000106750 001__ 106750
000106750 005__ 20220301144156.0
000106750 0247_ $$2doi$$a10.2166/hydro.2020.032
000106750 0248_ $$2sideral$$a120500
000106750 037__ $$aART-2020-120500
000106750 041__ $$aeng
000106750 100__ $$aEcheverribar, I.
000106750 245__ $$aAnalysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases
000106750 260__ $$c2020
000106750 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106750 5203_ $$aCoupled 1D2D models emerged as an efficient solution for a two-dimensional (2D) representation of the floodplain combined with a fast one-dimensional (1D) schematization of the main channel. At the same time, high-performance computing (HPC) has appeared as an efficient tool for model acceleration. In this work, a previously validated 1D2D Central Processing Unit (CPU) model is combined with an HPC technique for fast and accurate flood simulation. Due to the speed of 1D schemes, a hybrid CPU/GPU model that runs the 1D main channel on CPU and accelerates the 2D floodplain with a Graphics Processing Unit (GPU) is presented. Since the data transfer between sub-domains and devices (CPU/GPU) may be the main potential drawback of this architecture, the test cases are selected to carry out a careful time analysis. The results reveal the speed-up dependency on the 2D mesh, the event to be solved and the 1D discretization of the main channel. Additionally, special attention must be paid to the time step size computation shared between sub-models. In spite of the use of a hybrid CPU/GPU implementation, high speed-ups are accomplished in some cases.
000106750 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00
000106750 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000106750 592__ $$a0.654$$b2020
000106750 590__ $$a2.376$$b2020
000106750 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b68 / 112 = 0.607$$c2020$$dQ3$$eT2
000106750 591__ $$aWATER RESOURCES$$b59 / 97 = 0.608$$c2020$$dQ3$$eT2
000106750 591__ $$aENVIRONMENTAL SCIENCES$$b181 / 272 = 0.665$$c2020$$dQ3$$eT3
000106750 591__ $$aENGINEERING, CIVIL$$b72 / 136 = 0.529$$c2020$$dQ3$$eT2
000106750 593__ $$aAtmospheric Science$$c2020$$dQ2
000106750 593__ $$aWater Science and Technology$$c2020$$dQ2
000106750 593__ $$aGeotechnical Engineering and Engineering Geology$$c2020$$dQ2
000106750 593__ $$aCivil and Structural Engineering$$c2020$$dQ2
000106750 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000106750 700__ $$0(orcid)0000-0001-6961-7250$$aMorales-Hernandez, M.$$uUniversidad de Zaragoza
000106750 700__ $$0(orcid)0000-0002-0415-0001$$aBrufau, P.$$uUniversidad de Zaragoza
000106750 700__ $$0(orcid)0000-0001-8674-1042$$aGarcia-Navarro, P.$$uUniversidad de Zaragoza
000106750 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000106750 773__ $$g22, 5 (2020), 1198-1216$$pJ. hydroinform.$$tJOURNAL OF HYDROINFORMATICS$$x1464-7141
000106750 8564_ $$s660272$$uhttps://zaguan.unizar.es/record/106750/files/texto_completo.pdf$$yPostprint
000106750 8564_ $$s1877873$$uhttps://zaguan.unizar.es/record/106750/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000106750 909CO $$ooai:zaguan.unizar.es:106750$$particulos$$pdriver
000106750 951__ $$a2022-03-01-14:38:09
000106750 980__ $$aARTICLE