000106700 001__ 106700
000106700 005__ 20210902121944.0
000106700 0247_ $$2doi$$a10.1093/molbev/msaa301
000106700 0248_ $$2sideral$$a124645
000106700 037__ $$aART-2020-124645
000106700 041__ $$aeng
000106700 100__ $$aRuiz-Dueñas, F.J.
000106700 245__ $$aGenomic analysis enlightens agaricales lifestyle evolution and increasing peroxidase diversity
000106700 260__ $$c2020
000106700 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106700 5203_ $$aAs actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates—namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose–methanol–choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases—we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.
000106700 536__ $$9info:eu-repo/grantAgreement/ES/AEI/BIO2017-86559-R$$9info:eu-repo/grantAgreement/ES/CSIC/PIE-201620E081$$9info:eu-repo/grantAgreement/ES/MINECO/AGL2014-55971-R$$9info:eu-repo/grantAgreement/ES/MINECO/BIO2015-7369-JIN
000106700 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000106700 590__ $$a16.24$$b2020
000106700 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b9 / 297 = 0.03$$c2020$$dQ1$$eT1
000106700 591__ $$aEVOLUTIONARY BIOLOGY$$b2 / 50 = 0.04$$c2020$$dQ1$$eT1
000106700 591__ $$aGENETICS & HEREDITY$$b5 / 175 = 0.029$$c2020$$dQ1$$eT1
000106700 592__ $$a6.636$$b2020
000106700 593__ $$aEcology, Evolution, Behavior and Systematics$$c2020$$dQ1
000106700 593__ $$aMolecular Biology$$c2020$$dQ1
000106700 593__ $$aGenetics$$c2020$$dQ1
000106700 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000106700 700__ $$aBarrasa, J.M.
000106700 700__ $$aSánchez-García, M.
000106700 700__ $$aCamarero, S.
000106700 700__ $$aMiyauchi, S.
000106700 700__ $$aSerrano, A.
000106700 700__ $$aLinde, D.
000106700 700__ $$aBabiker, R.
000106700 700__ $$aDrula, E.
000106700 700__ $$aAyuso-Fernández, I.
000106700 700__ $$aPacheco, R.
000106700 700__ $$aPadilla, G.
000106700 700__ $$0(orcid)0000-0003-4076-6118$$aFerreira, P.$$uUniversidad de Zaragoza
000106700 700__ $$aBarriuso, J.
000106700 700__ $$aKellner, H.
000106700 700__ $$aCastanera, R.
000106700 700__ $$aAlfaro, M.
000106700 700__ $$aRamírez, L.
000106700 700__ $$aPisabarro, A.G.
000106700 700__ $$aRiley, R.
000106700 700__ $$aKuo, A.
000106700 700__ $$aAndreopoulos, W.
000106700 700__ $$aLaButti, K.
000106700 700__ $$aPangilinan, J.
000106700 700__ $$aTritt, A.
000106700 700__ $$aLipzen, A.
000106700 700__ $$aHe, G.
000106700 700__ $$aYan, M.
000106700 700__ $$aNg, V.
000106700 700__ $$aGrigoriev, I.V.
000106700 700__ $$aCullen, D.
000106700 700__ $$aMartin, F.
000106700 700__ $$aRosso, M.-N.
000106700 700__ $$aHenrissat, B.
000106700 700__ $$aHibbett, D.
000106700 700__ $$aMartínez, A.T.
000106700 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000106700 773__ $$g38, 4 (2020), 1428-1446$$pMol. biol. evol.$$tMolecular biology and evolution$$x0737-4038
000106700 8564_ $$s2033497$$uhttps://zaguan.unizar.es/record/106700/files/texto_completo.pdf$$yVersión publicada
000106700 8564_ $$s3137046$$uhttps://zaguan.unizar.es/record/106700/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000106700 909CO $$ooai:zaguan.unizar.es:106700$$particulos$$pdriver
000106700 951__ $$a2021-09-02-11:02:57
000106700 980__ $$aARTICLE