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ABSTRACT

Arrhythmogenic early afterdepolarizations (EADs) are investigated in a biophysically detailed mathematical model of a rabbit ventricular
myocyte, providing their location in the parameter phase space and describing their dynamical mechanisms. Simulations using the Sato
model, defined by 27 state variables and 177 parameters, are conducted to generate electrical action potentials (APs) for different values of the
pacing cycle length and other parameters related to sodium and calcium concentrations. A detailed study of the different AP patterns with or
without EADs is carried out, showing the presence of a high variety of temporal AP configurations with chaotic and quasiperiodic behaviors.
Regions of bistability are identified and, importantly, linked to transitions between different behaviors. Using sweeping techniques, one-,
two-, and three-parameter phase spaces are provided, allowing ascertainment of the role of the selected parameters as well as location of the
transition regions. A Devil’s staircase, with symbolic sequence analysis, is proposed to describe transitions in the ratio between the number
of voltage (EAD and AP) peaks and the number of APs. To conclude, the obtained results are linked to recent studies for low-dimensional
models and a conjecture is made for the internal dynamical structure of the transition region from non-EAD to EAD behavior using fold and
cusp bifurcations and maximal canards.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055965

In a healthy heart, the sinoatrial node sends out an electri-
cal impulse that spreads throughout the heart activating all
cardiac myocytes to produce an electrical response called the
action potential (AP). The AP follows a sequence of AP phases
corresponding to the inflow and outflow of ions through the
membrane of cardiac myocytes. Under some circumstances, that
sequence of AP phases can be disrupted by the presence of the
so-called early afterdepolarizations (EADs), which are secondary
voltage depolarizations that can appear during phase 2 or 3 of the
AP. Side effects of drugs, ion channel dysfunction, or oxidative
stress, among others, can lead to the genesis of EADs.1–3 In heart
failure, long QT syndrome, and other pathological conditions,
EADs have been reported to be a relevant cause of fatal ventricu-
lar arrhythmias,4–6 but more knowledge is required to understand
the theoretical mechanisms underlying their generation. During

the last few decades, computational models of cardiac electrical
activity have been instrumental in shedding light on various car-
diac phenomena, including EADs. Biophysically detailed models
of high dimension, i.e., with a large number of state variables,
allow more faithful reproduction of experimental observations
and facilitate biophysical interpretation. Here, we use the high-
dimensional electrophysiological model of a rabbit ventricular
myocyte developed by Sato et al.6 with 27 state variables and
177 model parameters. By combining different techniques for
dynamical system analysis, we investigate the parameter phase
space using three parameters reported to highly influence model
dynamics.7 We identify regions in the phase space showing tran-
sitions from absence to presence of EADs through different
temporal sequences of EADs. In these processes, dynamical phe-
nomena are present, including bistability, chaos, fold, and cusp
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bifurcations. Putting all this information together and taking
into account recent findings using low-dimensional models, we
provide a conjecture about the internal dynamical structure of
the transition region from absence to presence of EADs in the
parameter phase space studied for the Sato model.

I. INTRODUCTION

Mathematical models of biological systems have become
important tools in the study of mechanisms underlying biological
phenomena, complementing experimental and/or clinical research.
Biological models can be very detailed (high-dimensional) and very
accurate in reproducing experimental observations or they can be
simple (low-dimensional) and just reproducing one or a few biolog-
ical features. The former allow for more realistic interpretation of
underlying mechanisms, while the latter are very useful for com-
prehensive theoretical studies of a particular phenomenon. The
two types of models are not mutually exclusive, and they can be
used synergistically to enhance modeling and simulation capabili-
ties.

Computational models for atrial and ventricular cells in the
heart (cardiomyocytes) aim at reproducing the electrical response
(or action potential, AP) to an external stimulus. It is well known
that, under physiological conditions, the AP responds to external
stimulation by rapidly increasing the transmembrane voltage (V)
in the so-called AP phase 0 (depolarization), following which there
is a short transient decrease of V (transient repolarization) during
AP phase 1. Next, V remains approximately constant in AP phase 2,
the so-called plateau phase. During AP phase 3, V decreases (repo-
larization) to the resting membrane potential until the cell receives
another stimulus. The time elapsed between two stimuli applied to
the cell is called Pacing Cycle Length (PCL). Under some circum-
stances, transmembrane potential V can experience an unexpected
rise during AP phase 2 or phase 3, which is termed early after-
depolarization (EAD). EADs can be produced by different causes:
hypokalemia,8,9 oxidative stress,3 drugs,1,8 or genetic defects.10 If
EADs at the cellular level are of large enough magnitude and occur
over a substantial tissue area, they can lead to triggered activ-
ity and arrhythmias,4,5,11–13 which makes the study of EADs highly
relevant.

Many studies in the literature14–18 investigating EADs work
with low-dimensional (three, four state variables) models. For these
simple models, it is common to use a fast-slow decomposition19

approach to separate state variables that change in fast and
slow timescales, respectively, thus allowing to further reduce the
complexity of the system and isolate the phenomena of inter-
est. The fast and slow subsystems can be analyzed either sep-
arately or considering the interaction between them. By using
fast-slow decompositions, different dynamical mechanisms have
been reported for EAD generation, ranging from a delayed sub-
critical Poincaré–Andronov–Hopf bifurcation20 to folded-node sin-
gularities and their accompanying canard orbits,16,17 finding even
isolas of periodic orbits.18 If models of higher dimension are ana-
lyzed, the mathematical tools used for low-dimensional models
become increasingly difficult to apply and need to be replaced with
others. One possibility for analysis is to obtain predictions using

low-dimensional models and subsequently validate them using
more physiologically detailed models.21–23

The main goal of this work is to study the appearance of
EADs in the parameter phase space of the 27-dimensional (27D)
Sato rabbit ventricular cardiomyocyte model. The Sato model6 has
been widely used in the literature (both the complete model and
the reduced one) and the sensitivity of its parameters has already
been studied,7 which is used here as a basis to select relevant
parameters for bifurcation analysis. Due to the high number of
variables and parameters of the model and the impossibility of con-
ducting a theoretical study, we use adapted sweeping numerical
techniques to study the dynamical mechanisms of EAD genera-
tion and time course. Taking into account recent findings in low-
dimensional models and our results, we provide a conjecture of
one possible theoretical process for EAD development in a hystere-
sis phenomenon. Our results agree with previous experimental and
theoretical studies8,24 showing that the frequency at which the cell
is stimulated (inverse of PCL) has a major influence on EAD pres-
ence and rate of occurrence. Besides, we show the relevance of other
parameters when varied in certain intervals. We report bistability,
chaotic attractors, and various bifurcations. All our results corre-
spond to the complete 27D Sato model described in Ref. 7, that is,
without any reduction in the state variables or parameters of the
model.

The paper is organized as follows. In Sec. II, the 27D Sato model
is introduced. Section III focuses on uniparametric bifurcation anal-
ysis, both regarding EAD development (Sec. III A) and increasing
rate of EAD occurrence (Sec. III B). In Sec. IV, we describe the
global transformation process from the absence of EADs to all APs
presenting with EADs and we define the cardiac Devil’s staircase to
explain it. In Sec. V, we expand the study to multiparametric bifur-
cation analysis. Section VI presents the discussion of all the obtained
results as well as some theoretical conjectures. Section VII contains
the conclusions of the study.

II. 27D SATO CARDIAC MODEL

In 1952, Hodgkin and Huxley25 were the first to quantitatively
describe a cell as an electrical circuit. They modeled the neuron cell
membrane as a capacitor and the ion channels in it as variable con-
ductors. Using Kirchoff’s current law, the sum of the currents must
be zero, that is, Ic + Iion = 0, with Ic being the current through the
capacitor and Iion being the current through the conductors. The
charge (Q) of a capacitor is the product of its capacitance (a constant
Cm) and transmembrane potential (V). The current is the variation
of charge,

Ic =
dQ

dt
= Cm

dV

dt
.

Taking into account that atrial and ventricular myocytes receive
external stimulation from neighboring cells that transmit the
impulse originated in the sinoatrial node, a stimulus current (Istim) is
introduced in the equation

Cm

dV

dt
= −(Iion + Istim).

Most currently existing excitable cell models are based on this
Hodgkin–Huxley (HH) formalism. Models vary in complexity
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depending not only on the number of ionic currents considered but
also on the formulation of these currents through a number of state
variables and model parameters.

In 2004, Shannon et al. 26 used the Hodgkin–Huxley formalism
to develop a mathematical model describing major ionic currents
and Ca2+ handling in the rabbit ventricular myocyte based on exper-
imental evidence. Although the model was able to replicate a range
of physiological properties, it failed to reproduce experimental find-
ings for rapid heart rates, which is key for the study of cardiac
arrhythmias. In 2008, Mahajan et al. 27 updated the model based on
new available experimental data and introduced a Markovian for-
mulation for ICa so as to replicate experimentally observed alternans
in AP duration (APD) and Cai transient (intracellular calcium con-
centration) at rapid heart rates. Despite those improvements, the
model was still limited in reproducing EADs by increasing inward
currents or decreasing outward K+ currents. One year later, Sato
et al.6 modified the model (hereafter the Sato model) to gener-
ate EADs in a realistic way. Among others, the rate constant in
the Markovian model of ICa was modified to cause steeper activa-
tion and inactivation kinetics, the maximum conductance of the
L-type Ca2+ current was increased and the maximum conductance
of IKs was reduced (see Ref. 6, supporting information, for a detailed
description of changes). The Sato model used in this study is defined
through 27 state variables (27D) and 177 model parameters. Specif-
ically, we use the version of the Sato model given by Otte et al.7 (see
the complete description of the equations in the Appendix of that
article), with a few updates to correct for minor misprints.

Next, we briefly describe the 27D Sato model, for which the
total ionic current is the sum of nine ionic currents,

Iion = ICa + INa + IKs + IKr + IK1 + Itos + Itof + INaK + INaCa.

An additional stimulus current, Istim, is included, which is defined as
a pulse of −40 µA/cm2 in amplitude and 1 ms in duration delivered
to initiate the AP. Table I presents the nine currents together with
the state variables involved in their calculation. It should be noted
that calculation of, e.g., variable [Na+]i depends on INa, INaCa, and
INaK and calculation of cs and cp depends on all variables related to

Ca2+ handling.

Sodium (INa) and potassium currents (IKs, IKr, IK1, Itos, Itof) are
expressed as

Iξ = gξ · 5ξ · (V − Eξ ), (1)

where ξ can be Na, Ks, Kr, K1, tos, or tof, gξ is the maximum con-
ductance of the Iξ current, Eξ is the Nernst potential (dependent on
ion concentrations in the intracellular and extracellular spaces), and
5ξ represents a product of gating variables and other parameters.
There are 10 gating variables used in the computation of sodium
and potassium currents:

• h, j, m for INa;
• xKr for IKr;
• xs1 and xs2 for IKs;
• Xtof, Ytof for Itof; and
• Xtos, Ytos for Itos.

Each gating variable xξ of the sodium current is expressed as

d xξ

dt
= αξ (1 − xξ ) − βξ · xξ , (2)

where xξ can be h, j, or m, αξ is the opening rate constant of gate xξ ,
and βξ is the closing rate constant of gate xξ , both of them being non-
smooth (in fact, non-continuous) functions of V. As an example, for
the fast Na inactivation gating variable h,

αh =

{
0.135 e

V+80
−6.8 , V < −40 mV,

0, V ≥ −40 mV,

βh =





3.56 e0.079 V
+ 31 104 e0.35 V, V < −40 mV,

1

0.13

(
1+e

V+10.66
−11.1

) , V ≥ −40 mV.

An alternative form for (2) is14

dxξ

dt
=

xξ ,∞ − xξ

τxξ

, (3)

where xξ ,∞ is the steady-state value of xξ and τxξ
is the corresponding

time constant, both of them being functions of V. xξ ,∞ is usually a

TABLE I. Description of the nine ionic currents in the 27D Sato model.

Ionic current Definition Variables

ICa The L-type Ca2+ current V, cs, C1, C2, I1Ca, I2Ca, I1Ba, I2Ba, cp

INa The fast sodium current V, m, h, j, [Na+]i

IKs The slow component of the delayed rectifier K+ current V, xs1 xs2, [Na+]i, ci

IKr The rapid component of the delayed rectifier K+ current V, xkr

IK1 Inward rectifier K+ current V
Itos The slow component of the rapid outward K+ current V, Xtos, Ytos, Rs

Itof The fast component of the rapid outward K+ current V, Xtof, Ytof

INaK The Na+–K+ pump current, which transports two K+ ions
into the cell in exchange for three Na+ ions out of the cell V, [Na+]i

INaCa The Na+–Ca2+ exchanger current, which transports three Na+ ions
in and one Ca2+ ion out of the cell V, cs, [Na+]i
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sigmoid function, as, for example,

xKr,∞ =
1

1 + e−
V+50

7.5

.

The calcium current developed by Shannon et al.26 was com-
pleted by an L-type Ca current modeled using a seven-state Markov
model described in Ref. 28 and a Ca2+ cycling using the model of
Shiferaw et al.29

Other state variables of the model include the following:

• transmembrane potential (V),
• intracellular sodium concentration [Na+]i, which is used not only

in the expression of INa but also in the sodium–calcium exchanger
and sodium-potassium pump currents INaCa and INaK, and

• a new variable Rs used in the expression of Itos.

The remaining 14 variables are related to calcium handling and
ICa current as follows:

• cs, ci, and cj are the average concentrations of free Ca2+ in the
submembrane space, cytosol, and sarcoplasmic reticulum (SR),
respectively;

• c′

j is the average free Ca2+ concentration available for release in the

junctional SR (from which Ca is transported out of the SR into the
cytosol);

• cp is the average Ca2+ concentration in active dyadic clefts;
• Jrel is the total release flux out of the SR via ryanodine receptor

channels;
• C1, C2, I1Ca, I2Ca, I1Ba, and I2Ba are L-type Ca2+ channel states; and
• [CaT]i and [CaT]s are concentrations of Troponin C binding sites.

Regarding model parameters, 30 are related to Na+, 61 are
related to K+, 60 are related to Ca2+ distributed in five groups [SR
release (8), cytosolic buffering (13), uptake and SR leak (4), ICa cur-
rent (14), and other constants (21)], 15 are related to exchanger
and pump currents, and finally, 11 are physical constants and ionic
concentrations.

From the above, it can be observed that the 27D Sato model is
a highly detailed model with non-smooth functions, non-linearities,
high dimension, and a large number of parameters. Here, the sys-
tem of 27 ordinary differential equations was solved in C++ using an
embedded Runge–Kutta formula [Dormand-Prince RK5(4)] with
variable stepsize. The error tolerance was set to 10−8 with a mini-
mum time step of 0.002 ms. The complete set of initial conditions
for most of the simulations is presented in Table II.

III. TRANSITIONS TO EADs

Figure 1 shows several time series of transmembrane poten-
tial V when pacing the cardiomyocyte at different PCLs. At low PCL
(1100 ms), no EAD is observed. For increasing PCLs, a larger num-
ber of APs with EADs appear and it is possible to locate orbits where
there is an AP without an EAD and other AP with an EAD. At high
PCL (1400 ms), all APs show an EAD. In this figure, KmNao and Kj

have the default values in the Sato model (87.5 mM and 50 µM,
respectively). The shaded region in Fig. 1 indicates the periodic
behavior for each configuration.

TABLE II. State variables of the model and their initial conditions, as in Ref. 7.

Ion Variable Initial value

cs 0.137 483 µM
ci 0.130 489 µM
cj 127.498 µM/1 cytosol
c′

j 125.711 µM/1 cytosol
cp 0.597 462 µM
Jrel 0.004 609 1 µM/ms

Ca2+ C1 1.365 21 × 10−6

C2 0.991 324
I1Ca 3.328 17 × 10−7

I2Ca 1.430 69 × 10−5

I1Ba 5.283 78 × 10−7

I2Ba 0.008 659 14
[CaT]i 12.7657 µM/1 cytosol
[CaT]s 13.2176 µM/1 cytosol

[Na+]i 10.0799 mM
Na+ h 0.991 187

j 0.994 21
m 0.001 033 12

xKr 0.006 776 89
xs1 0.011 933 9
xs2 0.066 408 3

K+ Xto,f 0.003 585 45
Yto,f 0.995 458
Xto,s 0.003 585 75
Yto,s 0.297 391
Rs 0.417 681
V −87.4094 m V

In the following, the Farey sequence notation Ls, taken from the
mixed-mode oscillations (MMOs) literature,30 is adopted to charac-
terize the periodic orbits with large –L– and short –s– oscillations. 10

means an AP without EAD and 11 an AP with an EAD. All our peri-
odic orbits have sequences of these two kinds of APs. As an example,
the sequences corresponding to the periodic orbits of Fig. 1 are 10,

1011, 10(11)
2
, 10(11)

3
, and 11, respectively.

To study the evolution between the different sequences shown
in Fig. 1, we calculated a bifurcation diagram for the range of investi-
gated PCLs. To build bifurcation diagrams, we departed from a PCL
value (all other model parameters have default values as in Ref. 7)
and the initial conditions shown in Table II. We integrated an initial
transient time (a given number of APs), following which we contin-
ued the integration to find a periodic orbit. Throughout this study,
to check if an orbit was periodic, each time a main peak was detected,
we evaluated whether the difference between this peak and any of
the previously detected ones was lower than 10−5 mV in the trans-
membrane potential, V, and 10−5 mM in the intracellular [Na+]i

concentration. If detected, integration was performed until the final
part of the AP (since the periodicity algorithm used the peaks for
evaluation) and the integration was stopped. If a periodic orbit could
not be detected, the integration stopped when reaching a maxi-
mum number of APs. To subsequently reproduce the orbits, the
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FIG. 1. Membrane voltage V for different PCL values. (a) At low PCL (1100ms), no EAD is observed. For increasing PCLs, a larger number of APs with EADs appear:
(b) one every two APs with EAD (PCL = 1200ms), (c) two every three APs with EAD (PCL = 1300ms), (d) three every four APs with EAD (PCL = 1325ms), and so on.
(e) At high PCL (1400ms), all APs present an EAD. Shaded regions show the periodic behavior.

PCL value, the number of APs, the number of peaks (both AP peaks
and EAD peaks), the values of state variables at those peaks, and the
final values taken by the 27 state variables were recorded. Next, the
following PCL value was analyzed, taking as initial conditions
the values of the state variables at the end of the last integration and
the procedure was repeated. The initial transient time was longer
than the transient time applied to subsequent PCLs. The same pro-
cedure could be applied using other parameters rather than PCL.
Figure 2 shows the results for PCL ∈ [1100, 1400] ms, applying a
transient time of 200 APs.

Blue points in Fig. 2 represent the value of V for the AP peaks
(≈40 mV) at the top and the EAD peaks (≈8 mV) at the bottom. In
contrast to other studies7,17 that used the APD to build the bifur-
cation diagram, we represent the transmembrane potential at the
peaks (either AP or EAD peak) to have more information about
the AP behavior. In the bifurcation diagram of Fig. 2, we marked
three colored areas. The white area on the left corresponds to APs
without EAD, with sequence 10, for which no EAD peaks appear

in the bottom part of the figure. The clear blue area corresponds to
alternations of APs with EADs and APs without EADs. The clear
green area represents PCLs for which all APs show an EAD, that is,
sequence 11.

Brown points at the top of Fig. 2 correspond to the PCL
values of the time series shown in Fig. 1: PCL = 1100 ms (AP with-
out EAD), PCL = 1200, 1300, and 1325 ms (APs with and without
EADs), and PCL = 1400 ms (all APs with an EAD). To better appre-
ciate the structure of the top and bottom parts of the diagram
corresponding to AP and EAD peaks, respectively, Fig. 3 presents a
magnification of the bifurcation diagram for both regions [AP peaks
in panel (a) and EAD peaks in panel (b)]. Additionally, the bifurca-
tion diagram is presented in two different continuation ways. Blue
points correspond to increasing PCL starting from PCL = 1100 ms,
while red points correspond to decreasing PCL starting from
PCL = 1400 ms. Those regions where both colors are visible repre-
sent coexistence of attractors, that is, starting from different initial
conditions, the system can experience different behaviors for the
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FIG. 2. Bifurcation diagram for varying PCL. The blue points at the top part
of the bifurcation diagram correspond to AP peaks (≈41mV) and those at the
bottom part to EAD peaks (≈8mV). The white area represents APs without
EADs. The brown point at the top of the panel in the white area corresponds
to PCL = 1100ms, for which the temporal sequence is plotted in the first panel
of Fig. 1. The clear blue area represents alternating sequences of APs with and
without EADs. The three brown points correspond to PCL = 1200, 1300, and
1325ms, respectively, plotted in Fig. 1. The clear green area corresponds to
PCL values, for which all APs show an EAD. The brown point corresponds to
PCL = 1400ms, and it is plotted in the last panel of Fig. 1.

same parameter values. Note that this bistability is relevant in biol-
ogy, as both attractors may have completely different behaviors and
it may be of interest to avoid some of them.

Panels 3(a) and 3(b) present similar structures. Limited by tran-
sition regions where the number of EADs augments, the diagram is
divided into several intervals corresponding to basic periodic orbits
illustrated by the first four (from the left) top brown points. In these
intervals, it is possible to observe the lines associated with each AP in
panel (a) and with each EAD (one less) in panel (b). All these orbits
have a sequence of the type 10(11)

n
, starting with n = 0 (that is, the

sequence 10) in the left area (around PCL = 1100 ms) and increasing
the value of n until reaching the last area (around PCL = 1400 ms)
with sequence 11. In all of them, the upper branches correspond to
the AP without EAD, while all the others are APs with an EAD.
It can be noted that there is one less branch in panel (b) than in
panel (a) for all analyzed PCL areas except for the last one, where
all APs have an EAD. From panel (b), it can be seen that the more
APs with EADs, the higher the amplitude of those EADs. This can
also be appreciated in the time series of Fig. 1. Also from this figure,
it is possible to observe that there are transition regions with coex-
istence of attractors and chaotic behavior. The first two transition
zones, marked Z1 and Z2 in panel (a), will be studied in more detail
in Subsections III A and III B. In panel (c), the first three Lyapunov
exponents, calculated with the algorithm proposed in Ref. 31, are
shown, which confirm the existence of areas with stable behavior
and others with chaotic behavior, in line with the previously pub-
lished results.7 For increasing PCL, the size of the different sections
becomes smaller, making it more difficult to distinguish one from
the other until reaching the limit of the 11 sequence with all APs
having an EAD.

FIG. 3. Panel (a) shows the main AP peaks (upper branches of Fig. 2) and panel
(b) shows the EAD peaks (lower branches of Fig. 2). Blue points are obtained
for increasing PCL values (from left to right) and red points for decreasing PCL
values (from right to left). In (a), zone Z1 corresponds to the change from absence
to presence of EADs (transition from 10 to 1011), while zone Z2 corresponds to
the addition of another AP with EAD to the periodic orbit [transition from 1011 to

10(11)
2
]. Panel (c) shows the first three Lyapunov exponents along thePCL range.

A. The emergence of EADs: From non-EAD to

alternans

This subsection focuses on the analysis of the first transition
zone in Fig. 3, marked as Z1, where model dynamics changes from
an orbit with an AP without EAD, with sequence 10, to another orbit
with two APs, one without EAD and another one with an EAD,
sequence 1011, that is, presenting AP alternans.32–34
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FIG. 4. (a) Time series obtained for PCL = 1165ms with different initial conditions showing the two coexisting stable APs. For the left orbit (in blue), there are no EADs,
while for the right orbit (in red) there is an EAD every two APs. (b) Magnification of the first transition region Z1 of Fig. 3(a). Blue points and orbits are obtained for increasing
PCL values (from left to right) and red points for decreasing PCL values (from right to left). (c) Representation of V vs [Na+]i for the three PCL values selected in panel (b).
Important differences can be observed as coexisting periodic orbits and chaotic or torus attractors.
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FIG. 5. Representations of Cs vs V vs [Na+]i for the three PCL values [(a1) and (a2) PCL = 1162ms, (b1) and (b2) PCL = 1165ms, and (c1) and (c2) PCL = 1168ms]
selected in Fig. 4 (green points). Starting from different initial conditions and after a transient time (in green), trajectories will fall into the different attractors (in red and blue)
shown in Fig. 4. In (c1), the basin of attraction is very small; thus, initial conditions very close to the torus are required so that the trajectory ends up falling into it.
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Figure 4, panel (b), presents a magnification of zone Z1 from
Fig. 3(a) where the transition from non-EAD to EAD is shown for
the same two initial condition strategies as in Fig. 3. On the left
side of the figure, there is a periodic attractor (in blue) formed by
an AP without EAD. In contrast, on the right side, the periodic
attractor (in red) comprises two APs, one with an EAD and the
other one without an EAD (1011 orbit). In the intermediate region,
the coexistence of different attractors is detected. The top panels in
(a) show two temporal series for PCL = 1165 ms obtained with dif-
ferent initial conditions. The left orbit (blue) does not have any EAD;
however, the right orbit (red) has one EAD every two APs. They rep-
resent the standard periodic orbits (out of the transition region) in
this PCL interval. A 2D projection presenting V vs [Na+]i is shown
in the central graph of panel (c), where two coexisting stable periodic
orbits can be seen. If the orbit without EADs (in blue) is analyzed for
higher PCL values (to the right), the periodic orbit can be observed
to undergo a bifurcation and appears to turn into a torus. The right
plot of panel (c) shows this attractor (for PCL = 1168 ms), with still
no EADs, coexisting with the periodic orbit of type 1011 (in red).
On the other hand, if lower values of PCL are analyzed, the attrac-
tor without EADs is still periodic, while the attractor with EADs
is no longer periodic but chaotic. The left plot of panel (c) shows
this chaotic attractor for PCL = 1162 ms coexisting with the peri-
odic orbit 10. The main sequence of this chaotic attractor is still
1011, but from time to time (without a defined pattern) several APs
without EADs appear. Note that the coexistence of both families of
attractors (without EAD and with EAD), together with the fact that
the periodic attractor without EADs (blue line) becomes a torus-
type attractor (for which alternans arise), make us conjecture that
both stable branches are connected by an unstable branch along
which one type of orbit passes into the other one through some
bifurcations, as commented in the Discussion section.

The region of coexistence shown in Fig. 4 will probably be
larger than the one detected, as the computed bifurcation diagrams
depend on the size of the basins of attraction. In fact, in Fig. 3, there
is a smaller coexistence region than in Fig. 4 because the basins of
attraction become smaller at the ends of the coexistence interval. In
Fig. 4, it has been possible to continue both attractors for a larger
interval because of a smaller step size when varying PCL was taken
so that the attractors for two consecutive PCL values are very similar.
Therefore, starting from initial conditions associated with the previ-
ous attractor, the orbit ends up falling into the same type of attractor
for the new PCL value. This can also be observed in Fig. 5, where
trajectories computed from different initial conditions are shown.
The transient orbits are not removed from the plots but are shown
in green. For the three PCL values selected in Fig. 4, the initial con-
ditions given in Table II were considered. For PCL = 1162 ms and
PCL = 1165 ms, the trajectory ends at the blue periodic attractor 10

(a1) and (b1), respectively. However, for PCL = 1168 ms, the trajec-
tory ends at the red periodic orbit 1011 (c2). Thus, some time after
starting with the same initial conditions of Table II, the trajectory
can happen to range from being in the basin of attraction of the
attractor 10 to being in the basin of the attractor 1011, depending
on the PCL value.

For other initial conditions, trajectories can end up falling into
other attractors. For the chaotic attractor and periodic orbit in red
with PCL = 1162 ms and PCL = 1165 ms [panels (a2) and (b2)],

FIG. 6. (a) Bifurcation diagram for transition zone Z2 from Fig. 3(a), going from
a periodic orbit with two APs (one with EAD), sequence 1011, to a periodic orbit

with three APs (two of them with EADs), sequence 10(11)
2
. In the middle of the

PCL interval, there are regions of coexistence of chaotic and regular behaviors
originated by various bifurcations. (b) The attractors for 14 PCL values exhibiting
different behaviors (100 APs are plotted for each orbit). In coexistence cases, the
two attractors are shown in blue and red.
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FIG. 7. Time series for some selected attractors of Fig. 6(b), ranging from PCL = 1276ms, with a periodic orbit 1011, to PCL = 1292ms, with a periodic orbit 10(11)
2
,

through different intermediate states illustrating the transition.

respectively, initial conditions can be defined by taking the values
of the state variables at a point of the attractor 1011 for a differ-
ent PCL value. However, for the torus orbit (in blue) that appears
for PCL = 1168 ms, starting from initial conditions very close the
torus is required to end up falling into it, as otherwise the periodic
orbit 1011 will end up being reached, which means that the basin of
attraction for the torus orbit (c1) is very small.

As a final observation from Fig. 5, it is possible to monitor the
trajectory followed by the system, starting from initial conditions
outside an attractor and converging into it. We have selected as PCL
values the green points highlighted in Fig. 4. In all cases, the trajec-
tories (transient or not) can be seen to exhibit similar APs forming
tubular structures, sometimes converging later to a periodic orbit
or to a smaller tubular structure. The main difference is that some
tubular structures have EADs, so there are two underlying tubular
manifolds.

B. Increasing the presence of EADs

This subsection analyzes the second transition zone, marked
as Z2 in Fig. 3(a), which is actually composed of several consecu-
tive transitions, as illustrated in Figs. 6 and 7. Figure 6(a) shows the
bifurcation diagram of zone Z2, and Fig. 6(b) presents 2D projec-
tions of the attractors for various PCL values corresponding to the
color dots in the bottom bar of plot (a). The time series associated
with some of these attractors are shown in Fig. 7, with shaded areas
indicating the basic pattern of these series.

Starting with the lowest PCL value in Fig. 6, PCL = 1276 ms,
the only attractor is still the periodic orbit 1011 that already appeared
in the right part of zone Z1, which has been the only attractor in

all the intermediate region of Fig. 3. For slightly higher PCL values,
approximately (1276.5 and 1278.7 ms), a chaotic attractor appears in
the red orbit, initially coexisting with the previous periodic orbit in
blue. For this interval, some short windows of stability are observed
and there are likely many more not visible. Following the chaotic

path, after some sequences of the type (1011)
n
, a sequence 10(11)

2

appears, as can be appreciated in the second panel of Fig. 7 (PCL
= 1276.6 ms), but without any periodicity. For higher PCL values,
a stability window can be observed, starting at PCL ' 1278.7 ms,

with a periodic orbit (1011)
3
10(11)

2
that subsequently experiences

a period-doubling cascade to chaos, where sequences (1011)
3
10(11)

2

are followed by sequences (1011)
2
10(11)

2
without a periodicity pat-

tern. For even higher PCL values, the chaotic attractor becomes
a saddle invariant set and no more an attractor, PCL ' 1280 ms,
and a periodic orbit with sequence (1011)

2
10(11)

2
is the only attrac-

tor detected. The process continues in a similar way as before, but

now the chaotic attractor combines sequences (1011)
2
10(11)

2
with

sequences (1011)10(11)
2
. In this case, even before reaching the region

with chaotic behavior (PCL ' 1282 ms), the appearance of a peri-

odic attractor (1011)10(11)
2

can be observed to coexist with the
previous attractor throughout the process above described. From
PCL ' 1283 ms, the chaotic attractor becomes again a saddle invari-

ant and the periodic orbit (1011)10(11)
2

is the only attractor until

PCL ' 1287 ms, where a new stable periodic orbit, 10(11)
2
, appears

and coexists with it. Next, the periodic orbit (1011)10(11)
2

begins an
incomplete period-doubling cascade (PCL ' 1291.2 ms). What has
probably happened is that the attractor has undergone a basin meta-
morphosis bifurcation35 whereby its basin of attraction has greatly
reduced its size and shape abruptly, so it is not possible to track it.
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In any case, at that time or slightly later, the periodic orbit 10(11)
2

becomes the only attractor along an interval around the value of
PCL = 1300 ms [see Figs. 1(c) and 3(a)].

Note that, as it was the case in zone Z1, the coexistence intervals
are probably longer, but the basins of attraction are too small to be
identified. Exactly locating these intervals is not the objective of this
article, which aims at providing a global view of the process of EAD
generation. Also, the complexity of the dynamics that coexist makes
it difficult to rigorously ensure that the detected orbits are periodic
and, if they are, their exact multiplicity. For this reason, we have pre-
ferred to give the basic sequence observed both in the bifurcation
diagram and with the time series.

The following transition is from the periodic orbit with three

APs, 10(11)
2
, to the periodic orbit with four APs, 10(11)

3
(see Fig. 1)

at around PCL = 1320 ms. Transitions continue until the final state
with EADs in all APs (11) is reached.

IV. LIMIT TO THE CONTINUOUS EAD: THEORETICAL

SCHEME OF THE TRANSITION PROCESS

In Sec. III, the evolution of the system dynamics when PCL
varies from 1100 to 1400 ms was described, going from a peri-
odic orbit without EADs to another periodic orbit where all APs
have an EAD. In between, there are regions with periodic orbits in
which some APs have EADs and others do not, being these regions
separated by transition zones where chaotic behavior and various
bifurcations appear. This section focuses on the periodic orbits to
study the global transformation process while providing its symbolic
description for better understanding (note that the use of symbolic
analysis provides powerful techniques in various fields, such as neu-
ron models36). The transitions studied in zones Z1 and Z2 are shown
to be two steps of the same “staircase” process and the transition
described in Z2 is shown to obey a generic pattern that “builds” the
intermediate steps.

To describe this symbolic evolution, we use the symbolic
sequences of the periodic orbits and the ratio between the number of
peaks (both AP and EAD peaks) and the number of APs of the same
orbits. Tables III and IV show examples of both notations. When
a periodic orbit is found, the total number of peaks (i.e., AP and
EAD peaks) in the periodic orbit and the number of APs (i.e., main
peaks) are counted. Figure 8(a) shows (in magenta and gray) the
ratio between both values for all the periodic orbits detected in the
interval PCL ∈ [1100, 1400] ms. Although this ratio does not detect
if an orbit undergoes a period-doubling bifurcation, here we just
focus on the basic sequences, which can be repeated several times
in the actual periodic orbits. From Fig. 8(a), an ascending staircase
toward the continuous EAD case (11 orbit) can be appreciated. This
is called a Devil’s staircase-like structure37 in the literature, which
for this case we term as cardiac Devil’s staircase. Similar figures

can be found in other studies,8,38,39 but here we identify the Devil’s
staircase and complement it with symbolic sequences to detect the
patterns that generate it. From these staircase and previous bifur-
cation diagrams, it is clear that an increase in PCL implies a higher
number of APs with EADs, as shown in previous experimental and
computational investigations.8,40

From Fig. 8(a), some steps can be seen to be larger than those
around them. We term these steps as primary steps (plotted in
magenta) and the rest (plotted in gray) as secondary steps. Panel (a)
contains the complete staircase from 10 to 11, while panel (b) offers
a magnification of the upper steps. For each basic periodic orbit,
the time series is plotted in blue and the corresponding sequence is
shown in a box. As can be seen from the figure, all the primary steps
correspond to sequences that fit into the generic pattern 10(11)

n
,

being the first step the case n = 0 and being the last one the limit
case 11. Moreover, if a primary step has the sequence 10(11)

n
, the

next primary step corresponds to the sequence 10(11)
n+1

, that is,
the next primary step has a periodic orbit with one AP more than
the previous one. In all these orbits, only one AP does not have
EAD while the rest do. These steps well match the zones corre-
sponding to the basic periodic orbits identified in the bifurcation
diagram of Fig. 3 (some of them marked by dashed brown verti-
cal lines associated with brown dots), where the AP without EAD
is represented in the bifurcation diagram by the highest section of
that orbit, as previously described. The information corresponding
to the primary steps converging toward the limit case is summa-
rized in Table III, where the symbolic sequence, the number of
peaks/number of APs, and the ratio between these two numbers are
shown.

Between every two primary steps, secondary steps are detected,
except for between the first and second steps, which corresponds to
the transition zone Z1 represented in Figs. 3 and 4. Here, no periodic
orbit with intermediate state between the first and the second pri-
mary steps is detected. This does not mean such orbits do not exist,
but stability windows can be very small and difficult to find. Panel
(c) shows an enlargement of the second jump between primary steps,
which corresponds to the transition zone Z2. Going from top to bot-

tom, secondary steps with symbolic sequence (1011)
n
10(11)

2
can be

observed, with n = 1 for the first secondary step and n increasing
as going down in the staircase. Note that this sequence is formed
by the combination of n repetitions of 1011, corresponding to the

lower primary step, and a repetition of 10(11)
2

, corresponding to
the upper primary step. As mentioned in the previous section, the
first four secondary steps were located, but there are certainly more
stability windows, smaller in size, in which lower steps appear. We
conjecture that there will be infinite windows whose limit (with
n → ∞) will be the stability window with periodic orbit of sequence
1011. This information is summarized in Table IV. In the follow-
ing secondary steps, the same pattern is observed with sequences

TABLE III. Sequences of periodic orbits forming the primary steps with increasing number of APs with EADs shown in Fig. 8.

Name 10 10 (11) 10(11)2 10(11)3 10(11)4 10(11)5 10(11)6
·· · 10(11)n

·· · 11

Peaks/APs 1/1 3/2 5/3 7/4 9/5 11/6 13/7 ·· · (2n+1)/(n+1) ·· · 2/1
Ratio 1 1.5 1.67 1.75 1.8 1.83 1.86 ·· · 2-1/(n+1) ·· · 2

Chaos 31, 073137 (2021); doi: 10.1063/5.0055965 31, 073137-11

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE IV. Sequences found in the transitions from a two-AP periodic orbit to a three-AP periodic orbit, as shown in Figs. 6 and 8.

Name 10 (11) ·· · (10 11)4 10 (11)2 (10 11)3 10 (11)2 (10 11)2 10 (11)2 (10 11) 10 (11)2 10(11)2

Peaks/APs 3/2 ·· · 17/11 14/9 11/7 8/5 5/3

Ratio 1.5 ·· · 1.5̂4 1.̂5 1.5̂71 428 1.6 1.̂6

FIG. 8. Cardiac Devil’s staircase. Panel (a) shows the ratio between the number of peaks (i.e., AP and EAD peaks) vs the number of APs for detected periodic orbits when

varying PCL, from which an ascending staircase toward the continuous EAD case can be seen. Primary steps (10(11)
n
) are plotted in magenta and secondary steps in gray.

The time series of the corresponding periodic orbits for several primary steps are plotted in blue, with the corresponding sequence indicated in a box. Panel (b) magnifies
the final part of the staircase. Note that, even if there is a chaotic region, some stability windows with periodicity can be found inside. Panel (c) magnifies the secondary step

where a two-AP periodic orbit (1011) evolves to a three-AP periodic orbit (10(11)
2
).
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of the type
(
10(11)m

)n
(
10(11)

m+1
)
, where n = 1 corresponds to the

highest secondary step and, as n increases, the intermediate sec-
ondary steps go down in the staircase.

From Fig. 8(a), it can be noted that the further we climb on the
primary stair, the smaller the secondary (and primary) steps. And, in
the jumps between primary steps, the further we go down within that
jump, the smaller the secondary steps, which makes it increasingly
difficult to achieve a high level of detail. In any case, the combina-
tion of these two notations (using parameters n and m) provides us
with the two patterns of evolution of the periodic orbits in both the
primary and secondary stairs that compose the complete evolution
from the orbit 10 formed by a single AP not having EAD to the 11

orbit formed by a single AP that always has an EAD. In Sec. V, this
evolution will be shown not to be a singularity, but to be reproduced
in a wide region of the parameter space.

V. MULTIPARAMETRIC BIFURCATION ANALYSIS

Of the 177 parameters of the 27D Sato model, some of them
have been reported to have the largest influence on model dynam-
ics based on a sensitivity analysis.7 To carry out a preliminary study
on the influence of some parameters in the generation of EADs, we
selected PCL as the main parameter and two additional parame-
ters, KmNao and Kj, identified from the sensitivity study performed
in Ref. 7. KmNao is the extracellular sodium dissociation constant
used to calculate the INaCa current and, in turn, update sodium and
calcium concentrations. Kj is the threshold for leak onset used to

calculate the SR leak flux Jleak, which serves to update free Ca2+

in the cytosol and in the SR. Note that this selection of param-
eters is done to show that the border of the region of EADs is
present in different parametric regions, while a more biologically
oriented and comprehensive analysis is part of our future research
work.

We first performed the analysis of the biparametric region with
PCL ∈ [1000, 1500] ms and KmNao ∈ [40, 270] mM. As the default
value of KmNao is 87.5 mM, the variation goes from −50% to 300%
of that value. Since the bifurcation diagram cannot be plotted in
the biparametric representation, the ratio between the number of
AP and EAD peaks per orbit and the number of APs is represented
to identify regions with different amounts of APs with and without
EADs. Figure 9(a) shows the biparametric diagram representing the
mentioned ratio in the color scale shown on the left. The horizontal
green line, in the lower part of diagram, corresponds to the standard
value KmNao = 87.5 mM. As can be observed from the diagram, the
uniparametric evolution described in previous sections, obtained by
varying PCL while keeping KmNao = 87.5 mM (default value), is very
similar to those obtained for any other fixed value of KmNao as long
as such a value is lower than ≈ 170 mM (almost double the stan-
dard value). The only observable difference is that bifurcations occur
at slightly lower PCL values when KmNao is higher than the default
value.

Figure 9(d) shows the default bifurcation diagram [Fig. 3(a)]
with identification of the transitions, which are associated with the
boundaries between regions marked in colors in the biparametric
diagram. In the upper part of the diagram, corresponding to values
of KmNao higher than 170 mM, the transitions can be seen to differ

from those analyzed for the lower part. The horizontal green line for
KmNao = 200 mM is associated with the bifurcation diagram shown
in panel (b). As can be seen, the global structure in this line is sim-
ilar: low PCL values cause the system to have a periodic orbit with
a single AP that does not have an EAD; for intermediate PCL val-
ues, around 1200 ms, there is a periodic orbit of the type 1011; and,
starting at 1400 ms the periodic orbit has a single AP with an EAD.
Note that there is also a very small coexistence region on the left part
of plot (b) in the transition from non-EAD to EAD, similarly to the
line KmNao = 87.5 mM, but in this case it seems it has almost disap-
peared. The main differences for distinct KmNao values are seen in
the transitions between the three main states, whose analysis is out
of the scope of this study. Panel (c) shows the bifurcation diagram
corresponding to the magenta vertical line in panel (a). In this case,
the value of PCL = 1282 ms remains fixed and KmNao is the bifurca-
tion parameter (increasing values in blue and decreasing values in
red). Panel (c1) shows an enlargement of the area in which EADs
begin to appear. In this case, coexistence is no longer detected in the
transition. This fact means that the bistability phenomenon appears
only when the non-EAD to EAD transition occurs for lower values
of KmNao. Panel (c2) shows a magnification of the lower area with

the existing transitions between the periodic orbits 1011 and 10(11)
2
.

High similarity between this bifurcation diagram and the one shown
in Fig. 6(a) can be observed.

By moving from left to right, or vice versa, and from bottom
to top, or viceversa, in the upper part of Fig. 9(a), the four panels of
Fig. 10 were obtained. The bottom right panel corresponds to the
upper part of Fig. 9. Globally, no major differences are observed
among the four panels. However, by looking to the interior of the
discontinuous rectangle on the left side of each panel, it can be seen
that, for the same parameter values, different dynamics are detected
corresponding to the previously described bistability when passing
from the 10 orbit to the 1011 orbit, in this case identifying an approx-
imately triangular region of coexistence. Furthermore, by looking
at the interior of the other discontinuous rectangle (further to the
right), it can be seen how the (almost vertical) stripes from yellow
to orange show different thicknesses in the different panels. These
four pictures indicate that the coexistence detected in Fig. 6 remains
(with slight variations) up to KmNao values close to 180 mM. Other
smaller coexistence regions may also exist but they are difficult to
detect at this scale.

Next, the three-parameter phase space defined by considering
PCL, KmNao, and Kj as free parameters was analyzed. In Fig. 11, a
3D composition image is presented, in which different biparametric
diagrams like the one shown in Fig. 9(a) but for different Kj values
(10, 50, 150, and 250 µM) are shown. The normal beat, that is, the
10 periodic orbit (ratio = 1), is not colored and, therefore, only the
region with EADs (the EAD parametric volume) is presented. Since
the default value of Kj used in previous analysis is 50 µM, the second
horizontal diagram starting from the bottom coincides with part of
the results shown in Fig. 9(a). As can be observed from Fig. 11, the
changes produced by varying Kj are minimal. There is only a slight
displacement of the area of EAD appearance when Kj is increased.
This can be better visualized by looking at the magenta line, which
passes through the point with the lowest PCL value on each horizon-
tal plane and it can be seen to have some inclination. Nevertheless,
it should be taken into account that Kj has a large variation, as the
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FIG. 9. (a) Biparametric bifurcation diagram considering PCL and KmNao as free parameters. Color code represents the ratio between the number of (AP and EAD) peaks and
the number of APs. The horizontal green line in the lower part corresponds to the default value of KmNao = 87.5 mM, for which the uniparametric bifurcation diagram is shown
in panel (d) (see Figs. 2–6 for more detailed diagrams). In the upper part of panel (a), the horizontal green line corresponds to another value of KmNao = 200mM, far from
the standard value, with the corresponding uniparametric bifurcation diagram shown in panel (b). The vertical magenta line corresponds to the fixed value PCL = 1282ms,
for which the corresponding uniparametric bifurcation diagram is shown in panel (c) divided into the upper and lower AP peaks. In this case, the free parameter is KmNao

(increasing values in blue and decreasing values in red). In panel (c1), magnification of the transition region from no EADs to EADs is shown, with no coexistence observed.

In (c2), the transition region from 1011 to 10(11)
2
periodic orbits is enlarged.
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FIG. 10. Biparametric bifurcation diagrams with different continuation strategies (directions of travel along the horizontal or vertical lines that form the mesh). Each strategy
determines the initial conditions considered for each diagram. In the “up” and “down” plots, vertical lines are followed (fixing PCL value and varying KmNao); in the “left” and
“right” plots, horizontal lines are followed (fixing KmNao value and varying PCL). Distinctive regions are marked with dashed rectangles. The “right” plot corresponds to the
upper part of Fig. 9(a).

upper horizontal diagram corresponds to Kj = 250 µM, that is, five
times its default value.

The vertical biparametric diagram in Fig. 11 can also be seen in
panel (b). The colored stripes, which indicate the different ratios of

APs with EADs in the attractor, are almost vertical. This illustrates
the low global influence that Kj has on the general dynamics of the
system, but, as some inclination is present, there is always a cross
point that, for specific intervals of variation, could be relevant. In
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FIG. 11. (a) Three-parameter (PCL, KmNao, Kj) diagram
using the same color code as in Figs. 9(a) and 10, with the
exception of dark blue (10 periodic orbit), which has been
removed and, thus, only the region with EADs (the EAD para-
metric volume) is presented. Magenta line marks the beginning
of the EAD appearance region. (b) Biparametric (PCL, Kj) dia-
gram for the default value KmNao = 87.5 mM. (c) Biparametric
(KmNao, Kj) diagram by setting PCL = 1282ms.
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panel (c), PCL is set to 1282 ms while Kj and KmNao are left free. The
selected plane is vertical and perpendicular to all the planes in panel
(a), but, due to the particular choice of the PCL value, it also passes
through the border area between several consecutive transitions seen
in Fig. 6. This means that, in this case, changing the value of Kj in the
central area of the diagram may originate large changes in the sys-
tem dynamics. It should be noted that it is a direct consequence of
the particular selection of the PCL value close to a transition area.
For another PCL value like PCL = 1200 ms, panel (c) would have
been all green except for large values of KmNao. Similarly happens
with KmNao unless values above 170 mM are considered. Overall,
with the exception of PCL, which always has a high influence on
the system dynamics, the other two parameters here studied will
only have an important influence in cases near a transitional border.
Future work should aim at determining the influence of the different
model parameters on system dynamics to elucidate the phenomena
the model can reproduce.

VI. DISCUSSION

In this study, we analyze the dynamics of the 27D Sato model8

as given in Ref. 7. 2D and 3D parametric simulations are per-
formed and bifurcation diagrams and peak-counting techniques are
used to analyze EAD generation as a function of PCL and two
other model parameters. First, we show the presence of bistable

regimes, in agreement with findings from other experimental and
computational cardiac investigations13,41,42 showing the presence of
bistability and hysteresis phenomena. However, in the literature,
there is a lack of detailed multiparametric analysis. Here, we show
that one of the processes to change from APs with no EADs to APs
with EADs goes through an intermediate state presenting alternans,
i.e., an AP without an EAD followed by another AP with an EAD.
This means that the system goes from a 10 configuration of the peri-
odic orbits to a 1011 configuration and finally the process ends on
a periodic orbit with every AP having an EAD (11). In between, the
cardiomyocyte dynamics presents more and more APs with EADs
following a cardiac Devil’s staircase (Sec. IV).

Of the investigated model parameters, the dependence of sys-
tem dynamics on PCL is in line with previous studies, particularly
using the same Sato model.8 While it is already reported in the
literature that the higher PCL, the more EADs can be observed,
the transition from non-EADs to EADs in all APs is not fully
described and the number of APs with EADs that are added to
the periodic behavior is not quantified. Besides PCL, other model
parameters and variables used in the computation of intracellular
calcium and sodium concentrations are shown in the literature13,39

to additionally have a role in the generation of EADs. From our
results in Sec. V and, in particular, from Figs. 9 and 11, we can con-
clude that, although the influence of PCL is more evident, there are
intervals of variation in other parameters for which the same change

FIG. 12. Overlapping of the four plots of Fig. 10 to locate
the main bistability region. A magnification is shown in the bot-
tom panel with the approximate location of the fold bifurcation
curves that limit the bistability region and a conjectured cusp
codimension-two bifurcation point.
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from non-EADs to EADs is present. This confirms the need for a
multiparametric analysis.

A major question relates to the dynamics of the process.
Although analytical techniques cannot be used due to the high
dimension of the model, from our results of the uniparametric bifur-
cation diagram (see Fig. 3), different transitions are identified. On
the one hand, the transition from non-EADs to EADs and, on the
other hand, the transition from n APs with EADs to n + 1 APs with
EADs. In the first case, the transition could be produced by a torus
bifurcation of the orbit without EAD (Fig. 4), although other mech-
anisms giving rise to the formation of two or more loops in the
orbit (like a period-doubling bifurcation) would also be possible.33,34

The torus bifurcation is related to the process of generation of an
invariant two-dimensional torus from a periodic orbit (this pro-
cess is also called the Neimark-Sacker bifurcation43 in the Poincaré
map of a limit cycle in ODE). This mechanism has been observed
in other biological models.44 Furthermore, in the region of creation
of the EAD, there is bistability of an AP without EAD and alter-
nans of an AP without EAD and an AP with an EAD. To study
this process in a biparametric space, the four biparametric plots of

Fig. 10 can be superimposed to approximately locate part of the
bistability region. It should be noted that these four subplots cor-
respond to different initial conditions and are similar in most areas
except for the transition regions due to the bistability phenomena.
Their superposition is shown in Fig. 12. In the top panel, EAD
development from left to right (i.e., by increasing PCL) is shown,
with different blue colors due to the differences in the limit of the
non-EAD–EAD behavior of the four subplots. The bottom panel
shows a magnification of the top one, where the bistability region
is approximated by adding two red curves. These curves are con-
jectured as fold (saddle-node) bifurcations of limit cycles, giving
rise to the phenomenon of hysteresis, which is typical of dynamical
systems. Putting everything together (Figs. 4 and 12), we conjec-
ture that one of the possible mechanisms for EAD generation is by
means of the creation of a hysteresis loop, due to the existence of
two fold bifurcations, with two stable branches (one without and
another one with EADs) and an unstable orbit in between, as shown
in Fig. 13(a).

Still the question on how to connect Figs. 4 and 12 needs to be
addressed. From Fig. 12, the fold bifurcations seem to connect each

FIG. 13. Theoretical explanation of the mechanism that
results in EAD development. (a) Conjectured hysteresis loop
delimited by twofold bifurcations is shown using the data from
Fig. 4 and the conjectured results from Fig. 12. [(b1)–(b3)]
Conjectured process of EAD generation in some APs of the
alternans created on a torus bifurcation. A theoretical scheme
of one bidimensional section of the slow manifolds (attractive
Sa,+

ε in blue and repulsive Sr
ε in red), the maximal canards γi

(yellow dots), and the hypothetical location of the different APs
of the orbit O (blue squares) are shown. Following Ref. 17, the
maximal strong canard γ0 would organize the EADs.
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other at a value KmNao ≈ 207, which gives rise to a cusp bifurcation
(a codimension-two bifurcation point). For higher KmNao values,
fold bifurcations and hysteresis are no longer present, as shown at
the vertical slice (PCL = 1282 ms) of Figs. 9(c) and 9(c1) where no
bistability is shown in the upper part. Also, in Fig. 9(b), the bista-
bility region is very small due to the proximity (KmNao = 200) of the
cusp point.

Finally, we address how and where EADs are created. Although
the detailed process of EAD development is an open problem in
the literature, some new dynamical system explanations have been
recently introduced using low-dimensional models16–18,39,45,46 where
a new fast-slow decomposition of the models (two-slow one-fast
rather than two-fast one-slow) allows to identify the key role of
maximal canards on the creation of EADs (for more details on
canard generation and theory, see Refs. 16, 17, and 39). We observe
that in many models the canard phenomenon has made it possi-
ble to describe and explain the generation of additional peaks, as
in the neuron models.47,48 From these studies, the number of EADs
is related to the number of maximal canards the orbit crosses. As
shown in Ref. 17, the local twisting of the slow manifolds gives rise
to a finite number of intersections of the different sheets (attractive
Sa,+

ε and repulsive Sr
ε), which are called maximal canards.30 The first

intersection is in fact the maximal strong canard γ0 and is the limit
between orbits that exhibit or not EAD near the folded node. On
one side of γ0, the orbit does not have EADs while on the other
side it does. If there are more intersections (γ1, γ2,. . . ), more EADs
are allowed, but, for our parameter plane, only one EAD is detected
and, thus, only one of those intersections is assumed to be present.
Based on our simulations using the 27D Sato model and using the
low-dimensional results shown in Ref. 17, we can conjecture the
theoretical scheme of the creation of the EAD. First, a torus bifur-
cation occurs, which allows the creation of alternans and an orbit
with different APs. Moving on the bifurcation line, some of the APs
of the orbit cross the maximal strong canard γ0, then these APs
start to create an EAD and the orbit goes from the 10 configura-
tion (ratio 1) toward the 1011 configuration (ratio 1.5). This process
is shown in plots (b1), (b2), and (b3) of Fig. 13. Note that the pro-
posed theoretical scheme is a conjectured one, but it is based on all
our results and the recent theoretical insights on simpler models.
Its full description is an open problem and it is part of our current
work.

The ionic mechanisms underlying the transition from non-
EADs to EADs or from n APs with EADs to n + 1 APs with EADs
require further investigation. Multiple ionic currents and concen-
trations may be involved in the EADs observed here when pacing
the cardiomyocyte at low frequencies. Nevertheless, the ICa current
seems to play a major role in our simulations, as confirmed by
the fact that inhibiting this current, even to only modest extents,
precluded EAD formation. Other currents, including the inward
current through the sodium-calcium exchanger, were not as rele-
vant as ICa. Drugs commonly employed to block calcium channels
also reduce the calcium influx required for excitation–contraction
coupling. Thus, other interventions designed to target the specific
mechanisms underlying EAD generation while preserving contrac-
tion should be investigated in future studies. Such ICa-directed
interventions could range from modulation of the slope of voltage-
dependent channel activation and inactivation, the time constants

of channel gating or the magnitude of the late (or pedestal) ICa

current.49,50 A detailed analysis on the impact of such potential
ionic mechanisms in the processes investigated in this study will be
conducted as part of future research work.

VII. CONCLUSIONS

The parametric space of a 27D cardiac cell model proposed
by Sato et al.6 is analyzed. By combining different numerical tech-
niques, the one-parameter, two-parameter, and three-parameter
phase space are presented using PCL and two other model param-
eters related to calcium and sodium concentrations as bifurcation
parameters. Different behaviors such as bistability, chaotic attrac-
tors, and various bifurcations are identified. Using the ratio between
the number of voltage peaks and the number of APs, a cardiac Devil’s
staircase is presented that illustrates, in a discrete way, the symbolic
process of changing from absence of EADs to full presence of EADs
in all beats. Interestingly, our results show that there is a limit in the
parameter space between APs without EADs and APs with EADs,
with this limit being present in all studied parameters. In the transi-
tion area from AP without to AP with EAD, it is possible to observe
that, for the most biologically relevant parametric region, the change
is organized by a hysteresis loop that generates two stable orbits, with
and without EAD. This bistability has been previously observed in
the literature but, here, it is related to the existence of twofold bifur-
cations and a cusp bifurcation point that establishes the maximum
value of the parameter where bistability can be expected. In addition,
our simulations point out that previously there is alternans genera-
tion by a torus bifurcation. We conjecture that this splitting of the
orbit helps in the EAD creation process, as it allows some of the APs
to cross the region where EAD is promoted. We also link this pro-
cess to the recently reported phenomenon of maximal canards in the
fast-slow decomposition of low-dimensional cardiomyocyte models
and, as a conclusion, we propose a conjecture that gives a theoretical
scheme of the EAD generation process in the Sato cardiomyocyte
model.
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