000106697 001__ 106697
000106697 005__ 20230830110642.0
000106697 0247_ $$2doi$$a10.3390/en14071892
000106697 0248_ $$2sideral$$a124626
000106697 037__ $$aART-2021-124626
000106697 041__ $$aeng
000106697 100__ $$0(orcid)0000-0003-2848-170X$$aLópez-Alonso, Borja$$uUniversidad de Zaragoza
000106697 245__ $$aMulti-electrode architecture modeling and optimization for homogeneous electroporation of large volumes of tissue
000106697 260__ $$c2021
000106697 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106697 5203_ $$aElectroporation is a phenomenon that consists of increasing the permeability of the cell membrane by means of high-intensity electric field application. Nowadays, its clinical application to cancer treatment is one of the most relevant branches within the many areas of electroporation. In this area, it is essential to apply homogeneous treatments to achieve complete removal of tumors and avoid relapse. It is necessary to apply an optimized transmembrane potential at each point of the tissue by means of a homogenous electric field application and appropriated electric field orientation. Nevertheless, biological tissues are composed of wide variety, heterogeneous and anisotropic structures and, consequently, predicting the applied electric field distribution is complex. Consequently, by applying the parallel-needle electrodes and single-output generators, homogeneous and predictable treatments are difficult to obtain, often requiring several repositioning/application processes that may leave untreated areas. This paper proposes the use of multi-electrode structure to apply a wide range of electric field vectors to enhance the homogeneity of the treatment. To achieve this aim, a new multi-electrode parallel-plate configuration is proposed to improve the treatment in combination with a multiple-output generator. One method for optimizing the electric field pattern application is studied, and simulation and experimental results are presented and discussed, proving the feasibility of the proposed approach.
000106697 536__ $$9info:eu-repo/grantAgreement/ES/MECD/FPU16-03765$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2019-103939RB-I00
000106697 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000106697 590__ $$a3.252$$b2021
000106697 592__ $$a0.653$$b2021
000106697 594__ $$a5.0$$b2021
000106697 591__ $$aENERGY & FUELS$$b80 / 119 = 0.672$$c2021$$dQ3$$eT3
000106697 593__ $$aEnergy (miscellaneous)$$c2021$$dQ1
000106697 593__ $$aEnergy Engineering and Power Technology$$c2021$$dQ1
000106697 593__ $$aFuel Technology$$c2021$$dQ1
000106697 593__ $$aControl and Optimization$$c2021$$dQ1
000106697 593__ $$aEngineering (miscellaneous)$$c2021$$dQ1
000106697 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000106697 700__ $$0(orcid)0000-0001-8399-4650$$aSarnago, Héctor$$uUniversidad de Zaragoza
000106697 700__ $$0(orcid)0000-0002-9655-5531$$aBurdío, José Miguel$$uUniversidad de Zaragoza
000106697 700__ $$0(orcid)0000-0002-6768-5177$$aBriz, Pablo
000106697 700__ $$0(orcid)0000-0002-1284-9007$$aLucía, Óscar$$uUniversidad de Zaragoza
000106697 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000106697 773__ $$g14, 7 (2021), 1892 [16 pp.]$$pENERGIES$$tEnergies$$x1996-1073
000106697 8564_ $$s3707851$$uhttps://zaguan.unizar.es/record/106697/files/texto_completo.pdf$$yVersión publicada
000106697 8564_ $$s2354929$$uhttps://zaguan.unizar.es/record/106697/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000106697 909CO $$ooai:zaguan.unizar.es:106697$$particulos$$pdriver
000106697 951__ $$a2023-08-30-10:58:34
000106697 980__ $$aARTICLE