000106728 001__ 106728 000106728 005__ 20230622083314.0 000106728 0247_ $$2doi$$a10.1021/acsanm.0c01545 000106728 0248_ $$2sideral$$a120498 000106728 037__ $$aART-2020-120498 000106728 041__ $$aeng 000106728 100__ $$0(orcid)0000-0002-5578-7635$$aSanz, B. 000106728 245__ $$aLow-Dimensional Assemblies of Magnetic MnFe2O4 Nanoparticles and Direct In Vitro Measurements of Enhanced Heating Driven by Dipolar Interactions: Implications for Magnetic Hyperthermia 000106728 260__ $$c2020 000106728 5060_ $$aAccess copy available to the general public$$fUnrestricted 000106728 5203_ $$aMagnetic fluid hyperthermia (MFH), the procedure of raising the temperature of tumor cells using magnetic nanoparticles (MNPs) as heating agents, has proven successful in treating some types of cancer. However, the low heating power generated under physiological conditions makes it necessary a high local concentration of MNPs at tumor sites. Here, we report how the in vitro heating power of magnetically soft MnFe2O4 nanoparticles can be enhanced by intracellular low-dimensional clusters through a strategy that includes: (a) the design of the MNPs to retain Neel magnetic relaxation in high-viscosity media, and (b) culturing MNP-loaded cells under magnetic fields to produce elongated intracellular agglomerates. Our direct in vitro measurements demonstrated that the specific loss power (SLP) of elongated agglomerates (SLP = 576 +/- 33 W/g) induced by culturing BV2 cells in situ under a dc magnetic field was increased by a factor of 2 compared to the SLP = 305 +/- 25 W/g measured in aggregates freely formed within cells. A numerical mean-field model that included dipolar interactions quantitatively reproduced the SLPs of these clusters both in phantoms and in vitro, suggesting that it captures the relevant mechanisms behind power losses under high-viscosity conditions. These results indicate that in situ assembling of MNPs into low-dimensional structures is a sound possible way to improve the heating performance in MFH. 000106728 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E28-20R$$9info:eu-repo/grantAgreement/ES/MCIU/MAT2016-78201-P$$9info:eu-repo/grantAgreement/ES/MCIU/RTC-2017-6620-1 000106728 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000106728 590__ $$a5.097$$b2020 000106728 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b48 / 106 = 0.453$$c2020$$dQ2$$eT2 000106728 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b101 / 333 = 0.303$$c2020$$dQ2$$eT1 000106728 592__ $$a1.227$$b2020 000106728 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1 000106728 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000106728 700__ $$aCabreira-Gomes, R. 000106728 700__ $$0(orcid)0000-0002-6116-9331$$aTorres, T.E. 000106728 700__ $$aValdes, D.P. 000106728 700__ $$aLima, E. 000106728 700__ $$aDe Biasi, E. 000106728 700__ $$aZysler, R.D. 000106728 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra, M.R.$$uUniversidad de Zaragoza 000106728 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza 000106728 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000106728 773__ $$g3, 9 (2020), 8719-8731$$pACS appl. nano mater.$$tACS APPLIED NANO MATERIALS$$x2574-0970 000106728 8564_ $$s3415746$$uhttps://zaguan.unizar.es/record/106728/files/texto_completo.pdf$$yPostprint 000106728 8564_ $$s962855$$uhttps://zaguan.unizar.es/record/106728/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000106728 909CO $$ooai:zaguan.unizar.es:106728$$particulos$$pdriver 000106728 951__ $$a2023-06-21-15:01:10 000106728 980__ $$aARTICLE