
(
M (−1/3)(S, J, α)

)2
in terms of S and Ω. Concretely, we find

(
M (−1/3)(S,Ω, α)

)2
=

S

4π
(π + S)

(
(α− 1)2 + 2S

π
(1 + S

2π
− α)

)

(π + S − Ω2S)
. (3.11)

Turning on the effect of DE, we derive the temperature T (−1/3) and the specific heat

C
(−1/3)
Ω in terms of S, α and Ω of the Kerr-AdS black holes. By replacing (3.11) into

(3.9), we get

T (−1/3)(S,Ω, α) =




(
π2 + 3S2 − 4S π (α− 1)− (2α− α2) π2 − S π(π+S−π α)2 Ω2

(π+S) (π+S−S Ω2)

)

4π3/2

√
S (π+S) (π+S−π α)2

(π+S−S Ω2)


 .

(3.12)

It is worth noting that we can recover the ordinary results by turning off DE contribu-

tions. Taking α = 0, we get (2.15) which matches perfectly with the results reported

in [18]. However, to examine the thermodynamical behaviors of such Kerr-AdS black

holes, we calculate the semi-classical specific heat at constant angular velocity Ω. In the

presence of DE, the specific heat takes the simplified form

C
(−1/3)
Ω (S,Ω, α) =

2S(π + S)(π + S − SΩ2) ((π + S) (π2 − 2πS(Ω2 − 2)− 3S2(Ω2 − 1))− αβ1)

(π + S) ((π + S)3(3S − π)− 6S2(π + S)2Ω2 + S3(4π + 3S)Ω4) + αβ2

,

(3.13)
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where the βi terms are given by

β1 =
(
π3 + πS2(1− Ω2)− 2π2S(−1 + Ω2)

)
, (3.14)

β2 =
(
π5 + 4π4S − 6π3S2 + (Ω2 − 1)2(πS4 + 4π2S3)

)
. (3.15)

For α = 0, this reproduces the ordinary specific heat given in (2.17), as reported in

[18]. Using (3.12) and (3.13), we plot the variation of the entropy S in terms of the

temperature T (−1/3) and the specific heat (C
(−1/3)
Ω ) for a fixed value of Ω (0.3) in figure

2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
S0.20

0.25

0.30

0.35

0.40
T

α=0

α=0.1

α=0.2

0.5 1.0 1.5 2.0 2.5 3.0
S

-40

-20

0

20

40
CΩ

Figure 2: The semi-classical Hawking temperature (T (−1/3)) and the Specific heat

(C
(−1/3)
Ω ) in terms of the entropy (S) for fixed Ω = 0.3 and ω = −1/3.

It has been realized that the minimal temperature T
(−1/3)
min is quite complicated. How-

ever, in order to obtain an explicit expression for such a minimal temperature one can

use an optimisation method. Setting (∂T
∂S

)α,Ω = 0, we find a polynomial of a fifth order

with respect to S, being a non trivial task. However, we need several approximations

and simplifications. The first approximation that one should take is to remove the fifth

order. Indeed, when the effect of DE vanishes, we get an identical polynomial to the

one found in the absence of DE. After solving the polynomial in the presence of DE,

an examination shows that the solutions could be simplified. Since we are dealing with

objets that have a small value of intensity α, the higher orders greater than two will

be omitted. In this way, the approximated entropy which corresponds to the minimal
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temperature reads as

S
(−1/3)
min (Ω, α) =

π√
6(3 + α)

[√
6(2 + α− Ω2 − αΩ2)

(−1 + Ω2)
+ γ2

+

√
γ3 −

6
√

6 (2− 3Ω2 − 3Ω4 + 2Ω6 + α(9− 6Ω2 − 9Ω4 + 6Ω6))

(−1 + Ω2)3 γ2


 ,

(3.16)

where the γi terms are given by

γ1 =
(

(−1 + Ω2)2 (−Ω4 + α2(3− 4Ω2 + Ω4)− α(−4 + 2Ω2 + Ω4)+

√
Ω8 + 2αΩ4(−4 + 2Ω2 + Ω4)− α2(−16 + 16Ω2 + 10Ω4 − 12Ω6 + Ω8) )

)1/3

,
(3.17)

γ2 =

√
20α2(−1 + Ω2)2 + 3γ1 (2 + 3γ1 − 2Ω2 + 2Ω4) + 3α (γ2

1 + 4γ1Ω2(−1 + Ω2) + 8(−1 + Ω2)2)

γ1(−1 + Ω2)2
,

(3.18)

γ3 =
(−20α2(1 + Ω4) + 3γ1(4− 3γ1 − 4Ω2 + 4Ω4)− 3α(γ2

1 − 8γ1Ω2(−1 + Ω2) + 8(−1 + Ω2)2) )

γ1(−1 + Ω2)2
.

(3.19)

Substituting (3.16) into (3.12), we find the corresponding minimum temperature

T
(−1/3)
min (Ω, α) =




35/4

(
1 + δ2

2
− 2
√

2
3
δ (−1 + α)− 2α + α2 + δ (6+

√
6 δ−6α)2Ω2

√
6 (6+

√
6 δ)(−6+

√
6 δ (−1+Ω2))

)

23/4 π
√
− δ(6+

√
6 δ) (6+

√
6 δ−6α)2

(−6+
√

6 δ (−1+Ω2))


 ,

(3.20)

where we have

δ =
1

(3 + α)

[√
6(2 + α− Ω2 − αΩ2)

(−1 + Ω2)
+ γ2

+

√
γ3 −

6
√

6 (2− 3Ω2 − 3Ω4 + 2Ω6 + α(9− 6Ω2 − 9Ω4 + 6Ω6))

(−1 + Ω2)3 γ2


 .

(3.21)

At this stage, it is possible to provide an interpretation concerning the two branches

shown in figure 2. In S − T plane, we observe from the curve that both of these phases

exist above the minimal temperature T
(−1/3)
min . Since the entropy is proportional to the

black hole mass, the first branch which corresponds to a lower mass is considered a

thermodynamically unstable. The second one which corresponds to a higher mass is

considered as a thermodynamically stable. We notice from the decrease of S
(−1/3)
min when

the intensity α increases that the stable phase becomes relevant.
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The curve in the S − CΩ plane, appearing in the figure 2, shows two phases separated

by a critical entropy S
(−1/3)
c = S

(−1/3)
min . Indeed, the first phase associated with a smaller

mass black hole posses a negative heat capacity (CΩ < 0). It is considered as an unstable

one. However, the second phase corresponding to the larger mass black hole involving

a positive heat capacity (CΩ > 0) is considered as a stable one. Besides, the equality

between the critical entropy S
(−1/3)
c and S

(−1/3)
min yields directly the decrease of the critical

entropy S
(−1/3)
c when the intensity α increases. This makes the stable phase larger.

According to [43] and using the formula G = M −T ·S−J ·Ω, we obtain the Gibbs free

energy which reads as

G(−1/3)(S,Ω, α) =

√
S (π3 (1− α) + π2 (S − 2Sα)− S3(1− Ω2)− π S2(1 + α) (1− Ω2) )

4π
3
2 (π + S)3/2(π + S − SΩ2)1/2

.

(3.22)

Now, we investigate the effects of DE on the Kerr-AdS black hole phase transitions by

plotting the Gibbs free energy as a function of the entropy in figure 3.

α=0.2
α=0.1

α=0

1 2 3 4 5
S

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10
G

Figure 3: The Gibbs free energy (G(−1/3)) plotted for Kerr-AdS black hole with respect

to the entropy (S(−1/3)) for fixed Ω = 0.3, ω = −1/3 and different values of α.

From figure 3, we notice that the Gibbs free energy changes its sign. The positive

values of G(−1/3)(S,Ω, α) correspond to unstable black holes while the negative values

are associated with stable black holes. In this way, one can remark that DE decreases

the unstable phase. Thus, DE provides a more stable black hole. Moreover, the point

where the Gibbs free energy changes its sign corresponds to the Hawking-Page phase

transition. At this point, the entropy is given by

S
(−1/3)
HP (Ω, α) =

π (4− 5Ω2 + Ω4 − A(1− Ω2) + A2 − α(1− Ω2)(4 + 2Ω2 + A) )

3A (1− Ω2)
, (3.23)
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where the quantity A takes the following form

A(Ω, α) = (8− 15Ω2 + 6Ω4 + Ω6 + 3α(−4 + Ω2)(−1 + Ω2)2

−3
√

3
√

Ω2 (1− Ω2)3(Ω2 + 2α(4− Ω2) )
) 1

3
.

(3.24)

This value of the entropy corresponds to the temperature

T
(−1/3)
HP (Ω, α) =

1

4π2
√
q(3π + πq − πqΩ2) (π + π q

3
)3/2
×
[
3π3 (1− α) +

1

3
π3 q3 (1− Ω2)

+
1

3
π3 q2 (7− α− 5Ω2 + αΩ2) + π3 q (5− 2Ω2 + 2α (−1 + Ω2) )

]
,

(3.25)

where the quantity q is

q(Ω, α) =
(4− A+ A2 − 5Ω2 + AΩ2 + Ω4 − α(1− Ω2)(4 + A+ 2Ω2) )

A (1− Ω2)
. (3.26)

In figure 4, we plot the Gibbs free energy as a function of the temperature in order to

compare the different phases for several values of DE intensity α.

0.25 0.30 0.35 0.40
T

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10
G

Tmin

THP
Radiation

Small BH

Large BH

α=0.2 α=0.1 α=0

Figure 4: the Gibbs free energy (G(−1/3)) plotted for Kerr-AdS black hole with respect

to temperature (T (−1/3)) for Ω = 0.3, ω = −1/3 and different values of α.

From figure 4, we notice that the radiation phase, which is the phase where the black

hole can decay into a pure thermal AdS space, and the phase, where no black hole

can exist, decrease as the parameter α increases. Furthermore, we remark that this

figure data confirms the idea that DE stabilises the Kerr-AdS black hole. To confirm

such behaviors, one may think about the heat capacity C
(−1/3)
Ω as a function of the
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temperature. This is illustrated in figure 5.

α=0

α=0.1

α=0.2

0.25 0.30 0.35 0.40
T

-60

-40

-20

0

20

40

60

80
CΩ

Figure 5: The specific heat C
(−1/3)
Ω illustrated for Kerr-AdS black holes with respect to

the temperature (T (−1/3)) for Ω = 0.3, ω = −1/3 and different values of α.

It follows from figure 5 that the heat capacity changes its sign at the minimal temperature

T
(−1/3)
min . We also find that the phase where no black hole can exist decreases when the

intensity α increases.

In (−1
3
)-model, we conclude that the decrease of S

(−1/3)
min confirms that the stable phase

becomes relevant when the intensity α increases, which makes the black hole more stable.

This analysis matches perfectly with the trivial mechanism of DE.

3.2 Model with DE state parameter ω = −2
3

To further investigate the DE effect, we investigate four dimensional Kerr-AdS behaviors

for the value ω = −2
3
. As the previous model, we first give the generalised Smarr formula

for such a (−2
3
)-model by using the expressions (2.4) and (2.6). Solving the condition

∆r(r+) = 0, we get

M (−2/3)(S, J, α) =

(
π

4S

{
4SJ2

π`2
+ 4J2 +

[
S2

π2`2
+
S

π
− α

(
S

π

) 3
2
]2}) 1

2

. (3.27)

Taking into account the above scaling redefinitions, the thermal temperature of the Kerr-

AdS black holes become

T (−2/3)(S, J, α) =
1

8πM

(
1− 4π2J2

S2
+

4S

π
+

3S2

π2
− α

(
5S3/2

π3/2
+

3S1/2

π1/2

)
+

2α2S

π

)
.

(3.28)

Similary, the square mass is given by

(
M (−2/3)(S, J, α)

)2
=

S

4π
+
πJ2

S
+J2 +

S

2π

(
S2

2π2
+
S

π
+
α2S

2π
− αS

1/2

π1/2
(
S

π
+ 1)

)
. (3.29)
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Using (2.12) and substituting J in (3.29), we write
(
M (−2/3)

)2
in terms of S and Ω as

follows

(
M (−2/3)(S,Ω, α)

)2
=

S

4π
(π + S)

(
1 + 2S

π
(1 + S

2π
+ α2

2
− α(S

1/2

π1/2 + S−1/2

π−1/2 ))
)

(π + S − Ω2S)
. (3.30)

To examine the effect of DE, we put (3.30) into (3.28) which can give the semi-classical

temperature in terms of S and Ω. For (−2
3
)-model, the calculations produce

T (−2/3)(S,Ω, α) =


π

2 + 3S2 + 4S π −
√
S (3π+5S)α

π−1/2 + 2S α2 π − S π (π+S−√π
√
S α)2 Ω2

(π+S)(π+S−S Ω2)

4π
3
2

√
S(π+S)(π+S−√π

√
S α)2

(π+S−SΩ2)


 .

(3.31)

Taking α = 0, we recover the ordinary temperature given in (2.15), as obtained in

[18]. For α 6= 0, the thermodynamical behaviors of the corresponding black hole can be

approached by exploiting the semi-classical specific heat. At constant angular velocity,

the computations lead to

C
(−2/3)
Ω (S,Ω, α) =

2S(π + S)(π + S − SΩ2) ((π + S) (π2 − 2πS(Ω2 − 2)− 3S2(Ω2 − 1))− αβ3)

(π + S) ((π + S)3(3S − π)− 6S2(π + S)2Ω2 + S3(4π + 3S)Ω4) + αβ4

,

(3.32)

where the βi terms are given by

β3 =
(

2π5/2
√
S − S3/2π3/2(−4 + 3Ω2)− 2

√
πS5/2(−1 + Ω2)

)
, (3.33)

β4 =
(
4π7/2S3/2Ω2 − π5/2S5/2Ω2(−4 + 3Ω2)

)
. (3.34)

Turning of the DE effects (α = 0), this result reduces to the ordinary specific heat

appearing in [18]. To specify the DE effect (α 6= 0), we discuss the temperature (3.31)

and the specific heat (3.32) with respect to the entropy S for a fixed value of Ω = 0.3.

This is illustrated in figure 6.

As mentioned before, the expression of the minimal temperature is complicated.

However, the corresponding computations may need certain relevant approximations. In

fact, there are many ways to reach the desired results. Setting
(
∂T
∂S

)
α,Ω

= 0, we find a

polynomial with rational orders in S. It is known that this situation is not an easy task.

To handle this rational order, we exploit the following limit (1− xn) ≈ 1− nx for small

values of x. Besides, we use similar technics explored in the previous (−1
3
)-model. After

calculations, the approximated entropy, which corresponds to the minimal entropy, can
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Figure 6: The semi-classical Hawking temperature (T (−2/3)) and the specific heat

(C
(−2/3)
Ω ) as function of the entropy (S) for Ω = 0.3 and ω = −2/3.

be written as

S
(−2/3)
min (Ω, α) =

1

6

[
3γ6 −

2π(−2 + Ω2)

(−1 + Ω2)

+3

√(
γ7 +

(−108π αΩ2(−1 + Ω2) + 45αΩ2(4− 7Ω2 + 3Ω4)− 8π3(2− 3Ω2 − 3Ω4 + 2Ω6) )

27γ6 (−1 + Ω2)3

)]
,

(3.35)

where the γi parameters are given by

γ4 =
(
54 (−1 + Ω2)2 γ5 +

(
55296 π3 α3 Ω6(20 + 12π − 15Ω2)3 (2− 3Ω2 + Ω4)3

+ 2916 Ω4 (−1 + Ω2)4 γ2
5

)1/2
)1/3

,
(3.36)

γ5 =
(
−64 π6 Ω2 + 432 π2 α2 Ω2 + 75α2 Ω2(4− 3Ω2)2 + 192 π4 α(−2 + Ω2)

−360π α2 Ω2(−4 + 3 Ω2)− 80π3 α(8− 10Ω2 + 3Ω4)
)
,

(3.37)

γ6 =

√
(2−4/3 γ2

4 − 12× 21/3 π αΩ2(20 + 12 π − 15Ω2) (2− 3Ω2 + Ω4) + 4γ4 π2 (1− Ω2 + Ω4))

9 γ4 (−1 + Ω2)2
,

(3.38)

γ7 =

(
−2−4/3 γ2

4 + 12× 21/3 π αΩ2(20 + 12 π − 15Ω2) (2− 3Ω2 + Ω4) + 8γ4 π
2 (1− Ω2 + Ω4)

)

9 γ4 (−1 + Ω2)2
.

(3.39)

Substituting (3.35) into (3.31), we find the corresponding minimum temperature given
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by

T
(−2/3)
min (Ω, α) =




√
3
2

(
12 + 8ξ + ξ2 − 2

√
6 (3 + 5 ξ

6
)
√
ξ α + 4 ξ α2 + 2 ξ(6+ξ−

√
6
√
ξ α)2 Ω2

(6+ξ)(−6+ξ (−1+Ω2) )

)

4π
√
− ξ (6+ξ) (6+ξ−

√
6
√
ξ α)2

(−6+ξ(−1+Ω2) )


 ,

(3.40)

where we have

ξ(Ω, α) =
1

π

[
3γ6 −

2π(−2 + Ω2)

(−1 + Ω2)

+3

√(
γ7 +

(−108π αΩ2(−1 + Ω2) + 45αΩ2(4− 7Ω2 + 3Ω4)− 8π3(2− 3Ω2 − 3Ω4 + 2Ω6) )

27γ6 (−1 + Ω2)3

)]
.

(3.41)

Now, we are in position to discuss the corresponding Kerr-AdS black hole phase tran-

sitions. From figure 6, we observe that the curve in the plane (S − T ) involves two

branches separated by a minimal temperature (3.40). Indeed, the first branch associated

with a small black hole mass is thermodynamically unstable. However, the second one

corresponding to a large black hole mass is stable.

In (S − CΩ) curve, two phases separated by a critical entropy S
(− 2

3
)

c = S
(− 2

3
)

min appear.

Furthermore, the first phase corresponding to a small black hole mass having a negative

heat capacity (CΩ < 0) is unstable. The second one, which corresponds to a large black

hole mass possessing a positive heat capacity (CΩ > 0), is considered as a stable one. It

is observed that the heat capacity is not affected by DE contributions.

To understand more such non trivial behaviors, one may introduce the Gibbs free energy.

For the present model, this energy can be written as

G(−2/3)(S,Ω, α) =

√
S(π3 + π2S − π 3

2S
3
2αΩ2 − πS2(1− Ω2)− S3(1− Ω2))

4π
3
2 (π + S)

3
2 (π + S − SΩ2)1/2

. (3.42)

In figure 7, we plot the Gibss free energy as a function of the entropy in order to get

more information about the effect of DE on the black hole phase transitions. From

this figure, we remark that the Gibbs free energy changes its sign. The positive values

of G(−2/3)(S, α,Ω) correspond to unstable black holes, while the negative values are

associated with stable black holes. We also realise that for the (−2
3
)-model, there is no

impact of intensity α on the Gibbs free energy. This could be understood from the fact

that the α multiplication coefficient is very small with respect to the ordinary case. For

Ω = 0.3, its numerical value is arround 10−4 which could be ignored. Moreover, the

Hawking-Page transition corresponds to the point where the Gibbs free energy changes
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α=0.2

α=0.1

α=0

1 2 3 4 5
S

-0.04

-0.02

0.00
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0.06

0.08

0.10
G

Figure 7: The Gibbs free energy G(−2/3) plotted for Kerr-AdS black hole with respect to

the entropy S for Ω = 0.3, ω = −2/3.

its sign. The associated entropy reads as

S
(−2/3)
HP (Ω, α) =

√
π
(

2
1
3 z2 −√π(1− Ω2)(2z + 9× 2

2
3 αΩ2) + 2× 2

2
3π(4− Ω2)(1− Ω2)

)

6z(1− Ω2)
,

(3.43)

where we have

z(α,Ω) =
(

27π(1 + π)αΩ2(1− 2Ω2) + 4π
3
2 (1− Ω2)2(8 + Ω2)

−6
√

6 Ωπ
3
4

√
α(8− 31Ω2 + π(24− 87Ω2)) + 2π

2
3 Ω2(1− Ω2)3

) 1
3

.
(3.44)

This entropy value leads to the following temperature

T
(−2/3)
HP (Ω, α) = 1

4
√

6π5/2
√
d(d+6

√
π−dΩ2)(d+6

√
π)3/2
×

(
216π3/2 − 72

√
6d π5/4 α + 3d3 (1− Ω2)− 2

√
6 d5/2 π1/4 α (1− Ω2)

+36d π (5− 2Ω2)− 6
√

6 d3/2 π3/4 α(4− 3Ω2) + 6d2
√
π(7− 5Ω2)

)
,

(3.45)

where d is given by

d(α,Ω) =

(
21/3z2 −√π(1− Ω2)(2z + 9× 22/3 αΩ2) + 2× 22/3π(4− Ω2)(1− Ω2)

)

z (1− Ω2)
.

(3.46)

To compare the different phases for several values of DE intensity α, we plot the Gibbs

free energy as a function of temperature in figure 8.

From figure 8, we observe that the radiation phase, which is the phase where the

black hole decay into a pure thermal AdS space, and the phase where no black hole can
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0.00
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α=0.2 α=0.1 α=0

Figure 8: The Gibbs free energy (G(−2/3)) plotted for Kerr-AdS black hole with respect

to the temperature (T (−2/3)) for Ω = 0.3, ω = −2/3 and different values of α.

exist decrease as the parameter α increases. Moreover, it is observed that the stable and

the unstable phase are not affected by the DE contributions.

To examine DE effects on the heat capacity (3.32), we plot such a quantity as a function

of the temperature for different DE intensity values in figure 9.

α=0

α=0.1

α=0.2

0.25 0.30 0.35 0.40
T

-60

-40

-20

0

20

40

60

80
CΩ

Figure 9: The specific heat C
(−2/3)
Ω plotted for Kerr-AdS black hole with respect to the

temperature (T (−2/3)) for Ω = 0.3, ω = −2/3 and different values of α.

It follows from figure 9 that the heat capacity changes its sign at the minimal tem-

perature T
(−2/3)
min . We also find that the phase where no black hole can exist decreases

when the intensity α increases. For the (−2
3
)-model, we find that DE does not have any

affect on the relevant thermodynamical quantities. However, the phase where no black

hole can exist and the radiation phase become small.
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3.3 Model with DE state parameter ω = −1

Here, we study the (−1)-model, being the last one. A fast examination reveals that this

model can be associated with a possible cosmological scaling. Forgetting about other

terms, the metric relevant one is given by

∆AdS
α = ∆α + ∆AdS = −r4

(
Λ

3
+ α

)
= −r4Λeff . (3.47)

Analysing the sign of such a cosmological effective constant Λeff , we expect a reversed

DE effect. We believe that the sign will be crucial in the forth coming discussions even

by absorbing the cosmological constant in the previous scaling given in (2.8). To discuss

the properties of this model, we should find the generalised Smarr formula for such a four

dimensional Kerr-AdS black hole model. Using the expressions (2.4), (2.6) and solving

the constraint ∆r(r+) = 0, we get

M (−1)(S, J, α) =

(
π

4S

{
4SJ2

π`2
+ 4J2 +

[
S2

π2`2
+
S

π
− αS

2

π2

]2}) 1
2

. (3.48)

In terms of DE intensity, the thermal temperature of the four-dimensional Kerr-AdS

black holes reads as

T (−1)(S, J, α) =
1

8πM

(
1− 4π2J2

S2
+

4S

π
+

3S2

π2
− α

(
4S

π
+

6S2

π2

)
+

3α2S2

π2

)
. (3.49)

Using the previous scaling redefinitions, the mass square takes the following form

(
M (−1)(S, J, α)

)2
=

S

4π
+
πJ2

S
+ J2 +

S

2π

(
S2

2π2
+
S

π
+
α2S2

2π2
− αS

π

(
S

π
+ 1

))
. (3.50)

Substituting (2.12) in (3.50), we can express
(
M (−1)

)2
in terms of S and Ω. This yields

(
M (−1)(S,Ω, α)

)2
=

S

4π
(π + S)

(
1 + 2S

π
(1 + S

2π
+ α2S

2π
− α(S

π
+ 1))

)

π + S − Ω2S
. (3.51)

Similarly, the semi-classical temperature is given by

T (−1)(S,Ω, α) =


π

2 + 3S2 + 4Sπ + 3S2α2 − αS(4π + 6S)− SπΩ2(π+S−Sα)2

(π+S) (π+S−SΩ2)

4π
3
2

√
S(π+S)(π+S−S α)2

(π+S−SΩ2)


 . (3.52)

It is noted that we recover the ordinary temperature obtained in (2.15) by sending α to

zero. To get further insight into the thermodynamical behaviour of the black hole, we
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can compute the semi-classical specific heat at constant angular velocity. Concretely, we

find

C
(−1)
Ω (S,Ω, α) =

2S(π + S)2(π + S − SΩ2) ((π + S) (π2 − 2πS(Ω2 − 2)− 3S2(Ω2 − 1)) + αSβ5)

(π + S)2((π + S)3(3S − π)− 6S2Ω2(π + S)2 + S3Ω4(4π + 3S)) + Sαβ6

,

(3.53)

where the βi parameters are

β5 =
(
πSΩ2(2π−S(−2+α))

(π+S)
+ (π + S − SΩ2)(−4π + 3S(−2 + α))

)
, (3.54)

β6 = (−2π5 + 3S5(−2 + α)(−1 + Ω2)2 − 4π3S2(−1 + Ω2)(−9 + 3α2 + 2Ω2)

+π4S(−14 + 3α + 12Ω2) + 2π2S3(−1 + Ω2)(22− 10Ω2 + α(−9 + 4Ω2))

+2πS4(−1 + Ω2)(13− 9Ω2 + α(−6 + 4Ω2))). (3.55)

To study the black hole phase transitions, we use the standard thermodynamical tools.

Indeed, we numerically examine the previous thermodynamical quantities, given in (3.52)

and (3.53), with respect to the entropy S. These quantities can be illustrated in figure

10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
S0.20

0.25

0.30

0.35

0.40
T

α=0

α=0.1

α=0.2

0.5 1.0 1.5 2.0 2.5 3.0
S

-200

-100

0

100

200
CΩ

Figure 10: The semi-classical Hawking temperature (T (−1)) and the specific heat (C
(−1)
Ω )

in terms of entropy (S) for Ω = 0.3 and ω = −1.

To interpret this numerical result, we should compute the minimal temperature.

Indeed, we use the same steps exploited in the previous (ω)-models. In this way, the

approximated entropy, which corresponds to the minimal temperature T
(−1)
min , can be

written as

S
(−1)
min (Ω, α) =

1

6

[
3 γ9 −

2 π (−2 + Ω2)

(−1 + Ω2)
+ 3

√
γ10 −

8π3(2− 3 Ω2 − 3 Ω4 + 2Ω6)

27γ9 (−1 + Ω2)3

]
,

(3.56)
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where the γi parameters are given by

γ8 =
(

(−1 + Ω2)2(
√

27α3 (−1 + Ω2)2 + (Ω4 + 3α(1− Ω2 + Ω4))2−

(Ω4 + 3α(1− Ω2 + Ω4)) )
)1/3

,
(3.57)

γ9 =

√
2 π2 (3 γ2

8 − 9α (−1 + Ω2)2 + 2 γ8 (1− Ω2 + Ω4) )

9 γ8 (−1 + Ω2)2
, (3.58)

γ10 =
2 π2 (−3 γ2

8 + 9α (−1 + Ω2)2 + 4 γ8 (1− Ω2 + Ω4) )

9 γ8 (−1 + Ω2)2
. (3.59)

Putting (3.56) in (3.52), we obtain the expression of the minimal temperature

T
(−1)
min (Ω, α) =




√
3
2

(
12 + 8χ+ χ2 − 2χ(4 + χ)α + χ2 α2 + 2χ (−6+χ (−1+α) )2 Ω2

(6+χ) (−6+χ(−1+Ω2) )

)

4 π
√
−χ (6+χ) (−6+χ(−1+α) )2

(−6+χ(−1+Ω2) )


 ,

(3.60)

where we have

χ(Ω, α) =
1

π

[
3 γ9 −

2 π (−2 + Ω2)

(−1 + Ω2)
+ 3

√
γ10 −

8π3(2− 3 Ω2 − 3 Ω4 + 2Ω6)

27γ9 (−1 + Ω2)3

]
. (3.61)

It is possible now to interpret the result given in the figure 10. The curve of the (T −S)

plane reveals two branches separated by the minimal temperature given in (3.60). The

first branch associated with the small black hole mass is an unstable one. While, the

second phase which corresponds to the large black hole mass is considered as a stable

one. However, we remark that the entropy S
(−1)
min increases when the intensity α increases.

In this way, DE makes the unstable phase relevant.

From the curve of the CΩ−S plane, the enhancement of the critical entropy S
(−1)
c = S

(−1)
min ,

when the intensity α increases makes the unstable phase larger. Indeed, the stable phase

with a positive specific heat is getting smaller.

To investigate the associated phase transitions, we can exploit the Gibbs free energy in

terms of the entropy. Concretely, the calculation provides

G(−1)(S,Ω, α) =

√
S(π3 + π2S(1 + α)− πS2(1− 2α)(1− Ω2)− S3(1− α)(1− Ω2))

4π
3
2 (π + S)

3
2 (π + S − SΩ2)1/2

,

(3.62)

which is illustrated in figure 11 for certain values of α.

It follows from the figure 11 that the Gibbs free energy changes its sign. The posi-

tive values of G(−1)(S,Ω, α) correspond to unstable black holes while the negative ones
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Figure 11: The Gibbs free energy (G(−1)) plotted for Kerr-AdS black hole with respect

to the entropy (S) for Ω = 0.3, ω = −1 and different values of α.

are associated with stable phases. We observe that DE increases the unstable phase.

Moreover, the point where the Gibbs free energy changes its sign corresponds to the

Hawking-Page phase transition. At this point, the entropy takes the form

S
(−1)
HP =

(
22/3X2 − 2πX(1− 2α)(1− Ω2)− 2× 21/3π2(1− Ω2)(−4 + 3α2 + Ω2 + 4α(1− Ω2))

)

6X (1− α)(1− Ω2)
,

(3.63)

where the quantity X is

X(Ω, α) = π (2(1− Ω2)2(8 + Ω2 − 6α (2 + Ω2)))
1/3
. (3.64)

This entropy generates the following temperature

T
(−1)
HP (α,Ω) =

1

4π3/2

√
2Y

(
2π + Y

3(1−Y )

)
(Y + 6π(1− α)(1− Ω2) )3/2

×
[
Y 3 + 72π3(1− α)2(1− Ω2)2 + 12a π2(1− α)(1− Ω2)(5− 3α− 2Ω2) + 2a2 π (7− 5Ω2 − α(6− 4Ω2))

]
,

(3.65)

where the term Y is given by

Y (α,Ω) =

(
22/3X2 − 2πX(1− 2α)(1− Ω2)− 2× 21/3 π2 (1− Ω2)(−4 + 3α2 + Ω2 − 4α (−1 + Ω2))

)

X
.

(3.66)

To compare the different phases for several values of DE intensity α, we plot the Gibbs

free energy as a function of the temperature in figure 12.
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Figure 12: The Gibbs free energy (G(−1)) plotted for Kerr-AdS black hole with respect

to the temperature (T (−1)) for Ω = 0.3, ω = −1 and different values of α.

It follows from figure 12 that the radiation phase, which is the phase where the black

hole decay into a pure thermal AdS space, and the phase where no black hole can exist

decrease as the parameter α increases. This can confirm that DE destabilise the (−1)-

model black hole.

In order to more understand the DE effect on the heat capacity C
(−1)
Ω , we illustrate in

figure 13 its temperature dependence. An examination shows that the heat capacity

changes its sign at the minimal temperature T
(−1)
min . We also find that the phase where

no black hole can exist decreases when the intensity α increases.

α=0

α=0.1

α=0.2

0.25 0.30 0.35 0.40
T

-60

-40

-20

0

20

40

60

80
CΩ

Figure 13: The specific heat C
(−1)
Ω plotted for Kerr-AdS black hole with respect to

temperature (T (−1)) for Ω = 0.3, ω = −1 and different values of α.
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For this last model ((-1)-model), the obtained result of Kerr-AdS black holes seem

to be non trivial. As expected, the Gibbs free energy and the heat capacity undergo a

reversed DE behaviors, which could be associated with the sign of the DE factor. This

feature could be in fact due to the cosmological constant contribution. This remark may

deserve deeper thinking in future.

4 Results and discussions

In this section, we analyse and discuss the obtained results by giving certain proper

physical meanings.

4.1 Thermal behaviors

We first start by the temperature behaviours in the studied models. Indeed,

we plot the temperature as a function of the entropy for such three models

in figure 14.

α=0.2
α=0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.24

0.26

0.28

0.30

0.32

0.34

S

T

(a)

α=0.2
α=0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.24

0.26

0.28

0.30

0.32

0.34

S

T

(b)

α=0.2
α=0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.24

0.26

0.28

0.30

0.32

0.34

S

T

(c)

Figure 14: The temperature T plotted with respect to the entropy S for Ω = 0 (straight

line) and Ω = 0.3 (dashed line).(a): (T − S) for ω = −1
3
. (b): (T − S) for ω = −2

3
.

(c): (T − S) for ω = −1. The dots in the figure denotes the minimal entropy S
(ω)
min.

It follows from this figure that we observe that the angular velocity Ω

decreases the temperature and increases the unstable phase for all the cases

(α = 0, α 6= 0). Besides, we remark a special behavior regarding the minimal

entropy. In figure (a), we notice that the minimal entropy S
(−1/3)
min decreases as
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a function of DE intensity α. In figure (b), however, S
(−2/3)
min has the same values

appearing in the absence of DE. Furthermore, the figure (c) shows an opposite

behavior to the one illustrated in figure (a). A close examination reveals that

the Gibbs free energy G exhibits a similar behavior, being presented in figure

15. For the (−1
3
)-model illustrated in figure(d), the Gibbs free energy G

α=0.2
α=0

0 1 2 3 4 5
-0.05

0.00

0.05

0.10

S

G

(d)

α=0.2
α=0

0 1 2 3 4 5
-0.05

0.00

0.05

0.10

S

G

(e)

α=0.2
α=0

0 1 2 3 4 5
-0.05

0.00

0.05

0.10

S

G

(f)

Figure 15: The Gibbs free energy G plotted with respect to the entropy S for Ω = 0

(straight line) and Ω = 0.3 (dashed line).(a): (G − S) for ω = −1
3
. (b): (G − S) for

ω = −2
3
. (c): (G − S) for ω = −1. The dots in the figure denotes the Hawking-Page

entropy S
(ω)
HP .

decreases when the DE intensity α increases. However, the (−1)-model of

figure (f) involves an opposite behavior. Besides, we remark that DE does

not have any effect on the Gibbs free energy for (−2
3
)-model shown in figure

(e). This matches perfectly with result associated with the Schwarzschild

AdS black hole (Ω = 0), being characterised by the straight line in figure 15.

This can be supported by the expression of G. Indeed, we give the Gibbs

free energy for Schwarzschild AdS black hole

G(−1/3)(S, α) = G0 −
α

4

√
S

π
,

G(−2/3)(S, α) = G0,

G(−1)(S, α) = G0 +
α

4

(
S

π

)3/2

,

where G0 =
√
S(π−S)

4π3/2 indicates the ordinary Gibbs free energy. Physically, this

behavior of G and S
(ω)
min values can be understood from the fact that these

26

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJMPD

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

O
T

H
E

N
B

U
R

G
 o

n 
05

/2
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



physical quantities ares considered as extensive parameters. It is worth not-

ing that the DE intensity α decreases always the Hawking-Page temperature

(THP ), while ω increases the THP when −1 ≤ ω ≤ −2
3
. However, THP is de-

creased when −2
3
≤ ω ≤ −1

3
.

4.2 Universality of certain critical quantities

Here, we discuss the obtained results for the three (ω)-models showing relevant similari-

ties and distinctions. However, we focus on some critical thermodynamical quantities of

four-dimensional Kerr-AdS black holes by probing possible universal relations. To show

that, we list first the corresponding involved quantities for certain values of DE param-

eters for a fixed value of Ω i.e 0.3. For simplicity reasons, we vary α between 0.05 and

0.2 by assuming that other values bring similar behaviors. For (−1)-model, we collect

the associated numerical results in table 1.

Smin Tmin SHP THP

α = 0.05 1.1556 0.2623 3.4656 0.3029

α = 0.1 1.2200 0.2551 3.6587 0.2946

α = 0.15 1.2919 0.2477 3.8273 0.2853

α = 0.2 1.3726 0.2400 4.1142 0.2774

Table 1: Critical values for the (−1)-model.

The relevant thermodynamical quantities of (−2
3
)-model are listed in table 2.

Smin Tmin SHP THP

α = 0.05 1.0959 0.2615 3.2917 0.3032

α = 0.1 1.0942 0.2537 3.2855 0.2954

α = 0.15 1.0925 0.2459 3.2840 0.2877

α = 0.2 1.0908 0.2381 3.2777 0.2798

Table 2: Critical values for the (−2
3
)-model.

The results of (−1
3
)-model are given in table 3.

In all three (ω)-models, we first remark that there exist nice universal ratio quan-

tities for four-dimensional Kerr-AdS black holes regarding the entropy. In particular,
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Smin Tmin SHP THP

α = 0.05 1.0423 0.2627 3.1300 0.3033

α = 0.1 0.9870 0.2559 2.9635 0.2953

α = 0.15 0.9316 0.2488 2.7975 0.2872

α = 0.2 0.8762 0.2416 2.6330 0.2788

Table 3: Critical values for the (−1
3
)-model.

we consider the ratio
S

(α)
min

S
(α)
HP

. For the (−1)-model ((−1
3
)-model), we observe that when α

increases, the quantity S
(α)
min and S

(α)
HP increase (decreases). However, for (−2

3
)-model, the

S
(α)
min and S

(α)
HP keep approximatively the same values which are arround 1.09 and 3.28,

respectively. Even the relevant distinctions of these (ω)-models, the ratio
S

(α)
min

S
(α)
HP

remains

almost unchanged. Indeed, it is given by

S
(α)
min

S
(α)
HP

≈ 0.33. (4.1)

Similarly for the temperature, we compute numerically the ratio
T

(α)
min

T
(α)
HP

for all the studied

(ω)-models. Inspecting such calculations, we find the second universal relation given by

T
(α)
min

T
(α)
HP

≈ 0.86. (4.2)

It has been remarked that two critical ratios are independent of DE parameters. These

two different values could be explained by physical properties of the involved thermody-

namical quantities. We believe that this nice feature needs deeper investigations. This

will be investigated in future works.

5 Behaviours of shadow Kerr AdS black holes sur-

rounded by a quintessential field

In this section, we investigate the Kerr-AdS black hole shadow for the three

(ω)-models. To start, we consider the Lagrangian given by

L =
1

2
gµ ν ẋ

µẋν (5.1)

where the over dot is the derivative with respect to the affine parameter

Γ, while gµ ν is the metric tensor [44]. In this way, the canonical conjugated
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momentum for such a Kerr-AdS black hole surrounded by quintessential dark

energy can be computed from the following relation

pα =
∂L
∂ẋα

= gαµẋ
µ. (5.2)

Indeed, this equation generates

pt = gt tṫ+ gt φφ̇ = −E, (5.3)

pφ = gφ tṫ+ gφφφ̇ = L, (5.4)

where E and L represent the energy and the angular momentum, respectively.

The associated metric components are given by

gt t =
a2∆θ sin2 θ −∆r

Ξ2 Σ2
, (5.5)

gφ t = gt φ =
a sin2 θ

[
∆r − a2∆θ sin2 θ

]

Ξ2 Σ2
, (5.6)

gφφ =
sin2 θ

[
(a2 + r2) ∆θ − a2∆r sin2 θ

]

Ξ2 Σ2
. (5.7)

Multiplying (5.3) by (−gφφ), (5.4) by (gt φ) and grouping the two equations

together, we obtain

ṫ =
Egφφ + Lgt φ

(gt φ)2 − gt tgφφ
. (5.8)

Replacing each metric component by its expression, we get

Σ2ṫ = Σ2 d t

dΓ
=

Ξ2E
[
∆θ (r2 + a2) (r2 + a2 − aλ) + a∆r

(
λ− a sin2 θ

)]

∆r∆θ

, (5.9)

with λ = L/E. However, the second components of the light rays velocity

read as

φ̇ = − Egt φ + Lgt t

(gt φ)2 − gt tgφφ
, (5.10)

Σ2d φ

dΓ
= Ξ2E

[
a (r2 + a2)− aλ

∆r

+
λ− a sin2 θ

sin2 θ∆θ

]
. (5.11)

In order to get the remaining two components of the velocity light rays, one

should exploit the Hamilton-Jacobi equation governing the geodesic motion

in space-time. This equation can be formulated as follows

∂S

∂Γ
= H = −1

2
gµ ν

∂S

∂xµ
∂S

∂xν
. (5.12)
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Concretely, the action is given by

S =
1

2
m2

0 Γ− E t+ Lφ+ Sr(r) + Sθ(θ), (5.13)

where m0 is the particle mass [45]. The contravariant metric tensor is

gµν =




Ξ2
[
∆ra2 sin2 θ−∆θ(a2+r2)

2
]

∆r∆θΣ2 0 0 −Ξ2[a∆θ(r2+a2)−a∆r]
∆r∆θΣ2

0 ∆r

Σ2 0 0

0 0 ∆θ

Σ2 0

−Ξ2[a∆θ(r2+a2)−a∆r]
∆r∆θΣ2 0 0

Ξ2[−a2∆θ sin2 θ+∆r]
∆r∆θΣ2 sin2 θ



. (5.14)

The computation shows that the explicit form of the Hamilton-Jacobi equa-

tion takes the following form

m2
0 = 2

∂S

∂Γ
=

Ξ2

Σ2∆r

[(
r2 + a2

) ∂S
∂t

+ a
∂S

∂φ

]2

(5.15)

− Ξ2

Σ2∆θ sin2 θ

[
a sin2 θ

∂S

∂t
+
∂S

∂φ

]2

− ∆r

Σ2

(
∂S

∂r

)2

− ∆θ

Σ2

(
∂S

∂θ

)2

.

Using the notations ∂S
∂t

= −E, ∂S
∂φ

= L and considering photon particles with

m0 = 0, we obtain

0 =

{
∆r

(
∂S

∂r

)2

− Ξ2

∆r

[(
r2 + a2

)
E − aL

]2
+

Ξ2

∆θ

(L− aE)2

}
(5.16)

+

{
∆θ

Σ2

(
∂S

∂θ

)2

+
Ξ2

∆θ

cos2 θ

[
−E2a2 +

L2

sin2θ

]}
.

Factorizing these two equations, where the separating constant is C = K −
Ξ2

∆θ
(L− aE)2, we get





R = Ξ2
[(
r2 + a2

)
E − La

]2 −K∆r = E2
{

Ξ2
[(
r2 + a2

)
− λa

]2 − k∆r

}
,

Θ = K∆θ − Ξ2

(
L− aE sin2 θ

sin θ

)2

= E2

{
k∆θ − Ξ2

(
λ− a sin2 θ

sin θ

)2
}
,

(5.17)

where K is the carter constant and k = K/E2. The equations of motion

expression for the photon around a rotating AdS black hole surrounded by
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DE can be obtained. Precisely, they are expressed as follows

Σ2 d t

dΓ
=

Ξ2E
[
∆θ (r2 + a2) (r2 + a2 − aλ) + a∆r

(
λ− a sin2 θ

)]

∆r∆θ

, (5.18)

Σ2d r

dΓ
=
√
R, (5.19)

Σ2d θ

dΓ
=
√

Θ, (5.20)

Σ2d φ

dΓ
= Ξ2E

[
a (r2 + a2)− aλ

∆r

+
λ− a sin2 θ

sin2 θ∆θ

]
. (5.21)

To analyse the photon orbits, we should introduce two dimensionless impact

parameters denoted as η ≡ k and ξ ≡ λ. In this way, the unstable circular

orbit can determine the boundary of black hole geometric shape using the

equation given by

R = 0 =
∂R

∂r
. (5.22)

After calculations, we find

η =
r2Ξ2

(
16a2∆θ∆r − 16∆2

r + 8r∆r∆
′
r − r2 (∆′r)

2)

a2∆θ (∆′r)
2

∣∣∣∣
r=r0

, (5.23)

ξ =
−4r∆r + (r2 + a2) ∆′r

a∆′r

∣∣∣∣
r=r0

, (5.24)

where r0 is the circular orbit radius of the photon and ∆′r = ∂∆r

∂r
. Linking the

characteristic length of the AdS space with the cosmological constant by the

relation Λ = −3/`2, we can elaborate the shadow of the Kerr-AdS black hole.

Taking the limit Λ = c = 0,

η =
r3

0

(
4a2M − r0 (3M − r0)2)

a2 (r0 −M)2 , (5.25)

ξ =
r2

0 (3M − r0)− a2 (M + r0)

a (r0 −M)
, (5.26)

we recover the results associated with Kerr black hole reported in [46]. The

Schwarzschild black hole can be also obtained by taking the limit a = 0. For

M = 1, the photon sphere can be described by the equation

η + ξ2 = 27 (5.27)

with r0 = 3 [47]. In figure 16, the orbits are illustrated in terms of the asso-

ciated celestial coordinates (α, β), reported in [46], for the three (ω)-models.
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Figure 16: The shadow of Kerr-AdS black hole for (ω)-models in celestial coordinates

(α, β). The ordinary case without DE is plotted with the blue color.

It follows from this figure that the decrease of ω implies the increase of the

shadow. However, the later increases with high values of the DE intensity

c. Besides, we notice that the D-shape of the shadow, which is a character-

istic of the Kerr black hole, becomes relevant for the (−1)-model and gets

even more deformed for high values of the DE intensity. The same behaviour

is observed for the spherical shadow of Schwarzschild-AdS black hole [47].

Moreover, it has been remarked that when the value of ω decreases the size

of the shadow gets bigger. We believe that such non trivial behaviors need

deeper investigations. We hope to come back to these behaviors in connection

with features in future works.

6 Conclusions and open questions

In this paper, we have studied the critical behaviors of four dimensional Kerr-AdS black

holes from quintessential DE contributions. Exploiting a moduli space coordinated by

the DE state parameter ω and the quintessence field intensity α, we have investigated

three (ω)-models. In particular, we have computed relevant thermodynamical quantities

needed to approach the corresponding phase transitions. Among others, we have shown

that such models involve crucial similarities and distinctions regarding such quantities.

For instance, we have found, in the (−1
3
)-model, that DE stabilise the Kerr-AdS black

holes. However, the remaining two models have shown surprising behaviors. Indeed,

the (−2
3
)-model has revealed a resistance to DE effects while (−1)-model has brought
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reversed DE effects. Moreover, certain thermal behaviors have been discussed.

After an examination, we have remarked that the parameter ω can be put as

ω = −1 +$, (6.1)

where $ is a new parameter restricted by 0 ≤ $ ≤ 2
3
. This new parameter could control

such distinctions. Starting from an anti-DE effect associated with $ = 0 , the behav-

iors completely change by increasing the values of $. Even such visible distinctions in

the ($)-models, we have observed similarities associated with universal properties in

terms of four dimensional Kerr-AdS black hole critical quantities. Besides, we have

showed that the decrease (increase) of ω (α) enhances the size of the black

hole shadow.

This work comes up with many open questions. The natural one concerns the under-

standing of the founded results, in terms of $. Besides, higher dimensional models could

be considered as a future work by investigating the effect of space-time dimensions on

Kerr-AdS black hole behaviors in the presence of non trivial contributions including DE.

Acknowledgment

AB would like to thank the Departamento de F́ısica, Universidad de Murcia for very kind

hospitality and scientific supports during the realization of a part of this work and he

thanks H. El Moumni, J. J. Fernández-Melgarejo, and E. Torrente-Lujan for interesting

discussions on related topics. The authors would like to thank M. Benali for discussions

on the revised version. This work is partially supported by the ICTP through AF-13.

This work is partially supported by spanich MINECO/FEDER grant FPA2015-65745-P

and DGA-FSE grant E21-17R.

References

[1] S. Carlip, Black hole thermodynamics, Int. J. Mod. Phys. D23.11 (2014) 1430023.

[2] B. P. Dolan, Black holes and Boyle’s lawThe thermodynamics of the cosmological

constant, Mod. Phys. Lett A30 (2015) 1540002.

[3] J. Shen, R. G. Cai, B. Wang, R. K. Su, Thermodynamic geometry and critical

behavior of black holes, Int. J. Mod. Phys. A22 (2007) 11-27.

33

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJMPD

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

O
T

H
E

N
B

U
R

G
 o

n 
05

/2
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



[4] S. H. Hendi, S. Panahiyan, M. Momennia, Extended phase space of AdS black holes

in EinsteinGaussBonnet gravity with a quadratic nonlinear electrodynamics, Int. J.

Mod. Phys. D25 (2016) 1650063.

[5] D. Astefanesei, R. Ballesteros, D. Choque, R. Rojas, Scalar charges and the first

law of black hole thermodynamics, Phys. Lett. B782 (2018) 47-54.

[6] E. Torrente-Lujan, Smarr mass formulas for BPS multicenter black holes, Phys.

Lett. B798 (2019) 135019.

[7] A. Belhaj, H. El Moumni, Entanglement entropy and phase portrait of f (R)-AdS

black holes in the grand canonical ensemble, Nucl. Phys. B938 (2019) 200-211.

[8] S. W. Hawking, D. N. Page, Thermodynamics of black holes in anti-de Sitter space,

Communications in Mathematical Physics 87 (1983) 577-588.

[9] J. X. Mo, W. B. Liu, Ehrenfest scheme for PV criticality in the extended phase space

of black holes, Phys. Lett. B727.1 (2013) 336-339.

[10] A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, M. B. Sedra, Critical behaviors

of 3D black holes with a scalar hair, Int. J. Geom. Meth. Mod. Phys.12 (2015)

1550017.

[11] A. Belhaj, M. Chabab, H. El Moumni, L. Medari, M. B. Sedra, The Thermody-

namical Behaviors of KerrNewman AdS Black Holes, Chin. Phys. Lett. 30 (2013)

090402.

[12] D. Kubizk, R. B. Mann, P-V criticality of charged AdS black holes, J. High Ener.

Phys. 7 (2012) 33.

[13] Y. Liu, D. C. Zou, B. Wang, Signature of the Van der Waals like small-large charged

AdS black hole phase transition in quasinormal modes, J. High Ener. Phys. 9 (2014)

179.

[14] C. Niu, Y. Tian, X. N. Wu, Critical phenomena and thermodynamic geometry of

Reissner-Nordstrm-anti-de Sitter black holes, Phys. Rev. D85 (2012) 024017.

[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra, On thermodynamics of AdS

black holes in arbitrary dimensions, Chin. Phys. Lett. 29 (2012) 100401.

34

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJMPD

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

O
T

H
E

N
B

U
R

G
 o

n 
05

/2
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



[16] R. G. Cai, L. M. Cao, L. Li, R. Q. Yang, PV criticality in the extended phase space

of Gauss-Bonnet black holes in AdS space, J. High. Ener. Phys. 9 (2013) 5.

[17] S. W. Wei, Y. X. Liu, Critical phenomena and thermodynamic geometry of charged

Gauss-Bonnet AdS black holes, Phys. Rev. D87 (2013) 044014.

[18] R. Banerjee, S. Modak, Second Order Phase Transition and Thermodynamic Ge-

ometry in Kerr-AdS Black Hole, Phys. Rev. D84 (2011) 064024.

[19] A. Al Balushi, R. B. Mann, Null hypersurfaces in Kerr(A) dS spacetimes, Class.

Quant. Grav.36 (2019) 245017.

[20] P. Cheng, S. W. Wei. Y. X. Liu, Critical phenomena in the extended phase space of

Kerr-Newman-AdS black hole, Phys. Rev. D94(2016)024025.

[21] V. V. Kiselev, Quintessence and black holes, Class. Quant. Grav. 20 (2003) 1187.

[22] E. Babichev, V. Dokuchaev, Y. Eroshenko, Black hole mass decreasing due to phan-

tom energy accretion, Phys. Rev. Lett. 93 (2004) 021102.

[23] E. O. Babichev, V. I. Dokuchaev, Y. N. Eroshenko, Black holes in the presence of

dark energy, Phys. Usp. 56 (2013) 1155.

[24] P. H. Frampton, M. Kawasaki, F. Takahashi, T. T. Yanagida, Primordial black holes

as all dark matter, J. Cosm. Astro. Phys. 04 (2010) 023.

[25] V. V. Kiselev, Quintessential solution of dark matter rotation curves and its simu-

lation by extra dimensions, arXiv gr-qc/0303031.

[26] S. Hellerman, N. Kaloper, L. Susskind, String theory and quintessence, J. High Ener.

Phys. 06 (2001) 003.

[27] S. Chen, J. Jing, Quasinormal modes of a black hole surrounded by quintessence,

Class. Quant. Grav. 22 (2005) 4651.

[28] Y. Zhang, Y. X. Gui, Quasinormal modes of gravitational perturbation around a

Schwarzschild black hole surrounded by quintessence, Class. Quant. Grav. 23 (2006)

6141.

[29] Y. Ma, J. Chen, C. Sun, Dark information of black hole radiation raised by dark

energy, Nuc. Phys. B931 (2018) 418.

35

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJMPD

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

O
T

H
E

N
B

U
R

G
 o

n 
05

/2
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



[30] A. Belhaj, A. El Balali, W. El Hadri, H. El Moumni, M. B. Sedra, Dark energy

effects on charged and rotating black holes, Eur. Phys. J. Plus 134 (2019) 422.

[31] G. W Gibbons, S. W Hawking,. Action integrals and partition functions in quantum

gravity, Phys. Rev. D15 (1977) 2752.

[32] A. M. Awad, C. V. Johnson, Holographic stress tensors for Kerr-AdS black holes,

Phys. Rev. D61 (2000) 084025.

[33] G. W. Gibbons, M. J Perry, C. N.Pope, The first law of thermodynamics for

Kerranti-de Sitter black holes, Class. Quant. Grav. 22(2005) 1503.

[34] A. M. Awad, C. V. Johnson, Higher Dimensional Kerr-AdS Black Holes and the

AdS/CFT Correspondence, Phys.Rev. D63 (2001) 124023.

[35] K. Jafarzad, J. Sadeghi, Effects of dark energy on P-V criticality and efficiency of

charged Rotational black hole, arxiv:1803.04250.

[36] G. W. Gibbons, M. J. Perry, C. N. Pope, The first law of thermodynamics for

Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503.

[37] V. Cardoso, O. J. C. Dias, S. Yoshida, Classical Instability of Kerr-AdS black holes

and the issue of final state, Phys. Rev. D74 (2006) 044008.

[38] S. G. Ghosh, Rotating black hole and quintessence, EPJ C. 76 (2016) 222.

[39] B. Toshmatov, Z. Stuchlk, B. Ahmedov, Rotating black hole solutions with

quintessential energy, EPJ Plus. 132 (2017).

[40] H. Ibrar, A. Sajid, Marginally stable circular orbits in the Schwarzschild black hole

surrounded by quintessence matter. EPJ Plus. 131 (2016).

[41] J.Schee, Z. Stuchlk, Silhouette and spectral line profiles in the special modification

of the Kerr black hole geometry generated by quintessential fields. EPJ C. 76 (2016).

[42] Z. Xu, J.Wang, Kerr-Newman-AdS Black Hole In Quintessential Dark Energy, Phys.

Rev. D95 (2017) 064015.

[43] R. Banerjee, D. Roychowdhury, Thermodynamics of phase transition in higher di-

mensional AdS black holes, JHEP 11 (2011) 004.

36

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJMPD

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

O
T

H
E

N
B

U
R

G
 o

n 
05

/2
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



[44] B. Carter, Global structure of the Kerr family of gravitational fields,

Phys. Rev, 174(1968)15591571.

[45] P. A. Blaga and C. Blaga, Bounded radial geodesics around a Kerr-Sen

black hole, Class. Quant. Grav., 18 (2001)38933905.

[46] P. V. Cunha, C. A. Herdeiro, E. Radu, H. F. Runarsson, Shadows of

Kerr black holes with and without scalar hair, Inter. Jour. Mod. Phys.

D, (2016) 25 1641021.

[47] B. P. Singh, S. G. Ghosh, Shadow of Schwarzschild-Tangherlini black

holes, Annals of Physics 395 (2018) 127-137.

37

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJMPD

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

O
T

H
E

N
B

U
R

G
 o

n 
05

/2
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.


