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Abstract
This paper presents a fault detection system for photovoltaic standalone applications based on Gaussian Process Regression

(GPR). The installation is a communication repeater from the Confederación Hidrográfica del Ebro (CHE), public insti-

tution which manages the hydrographic system of Aragón, Spain. Therefore, fault-tolerance is a mandatory requirement,

complex to fulfill since it depends on the meteorology, the state of the batteries and the power demand. To solve it, we

propose an online voltage prediction solution where GPR is applied in a real and large dataset of two years to predict the

behavior of the installation up to 48 hour. The dataset captures electrical and thermal measures of the lead-acid batteries

which sustain the installation. In particular, the crucial aspect to avoid failures is to determine the voltage at the end of the

night, so different GPR methods are studied. Firstly, the photovoltaic standalone installation is described, along with the

dataset. Then, there is an overview of GPR, emphasizing in the key aspects to deal with real and large datasets. Besides,

three online recursive multistep GPR model alternatives are tailored, justifying the selection of the hyperparameters:

Regular GPR, Sparse GPR and Multiple Experts (ME) GPR. An exhaustive assessment is performed, validating the results

with those obtained by Long Short-Term Memory (LSTM) and Nonlinear Autoregressive Exogenous Model (NARX)

networks. A maximum error of 127 mV and 308 mV at the end of the night with Sparse and ME, respectively, corroborates

GPR as a promising tool.

Keywords Battery management system � Fault-tolerant system � Gaussian process regression � Photovoltaic standalone

installation � Sparse Gaussian process regression � Voltage prediction

1 Introduction

The progress in technological infrastructures and the

awareness about environmental resource consumption are

driving a revolution in how energy is supplied [1]. There is

a need of not only providing stable energy but also

accomplishing efficiency requirements and prediction

capabilities to anticipate issues. This is especially impor-

tant in critical services such as irrigation system [2],

telecommunication stations [3] and defense systems [4],

where the system is not fed by the electrical distribution

network but a Photo-Voltaic (PV) standalone installation.

The energy in these systems is not consumed at the same

rate at which is generated so the installation needs an

Energy Storage System (ESS) to provide a stable power

supply. This stability is subject to unpredictable meteoro-

logical phenomena, turning the efficient autonomy into a

challenge. The solution involves designing an intelligent

system capable of predicting future low power generation

scenarios, preserving the infrastructures typically coordi-

nated by low-cost embedded systems. In this sense, data-

driven techniques are must. Among others, GPR appears as

a promising tool [5, 6] because of the absence of overfitting
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and the measurement of the uncertainty of the prediction.

However, GPR requires a large computational effort, lim-

iting its use in real-time applications. To cope with this,

this paper analyzes the performance of different GPR

models using a real and large dataset, containing the

waveforms of typically measured variables in an ESS of a

communication system (see Fig. 1).

The problem of feature prediction in ESSs based on

Battery Management Systems (BMSs) is a motivating

topic. For instance, [7] works in predicting both State of

Charge (SoC) and State of Health (SoH) by an Extended

Kalman Filter (EKF) and an adaptive observer. A Proba-

bilistic Neural Network is presented in [8] to predict the

SoH. Following with the learning tools, [9] proposes a

Support Vector Machine (SVM) model for regression.

Nevertheless, due to the aforementioned advantages, GPR

is a cornerstone in the state-of-the-art discussion. The

authors in [10] apply Regular GPR to the prediction of the

State-of-Charge (SoC) of a single battery. A similar

approach is presented in [11], focused on the voltage pre-

diction in a certain horizon applying a recursive GPR.

Another interesting parameter to predict in BMSs is the

SoH [12] and the Remaining Useful Live (RUL). In this

regard, recent works like [13, 14] explore the use of GPR to

determine the aging of Lithium-ion batteries and control

their SoH under different life-cycle regimes. Furthermore,

the authors of [15–17] have proved the convenience of

GPR techniques to predict the health of Lithium-ion bat-

teries under uncertain scenarios, modifying the structure of

the underlining kernels to better consider empirical and

electrochemical knowledge. Despite the great promise of

the aforementioned instances, GPR is typically studied

with artificial and/or informal datasets.

In contrast, the main contribution of this paper is the

extension of GPR in BMS applications to a real, large,

complex dataset, where the computational cost and mem-

ory use are crucial and a significant level of unpre-

dictability is involved. There are two critical parameters to

predict: the evolution of the voltage during the day and the

End Of Night (EON) voltage, the latter with especial

impact to develop fault-tolerant systems. This study con-

cerns a variety of GPR versions, kernels and hyperparam-

eters and compares the performance with LSTM and

NARX techniques.

The outline of the paper is organized as follows. Sec-

tion II introduces the dataset, detailing its main features.

Then, Section III introduces GPR and describes the GPR

models developed for this specific application. Section IV

provides the results of an exhaustive evaluation of the

models and compares with both an LSTM and NARX

model. Finally, Section V includes the conclusions.

2 Dataset development

In this Section, we present the real data set used, its main

features and the context in which it has been obtained.

The dataset comes from a PV standalone system which

provides the energy supply to a communication installa-

tion. This installation is part of the hydrographic system of

Aragón, Spain, which is managed by the CHE. The base

station is located in one of the best Spanish irradiation

environments in the Ebro basin (Sigena, Aragón). The

standalone installation is powered by 24 lead-acid batteries

(VRLA, Exide Classic Solar 2 V 4600Ah C120) with

nominal voltage of 2 V in series and for a total nominal

voltage of 48 V and a capacity of 4600Ah, shown in Fig. 2.

The installation, as it is seen in Fig. 1, has 24 solar panels

(Scheuten multi 180P6), with 4680 W of rated power. The

equipment of the installation has a typical consumption of

350 W, with occasional peaks up to 550 W.

The control system monitors the current, voltage and

temperature waveforms of the batteries. PV Standalone

system features irregular generation profiles that depend on

weather and sun irradiation. They have three main gener-

ation-consumption dynamics: day-night cycles, cloudy

Fig. 2 Group of batteries of the PV standalone system
Fig. 1 PV installation in Sigena, region of Aragón, Spain
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periods (days or weeks) and the annual dynamic. There-

fore, the reliability of the system is subject to.significant

uncertainties. In this application in particular, the predic-

tion of a short-term system failure is especially interesting

due to the expensive actions needed to restart the system.

These critical system failures are mainly related to insuf-

ficient charge in the battery and could be detected by

predicting an excessive low voltage level in the battery.

A GPR based voltage predictor is a suitable option for this

task, since it not only provides the prediction, but it also

indicates the confidence interval of the prediction [18].

Data have been recorded during 2 years with a sampling

rate of one sample every hour. Voltage, current and temper-

ature waveforms are the information available and, as they are

the typical variables in this type of installation, this work can

be easily extended to similar systems. Below we include a

sample instance of the structure and values of the dataset

Dataset

Voltage ! Value !e:g: 49:62 V

Date !e:g: 01=01=2008 � 00 : 00

�

Current ! Value !e:g: �7:2A
Date !e:g: 01=01=2008 � 00 : 00

�

Temperature ! Value !e:g: 6:3 �C
Date !e:g: 01=01=2008 � 00 : 00

�

8>>>>>>><
>>>>>>>:

Figure 3 shows examples of current waveforms recor-

ded in different weather scenarios, which manifest clear

differences. According to the specifications of the client,

i.e., the CHE, a failure prediction of 48 h ahead is sufficient

to avoid a critical failure, which is tackled by increasing the

battery charge voltage level (floating voltage). As the

consumption of the installation is nearly constant, the

critical moment is the moment just before the sunrise,

where the amount of charge is the lowest of the cycle.

Our data set is different from others due to the amount

of real data available. In this sense, it is noteworthy that

there are two different phenomena in the database. The first

is the periodical dynamics, which are predictable with an

accurate model of a battery. The other is the random events

associated with weather from which, due to its inherent

quasi-chaotic nature, it is difficult to predict its impact in

the batteries. The purely periodical dynamics are related to

several phenomena: day/night, yearly and season-based

dynamics. Thus, to account for all of them, the training set

has been selected according to the greatest period, using a

complete year of data. Thanks to the size of the database,

tests are performed with data from the next year.

Figure 4. illustrates the voltage waveforms recorded in

the installation in 2008, from where it is clear that the

floating voltage of the batteries is not constant. This is due

to the temperature-regulated charge strategy of the solar

regulator. Thus, the information encoded in that strategy

provides important knowledge to our problem.

To end up this Section, we introduce the metrics we will

use along the paper to evaluate and study the different

methods and hyperparameter selections. To evaluate the

performance of the models, we choose the Root Mean

Square Error (RMSE) and the Maximum Absolute Error

(MaxAE) as metrics, defining them as.

RMSE lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

XNtest

t¼1

Vtþl � bV tþl

� �2

vuut ; ð1Þ

MaxAE lð Þ ¼ max
i¼1;...;Ntest

Vtþ1 � V̂tþ1

�� ��; ð2Þ

where Ntest refers to the number of test samples and

l ¼ 1; . . .;M, where M ¼ 48 hours for this work. In addi-

tion, we present two additional metrics which refer to

RMSE and MaxAE at the end of the night.

RMSEEON lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

XNtest

t¼1

VEON
tþl � bVEON

tþl

� �2

;

vuut ð3Þ

MaxAEEON lð Þ ¼ maxi¼1;:::;Ntest
VEON
tþl � bVEON

tþl

��� ���: ð4Þ

This value of voltage is crucial in PV standalone sys-

tems as it gives the BMS the information of the voltage of

the system if no more solar energy can be absorbed.

Fig. 3 Example of the current waveforms recorded in different weather scenarios
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3 GPR models for large datasets.

In this section we firstly present a brief review of the theory

of GPR. After that, three versions of GPR (Regular GPR,

Multiple Experts GPR and Sparse GPR) are detailed,

connecting with the need of processing large quantities of

data.

3.1 A brief introduction to theory

Most of the content of this subsection is adapted from [6]

and it should be consulted by readers interested in further

details about the mathematical background. Let D ¼ X; yð Þ
denote a training dataset, comprising n D-dimensional

input and scalar output pairs X ¼ xif gni¼1, where xi 2 RD

and the corresponding outputs y ¼ yif gni¼1, where yi 2 R. It

is assumed that there is an underlying nonlinear latent

function f �ð Þ, which can be used to parameterize the

probabilistic mapping between inputs and outputs

yi ¼ f xið Þ þ ei; ð5Þ

where en denotes zero-mean additive Gaussian noise with

variance r2
i , i.e., ei �N 0; r2

i

� �
and eif gni¼1 form an inde-

pendent and identically distributed (i.i.d) sequence. The

GPR main hypothesis relies on assuming a priori that

function values behave according to a multivariate Gaus-

sian distribution

p fjx1; x2; � � � ; xnð Þ ¼ N 0;Kf;f

� �
ð6Þ

where, f ¼ f x1ð Þ; f x2ð Þ; � � � ; f xnð Þ½ �T is a vector of latent

function values and 0 is an n� 1 vector whose elements

are all 0. In addition, Kf;f is a covariance matrix, whose

entries are given by the covariance function

Ki;j ¼ k xi; xj
� �

, from now on named kernel function,

evaluated at each pair of training inputs.

In GPR, the kernel function plays a major role, since it

encodes the prior assumptions about the properties of the

underlying latent function that we are trying to model.

Indeed, one of the tasks of the designer is to select the

kernel which best fits the phenomena modeled. An instance

of kernel typically adopted is the Squared Exponential (SE)

kernel, defined as

ks xi; xj
� �

¼ #2
0exp � 1

2

XD
d¼1

xid � xjd
ld

	 
2
" #

; ð7Þ

where xid and xjd correspond to the d-th element of vectors

xi andxj, respectively, and H ¼ #0; l1; . . .; lD½ �T denotes the

hyperparameters. Distinctly, #2
0 denotes the signal variance

and quantifies the variation of the underlying latent func-

tion from its mean, and lD represents the characteristic

length scale for each input dimension. Finally, lD fixes the

width of the kernel and thereby represents how smooth the

functions in the model are.

In addition to the aforementioned kernel function, we

incorporate the additive Gaussian white noise term into the

selected kernel function

k xi; xj
� �

¼ ks xi; xj
� �

þ r2
i dij; ð8Þ

where dij denotes the Kronecker delta, which takes value of

1 if i ¼ j and 0 otherwise. Then, the distribution of y,

conditioned on the latent function values f and the input X,

is given by

p yjf;Xð Þ ¼ N f; r2
i I

� �
; ð9Þ

where I is an n� n identity matrix. Throughout integration

over the latent function values f and by using (6) and (9)

the marginal distribution of y can be obtained.

p yjX;Hð Þ ¼
Z

p yjf;Xð Þp fjXð Þdf ¼ N 0;Kf;f

� �
þ r2

i I:

ð10Þ

Then, the marginal log-likelihood, which refers to the

marginalization over the function values y can be written as

log p y X;Hjð Þ ¼ 1

2
yT Kf;f þ r2

i I
� ��1

� 1

2
log Kf;f þ r2

i I
�� ��� n

2
log 2p;

ð11Þ

where �j j is the determinant of a matrix. The optimum

hyperparameters bH are found by maximizing the marginal

log-likelihood. To do so, we use the partial derivatives of

the marginal log-likelihood, from where we obtain that

Fig. 4 Voltage waveforms from 2008
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o

ohi
log p y X;Hjð Þ ¼ � 1

2
tr Kf;f þ r2

i I
� ��1o Kf;f þ r2

i I
� �

ohi

þ 1

2
yT Kf;f þ r2

i I
� ��1o Kf;f þ r2

i I
� �

ohi
Kf;f þ r2

i I
� ��1

y:

ð12Þ

It is important to notice that the complexity of com-

puting (11) is dominated by the inversion of Kf;f þ r2
i I,

which requires a computational time of O n3ð Þ. Hence, a

simple implementation of the GPR is advisable for datasets

with up to a thousand training examples.

The characterization in (12) allows the use of any gra-

dient based optimization method to optimize the marginal

log-likelihood function (11). It is important to note that,

generally, objective functions are nonconvex with respect

to the hyperparameters which can lead to convergence to a

local optimum. In order to tackle this problem, gradient-

based optimization can be performed with different initial

points and the optimal hyperparameters that yield the lar-

gest marginal log-likelihood can be chosen. Once we

obtain the optimal hyperparameters, it is possible to

express the joint distribution of the training outputs y and

the test output y	 as

p y; y	jX; x	;Hð Þ ¼ N 0

0

� �
;

Kf;f þ r2
i I K	;f

Kf;	 K		 þ r2
i

� �	 

;

ð13Þ

where the asterisk 	 is used as a shorthand for f 	, which is

the corresponding latent function value at the test input,

K	;f ¼ k x1; x	ð Þ; � � � ; k xn; x	ð Þ½ �T and K		 ¼ ks x	; x	ð Þ. The

target of the GPR is to find the predictive distribution of the

test output y	 which are conditioned on both the dataset D
and test input x	. Thus, it is possible to marginalize the

joint distribution (13) over the training dataset output y and

to obtain that the predictive distribution of the test output,

y	, is Gaussian distributed, i.e.,

p y	jX; y; x	;Hð Þ ¼ N l	;R	ð Þ; ð14Þ

where the mean and the covariance of the predictive dis-

tribution are given, respectively, in the following

l	 ¼ K	;f Kf;f þ r2
i I

� ��1
y; ð15Þ

R	 ¼ r2
i þ K		 �K	;f Kf;f þ r2

i I
� ��1

Kf;	: ð16Þ

This mean, which is effectively the point estimate of the

test output, is obtained as a linear combination of the noisy

dataset outputs y. Also, the variance of the predictive dis-

tribution, R	 in (16), serves as a measure of the uncertainty

in the estimate of the test output. After performing the

inversion of Kf;f þ r2
i I, the computational complexity of

the testing stage is O nð Þ and O n2ð Þ for the mean l	 and the

variance R	 respectively, which makes the proposed

method highly appropriate for online operation. As a

remark, notice that the computation of the inverse of Kf;f þ
r2
i I can be speeded up to improve the computational bur-

den of the online regression. Since Kf;f does not change

after training, we can compute K�1
f;f and then use the matrix

inversion lemma (Chapter 8 of [6]) to calculate.

Kf;f þ r2
i I

� ��1
by simply computing online ðr2

i IÞ
�1
:

Figure 5 shows a first approximation to our prediction

problem. All the typical data available in the installation

are fed (voltage, temperature and current). However, at first

sight, it is not possible to determine the relevance and

influence of this data in the prediction, so an extensive

discussion and justification of which type of information is

really needed is discussed in Section IV.

The output of the GPR model is an estimation of the

future sample of voltage data, Vkþ1, predicted from L ? 1

past samples of voltage Vk; � � � ;Vk�L, current Ik; � � � ; Ik�L

and temperature Tk; � � � ; Tk�L; and future current Ikþ1 and

temperature Tkþ1 samples. Thus, L is the memory length of

the number of previous samples processed. Since the

power demand of the installation is known, we can feed the

GPR models with future current and temperature.

Regular GPR Model

Ik+1 , … , Ik-L

Vk , … , Vk-L

Tk+1 , … , Tk-L Vk+1

Fig. 5 Schematic block of Regular GPR
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waveforms. This data is assembled in a vector x	k, of

length 3ðLþ 1Þ þ 2, formatted as:

x	k ¼ Ikþ1Tkþ1VkIkTkVk�1Ik�1 � � � Tk�L � � �Vk�LIk�L½ �T

ð17Þ

The corresponding mean and variance output from the

GPR, given x	k, is denoted as l	k(from Eq. (15)) and

R	k(from Eq. (16)) respectively, using the sub-index k to

emphasize that they are the estimations at instant k. The

output yk of the algorithm is the voltage at the sample k þ 1

yk ¼ l	k ¼ Vkþ1: ð18Þ

GPR techniques consist in two processes. In the first

part, GPR is trained offline to learn the relationship

between the inputs xki and outputs y. Then, optimal values

of the hyperparameters of the chosen kernel are determined

through a conjugate gradient method based on a training

dataset, D. In the second part, online voltage prediction of

the battery is performed based on voltage, current and

temperature measurements of the battery. The mean l	k of

the predicted distribution represents the estimated voltage

Vkþ1. Additionally, the standard deviation (R	k
1=2) of the

predicted distribution permits us to build a confidence

interval to measure the accuracy of the prediction. In this

paper, we consider a typical 95% confidence interval [6]

Vkþ1 � 1:96
X

1=2
	k ;Vkþ1 þ 1:96

X
1=2
	k

h i
ð19Þ

The designer can choose the level of confidence interval

depending on the particularities of applications. As stan-

dard deviation decreases, the confidence interval becomes

smaller and it indicates a more accurate prediction. GPR

techniques can be used to directly provide the prediction of

a variable one sample ahead. In this sense, Algorithms 1

and 2 show the training and estimations stages for the one

step predictor. In this model, this means 1 hour in advance.

However, as a 48 h prediction is pursued, the GPR versions

in this work are implemented in a recursive multi-step

form, so recursion will be assumed henceforth.

3.2 Regular GPR

The scope of this method is to obtain the estimated voltage

corresponding to k þ z time, until reaching the desired M ¼
48 hours prediction for our purposes. This means that the

predicted output of the method corresponds to the expected

voltage at time instantk þ zþ 1. Due to the recursive

structure, in the first step, what it is estimated is the mean

lð1Þ	k calculated through (15). This value is then fed back

along with voltage, current and temperature at time instants

k; k � 1; . . .; k � L� 1; and current and temperature

Ikþ1; Tkþ1; Ikþ2Tkþ2 in a one-step prediction algorithm to

obtainlð2Þ	k . This process is repeated until we obtain the 48

step-ahead voltage prediction. Regarding the implementa-

tion, the training process is the same treated in Algorithm

1. However, in the testing stage vectors are formatted as

x
zð Þ
	k ¼ IkþmTkþmV

zð Þ
k I

zð Þ
kk T

z
k

h iT
ð20Þ

with

V
zð Þ
k ¼ l z�1ð Þ

	k . . .l 1ð Þ
	k Vk. . .Vk�Lþz�1

h iT
ð21Þ

I
zð Þ
k ¼ Ikþm�1. . .Ikþ1Ik. . .Ik�Lþz�1½ �T ð22Þ

T
zð Þ
k ¼ Tkþm�1. . .Tkþ1Tk. . .Tk�Lþz�1½ �T ð23Þ

A flowchart of the operational stage of this estimation

method is shown in Algorithm 3.
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3.2.1 Train/test dataset selection.

The GPR model is trained with 720 samples of data, i.e., a

complete month. To capture all kind of phenomena, the

720 samples come from an equally spaced selection of the

original training dataset (the complete year of 2008). In

each selection, a complete day is captured in to preserve

the temporary properties and waveform features, so the

training set can be seen as a cascade of days from different

seasons and weather conditions. This set is the input of the

training algorithm (Algorithm 1). For testing, the complete

month of March 2009 has been used, selected due to the

fact that it involves all kinds of uncertain phenomena (both

sunny and cloudy periods) since it belongs to a low irra-

diation season.

3.2.2 Memory length selection.

Prior to applying Algorithms 1 and 3, Memory Length (L)

must be established. The selection of L is relevant for the

final deployment of the algorithm because of its impact in

the computational cost. Indeed, we recall that the focus of

this paper is to validate GPR techniques in real applications

with large quantities of data and evaluate different GPR-

based techniques. The final selection of L should be made

considering the available computational resources.

A priori, a larger L could provide better results because

more data are involved in each prediction. The results of an

exhaustive preliminary test with a Regular GPR and sev-

eral L values are shown in Fig. 6., where RMSE over the

predicted voltage is represented to track the performance of

the model with respect to L. As there is not a clear opti-

mized value of L we opted for a technical selection of L =

15 samples. This value is a compromise between the

computational cost and the accuracy of the calculations.

3.2.3 Kernel function selection.

The selection of the kernel used in the GPR model is also

required. Conceptually, the kernel is the tool that captures

the relationships within the training data. In this applica-

tion, it is especially difficult to detect these hidden relations

because of the 48 h recurrent approach. In non-recurrent

previous related works [10, 11] SE kernel exhibits good

performances. However, in this work we make an extensive

test of different kernels, as proposed in [19]. Table 1

describes the compared kernels. According to the results

over the RMSE and MaxAE, the kernel that gives a better

performance for our database is the Rational Quadratic

(RQ) [20]. Table 2 shows the best results of the tests, where

it can be appreciated that more complex kernels do not

improve the performance while computational cost is

increased. In all cases, Automatic Relevance Determina-

tion is used.

3.3 GPR based Multiple Experts

In this Section a modification of the Regular GPR is pro-

posed. The idea is to model different types of canonical

current waveforms (related to specific daily dynamics.

Fig. 6 Evolution of the error with the memory length
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during a year), or classes. Several GPR-based ‘‘experts’’

are designed, each one related to a class. A non-supervised

clustering algorithm is used for a more accurate classifi-

cation. Self-Organizing Maps (SOM) [21–23] is the

selected technique to classify training data in a visual map.

To characterize a day, five features are chosen.

• Voltage at the beginning of the discharge.

• Voltage at the end of the discharge (at the sunrise of the

day).

• Duration in hours of the charging process.

• Hours of the discharge.

• Charge stored.

After training a 10 9 6 SOM by using the SOM Tool-

box [24] MATLAB� library, every input pattern (each

day) is projected to its closest neuron, in such a way that

nearby neurons are tuned to similar patterns (similar days).

The resulting SOM can be considered as a two-dimensional

picture of the database, where clusters of similar days

could be identified. After that, a K-means clustering algo-

rithm [25, 26] has been applied to the outputs of the SOM

to establish the different classes obtained. K-means need

the number of clusters to make the separation, so for

establishing this number of clusters the algorithm has been

applied several times changing this parameter.

The results show that using more than five classes does

not provide relevant information. Figure 7. is the final

result of this process. Each sample is labeled regarding its

characteristics in the following classes: low irradiation

days, winter days with high SoC, winter days with low

SoC, spring days and summer days.

For a better understanding of the differences among the

type of days, Fig. 8., shows the mean current waveform of

each data related to each type of day. With this tool all the

days of the original training database are classified and

tagged. For further details, [27] is included as a pointer.

Afterward, five GPR experts are designed and trained,

using for training days of their corresponding class.

The same parameters obtained with Regular GPR (train

size, test set, memory length of 15 h, RQ kernel) are used

in the five experts. In the inference stage, after each expert

estimates the future sample, one of the experts is chosen

and its output is reinjected for the next iteration. As the

confidence interval calculated by the GPR provides infor-

mation about the accuracy of the estimation, the expert

with the most accurate confidence interval is selected as the

one to provide the final output.

3.4 Sparse GPR

Sparse GPR [5, 28] is a modification of the Regular GPR to

be able to process large datasets. For larger datasets,

sparsity solves the problem of the computational cost. The

computational cost of a regular GPR is reduced by intro-

ducing inducing variables and modifying the joint prior

distribution, Let p f	; fð Þ: u ¼ u0; . . .; um½ �T denote.

the inducing variables which correspond to a set of input

locations Xu called inducing points, where m
 n is the

number of inducing points. The inducing points are chosen

as a subset of the data points. Given the inducing points,

the joint prior distribution, pðf 	; fÞ can be rewritten as

Table 1 List of kernels used in the comparison

SEard
ks xi; xj
� �

¼ #2
0exp � 1

2

PD
d¼1

xid�xjd
ld

� �2
� �

#2
0 is the signal variance, ld is the characteristic length scale

RQard
ks xi; xj
� �

¼ #2
1 1 þ 1

2b

PD
d¼1

xid�xjd
ld

� �2
	 
�b #2

1 is the signal variance, b is a smoothness parameter, ld is the

characteristic length scale

Maternard ks xi; xj
� �
¼ #2

2
1

C vð Þ2v�1

ffiffiffiffiffi
2v

p PD
d¼1

xid�xjd
qd

� �� �v
Kv

ffiffiffiffiffi
2v

p PD
d¼1

xid�xjd
qd

� �	 
 #2
2 is the signal variance, m is a smoothness parameter, qd is the

characteristic length scale, Cð�Þ is the Gamma function, Kmð�Þ is the

modified Bessel function of the second kind

NN ks xi; xj
� �

¼ #2
3arcsin

r2
pð1þxTidxjdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þr2
pþr2

px
T
id
xidÞð1þr2

pþr2
px

T
jd
xjdÞ

p #2
3 is the signal variance, r2

p is the scaling factor

Table 2 Comparative of kernels

using Regular GPR
RQard SEard SEard ? SEard ? NN [11] Maternard

RMSE(V) 0.592 3.315 1.699 3.071

MaxAE(V) 1.596 1.635 1.919 2.045

Train time (s) 13.2 13.4 31.6 10.7

Test time (s) 51.0 50.1 369.2 67.6

Neural Computing and Applications

123



p f	; fð Þ ¼
Z

p f	; f ujð Þp uð Þdu; ð24Þ

where pðuÞ ¼ N 0;Ku;u

� �
. For the approximation of

pðf 	; fÞ, it is assumed that f 	 and f are conditionally

independent given u in the following [5]

p f	; fð Þ ¼
Z

p f	; fjuð Þp uð Þdu; ð25Þ

Besides, it is assumed that the training conditional

q fjuð Þ is fully independent and the test conditional keeps

exact as

q f ujð Þ ¼
Yn
i¼1

p fn ujð Þ ¼ N Kf;u;K
�1
u;uu; diag Kf;f � Qf;f


 �� �
;

ð26Þ
q f 	juð Þ ¼ p f 	juð Þ; ð27Þ

where diag½A� denotes the diagonal matrix in which the

entries outside the main diagonal are all zero. The distri-

butions in (26) and (27) can be substituted in (25), so that

integrating over u gives the joint prior

q f; f	ð Þ ¼ N 0;
Qf;f � diag Qf;f � Kf;f


 �
Qf;	

Q	;f K	;	

� �	 

;

ð28Þ

where Qa;b ¼ Ka;uKu;u
�1Ku;b is a low-rank matrix (i.e.,

rank m). The predictive distribution can be obtained by

using the above joint prior distribution,

q y	jX; y; x	;Hð Þ ¼ N �
l 	

; �
R	

	 

; ð29Þ

where

q y	jX; y; x	;Hð Þ ¼ N ~l	; ~R	
� �

; ð30Þ
�
R	

¼ r2
i þ K	;	 � Q	;	 þ K	;uXKu;	: ð31Þ

Here, X ¼ Ku;u þ Ku;fK
�1Kf;u

� ��1

andK ¼ diag Kf;f � Qf;f þ r2
i I


 �
. Notice that the only

matrix requiring inversion is the n� n diagonal matrixK,

which translates into a significant reduction in computa-

tional complexity. The computational cost of training

becomesO m2nð Þ, i.e., linear in n and quadratic in m. Larger

values of m should yield to better accuracy at the expense

of an increase in the computational requirements. Addi-

tionally, the complexity of the testing stages is O mð Þ and

O m2ð Þ for calculating the mean and the variance,

respectively.

Among many different kinds of sparsity algorithms

[5, 29], Fully Independent Training Conditional (FITC)

seems to get the best performance [30] and, therefore, it is

the one used in this work. Regarding the selection of m,

several simulations have been made with an increasing

number of inducing points. Figure 9 shows that there is

almost no need of increasing inducing points beyond 80 for

our database (RMSE is beyond that point), so m ¼ 80 is

selected.

There are several methods to select the position of the

inducing points (like the powerful, but time consuming,

Farthest Point Clustering (FPC) [31]). However, the most

typical approximation is to select equally spaced points

because of the low computational cost involved. After that,

this subset of data points is also optimized when included

in the training stage, along with the other hyperparameters,

Fig. 7 Results of K-means applied to SOM

Fig. 8 Mean waveforms of the five classes of days from SOM
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with the gradient descent algorithm. The other parameters

are the same as in the other models. The iterative process of

Regular GPR is also carried on with the Sparse GPR.

The number of inducing points is tested up to 720

samples because this corresponds to one month of data, the

same magnitude used to train Regular and ME models.

Algorithm 4 details the flowchart of the Sparse method,

similar but not equal to Algorithm 3 for Regular GPR.

As a last remark, one of the advantages of GPR for the

application point of view is that it provides the confidence

interval in Eq. (19). To verify the performance of the

trained model with respect to the actual behavior of the

installation we must wait M hours to compare the measured

voltage with the predicted one. This gives a procedure to

check the accuracy of the trained model, since with an

accurate GPR we should see, at least, a 95% of the times of

the measured voltage lying within the confidence interval.

4 Results and discussion

In this Section we validate the proposed models in the

experimental database. The experiments are implemented

in MATLAB�2020a in a 1.8-GHz Intel Core i7-10510U

CPU.

In order to test the performance of the three proposed

models, it is first necessary to see the relevance of the

selection of the input variables. By this, we study which

variables (voltage, current and temperature) are relevant to

predict future voltage. There are four possibilities:

• Future current and temperature profiles known.

• Only future current profile known.

• Only future temperature profile known.

• Neither current nor temperature known (not possible in

the context of this problem).

In all cases past profiles are known. To test the influence

of the input parameters in the prediction we use the Regular

GPR, as long as the results are expandable to the other

models. The resulting error metrics are listed in Table 3.

The results show that temperature has almost no influ-

ence on voltage prediction and therefore it can be omitted

in future analysis. This is related to the high thermal inertia

of the battery pack, since they contain tons of liters of

water. Sudden irradiation changes caused by a cloud are

not enough to vary relevantly the temperature. In practice,

this result helps to reduce the complexity of the system

since the matrix dimensions get reduced. As the second

method in Table 3 gets similar error metrics to the first

method but with less measures, it is chosen to test the

models.

Once the future input profile has been chosen, we dis-

cuss the performance of the three different algorithms. In

Fig. 9 Study of the influence of the number of inducing points in the

voltage prediction error and the computational time
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contrast with Regular and ME GPR, as Sparse GPR can

deal with larger datasets, it is trained with the entire

2008 year. In order to keep a fair comparison between the

algorithms, they all are tested with March 2009.

To illustrate the performance of the three methods, in

Fig. 10, we show the waveforms obtained with the Regular

GPR implementation. The model fits the real waveform

accurately even in low irradiation days. These results

manifest that there exists a periodic error located at midday

which matches with the highest value of the confidence

interval and therefore of standard deviation, during a single

day. This is because, at this point of the day, any interfering

cloud may reduce the irradiation on the panels and, thus,

there is a higher uncertainty. The error at the end of the

night is low in all cases. This is an intuitive result since

clouds do not really have an impact on the irradiation at

night (which is nonexistent). As the waveforms from the

three GPR models are similar, Table 4 provides quantita-

tive information.

All methods perform, to a greater or lesser extent, a

proper voltage estimation in a month with heterogeneous

events. ME GPR improves the RMSE of Regular GPR but.

Sparse GPR gets the better performance of all methods

when it comes to this metric. Besides, Regular GPR has the

lower MaxAE so it seems to be the most reliable option

when the system needs accurate voltage estimation. In the

PV standalone application field, where the EON voltage

estimation has a strong interest, all methods reduce RMSE

and MaxAE values with a noteworthy performance of ME

and Sparse. We remark that using GPR for prediction

(extrapolation) in PV standalone applications represents a

more demanding task than in the typical regression prob-

lem (interpolation) because of the uncertainty of the

results.

As means of comparison, we apply the same approach to

two non GPR related algorithms in this application: Non-

linear Autoregressive Exogenous Model (NARX) networks

[32, 33] and Long Short-Term Memory (LSTM) [34, 35],

both well-known techniques to process and predict real-

Table 3 Error metrics as a function of the inputs considered in the

models

I and T I only T only

RMSE(V) 0.592 0.590 2.283

MaxAE(V) 1.596 1.603 5.700

RMSEEON Vð Þ 0.225 0.228 0.279

MaxAEEON Vð Þ 0.739 0.728 1.539

(a) (b)

(c) (d)

Fig. 10 Results of the prediction with Regular GPR and current as the only known future value: a waveforms over the month test, b zoom to the

crucial days of the month, c RMSEEON obtained in the month test, d R obtained in the crucial days of the month
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time data series. The theoretical and implementation details

can be found in [36]. The tests are carried with the same

conditions of GPR: the same year for training, the same

month for testing, same L and failure prediction of 48 h

ahead. The results are in Table 5.

Results are rather similar, which confirms the usefulness

of GPR as a prediction tool. Only NARX shows slightly

better results predicting EON situations (40 mV better than

GPR) but, in contrast, it has higher MaxAE Figs. (1.6 V

worse than GPR). Train and test times information are not

especially important because they are only related to the

design phase of the algorithm. Execution time (Exe. Time),

which is the time needed to make one single prediction of a

sample, is more important regarding to implementation.

However, as a single prediction is carried out each hour,

there is enough time for each execution. For example, the

most time-consuming technique (ME) spends only 0.61 s.

Therefore, the time-scale difference between the execution

time and rate of data stream (in the order of 103) makes the

system robust against failures due to overpassing the

computational burden of the installation.

Comparing the execution times in Table 5 it can be seen

that the computational improvement of Sparse GPR is of an

order of magnitude in both training and test stages. This is

reasonable if we consider the theoretical computational

complexities of both methods, shown in Table 6.

Besides, it is important to note that GPR algorithms

have an advantage over the other techniques, that is, they

provide the confidence interval. This measure of the

algorithm accuracy enhances the robustness and allows to

design more sophisticated fault-tolerant protocols.

5 Conclusion

In this paper, we have analyzed the problem of future

voltage estimation in PV standalone installations with three

different recursive multistep GPR models: Regular GPR,

Multiple Expert GPR and Sparse GPR. In contrast with

previous work on the field, a large dataset with voltage,

current and temperature from 2 years has been used. We

have evaluated the impact of kernel selection, memory

length and the influence of the temperature in the behavior

of the system. Results have revealed how simple kernels as

RQ provide a good trade-off between computational time

and error metrics. It has been observed that a short memory

length of L =15 h is good enough to make accurate esti-

mations. We have seen how, due to the high thermal inertia

of the battery pack, temperature is not a representative

input parameter for the model and can be omitted. Simu-

lation results have shown an RMSE value of 590 mV for

Regular GPR, improved to 517 mV and 469 mV for

Multiple Experts and Sparse GPR, respectively. Further-

more, with respect to the fault-tolerant application, ME and

Sparse models exhibit a robust performance thanks to a low

MaxAE and the confidence interval, compared to the

results with NARX and LSTM solutions. In future work,

we will study the prediction capabilities of these algorithms

for SoC and SoH parameters in PV standalone applications

and we will extend our proposal to an online version

implemented in the real installation. Besides, we will

prepare and process the dataset to open it to the general

public.
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Table 4 Error metrics with only future current profile as input, for a

battery with a total nominal voltage of 48 V

Regular ME Sparse

RMSE(V) 0.590 0.517 0.469

MaxAE(V) 1.603 2.751 2.138

RMSEEON Vð Þ 0.228 0.190 0.238

MaxAEEON Vð Þ 0.728 0.308 0.127

Table 5 Error metrics of GPR techniques vs NARX and LSTM for a

battery with a total nominal voltage of 48 V

ME Sparse NARX LSTM

RMSE(V) 0.517 0.468 0.469 0.454

MaxAE(V) 2.751 2.138 3.741 3.861

RMSEEON Vð Þ 0.190 0.238 0.095 0.220

MaxAEEON Vð Þ 0.308 0.127 0.083 0.197

Train time (s) 60 24 55.7 5437

Test time (s) 416 47 0.041 2.7

Exe. time (ms) 610 69 0.06 4

Table 6 computational cost of Regular and Sparse GPR

Storage Training Mean Variance

Regular O n2ð Þ O n3ð Þ O nð Þ O n2ð Þ
Sparse O mnð Þ O m2nð Þ O mð Þ O m2ð Þ
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