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Anexo A

Funcionamiento de PVNet

PVNet [16] es una red neuronal convolucional con la que se obtiene la pose real

de un objeto a partir de una única imagen RGB (imagen en color), que puede estar

sometida a oclusiones o truncamientos.

Dada una imagen RGB, el objetivo de la estimación de pose es detectar el objeto

en la imagen, junto con su rotación y traslación en 3D. En el caso de PVNet, se

trata de una transformación ŕıgida (matriz de rotación-traslación) desde el sistema de

coordenadas del objeto hasta el sistema de coordenadas de la cámara.

A.1. Arquitectura de PVNet

La red neuronal convolucional PVNet está basada en una red ResNet18 [9]

preentrenada y con pequeñas modificaciones. Asumiendo que existen C clases de

objetos a detectar y K keypoints para cada clase, los datos de entrada de PVNet son

un vector de dimensiones H ×W × 3, correspondiente a una imagen RGB estándar.

La imagen de entrada a la red se procesa por medio de una arquitectura puramente

convolucional, y se obtienen como output dos tensores, de dimensiones H ×W × (K ×
2× C), correspondiente a los vectores unitarios, y H ×W × (C + 1), correspondiente

a la máscara del objeto.

A.2. Estimación de la pose

PVNet divide la estimación de la pose en dos etapas: detección de los

puntos (denominados keypoints) con la red neuronal y estimación de la matriz

rotación-traslación (pose) mediante el algoritmo PnP [12]. En la Figura A.1 se

representa la arquitectura de la red neuronal, además de las fases para la obtención de

la pose del objeto.
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Figura A.1: Arquitectura de la red PVNet [16] y fases para la obtención de la pose del
objeto.

A.2.1. Estimación de los keypoints

Como se puede observar en la Figura A.1, los datos de salida de la red neuronal

únicamente son la segmentación o máscara del objeto, y los vectores unitarios, que

representan la dirección desde cada ṕıxel que forma el objeto hacia cada uno de los

keypoints.

Posteriormente, dadas las direcciones desde cada ṕıxel hacia cada keypoint, se

generan hipótesis de la localización 2D de cada uno de los keypoints, además de sus

intervalos de confianza, obtenidos a partir del algoritmo RANSAC [15]. Basándose en

los intervalos de confianza, se estima la media y la covarianza de la probabilidad de la

distribución espacial para cada keypoint.

La estimación de los keypoints a partir de los intervalos de confianza permite que la

red se centre más en las caracteŕısticas locales de los objetos, y disminuye la influencia

de una escena saturada sobre la detección del objeto. El uso de un campo vectorial

permite también la estimación de keypoints que estén ocluidos o truncados.

A.2.2. Estimación de la matriz rotación-traslación

Los keypoints estimados por la red neuronal corresponden a 8 puntos de la malla

3D del objeto, generados mediante el algoritmo Farthest Point Sampling (FPS) [27] de

forma aleatoria antes de comenzar a entrenar la red neuronal. Además, a este conjunto
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de keypoints se le añade el centroide del objeto.

En total, el número de puntos estimados por la red neuronal es de 9. Conociendo

su posición verdadera sobre el modelo 3D, y mediante el algoritmo Perspective-n-Point

(PnP), se puede estimar la matriz de rotación-traslación del objeto, obteniendo la pose

verdadera del mismo.

La matriz de rotación-traslación del objeto corresponde a la matriz de

transformación entre el sistema de referencia local de la cámara y el del objeto, y

para la nomenclatura usada en este proyecto, se denomina CTO.
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Anexo B

Validación del modelo

En este anexo se describe el proceso de validación del modelo llevado a cabo tras

el primer entrenamiento.

Para la validación del modelo, se ha seguido el método de validación cruzada

[37], y se ha utilizado el mismo conjunto de datos que para el primer entrenamiento:

2666 capturas del h́ıgado con fondo homogéneo tomadas desde todas las perspectivas

posibles. Las condiciones de entrenamiento también son las mismas que para el primer

entrenamiento, utilizando un tamaño de lote de 5, y realizando 40 repeticiones sobre

cada entrenamiento de forma independiente. La tasa de aprendizaje parte de un valor

de 0,001, disminuyendo un 50 % cada 5 repeticiones.

El objetivo de realizar una validación cruzada del modelo es comprobar si se ha

producido un sobreentrenamiento del modelo (es decir, que las estimaciones se ajustan

demasiado a los datos de entrenamiento, pero el modelo es incapaz de generalizar

resultados).

Se ha elegido el método de validación cruzada porque el tiempo de entrenamiento

del modelo no es muy alto (5 horas), y el conjunto de datos es relativamente pequeño

(2666 imágenes).

Conforme a lo definido en la Sección 3.1, la proporción de imágenes utilizadas para

el entrenamiento del conjunto de datos actual es del 80 %, mientras que la proporción

de imágenes utilizadas para el test es del 20 %. Por tanto, se utilizan 4 veces más

imágenes para el entrenamiento que para el test.

Para realizar la validación cruzada del modelo, se han creado 5 subdivisiones

del conjunto de datos (533 imágenes por cada subdivisión), y se han realizado 5

entrenamientos independientes, utilizando como test cada una de las 5 subdivisiones

en los 5 entrenamientos, y las otras 4 partes como datos de entrenamiento. Para cada

entrenamiento, se ha partido del mismo punto, que corresponde al modelo preentrenado

del gato. En la Figura B.1 se representa gráficamente el proceso de validación cruzada

utilizado.
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Figura B.1: Validación cruzada del modelo. El conjunto de datos se divide en 5
subconjuntos de igual tamaño, y se entrena 5 veces distintas de forma independiente.
En verde, se representan las subdivisiones del conjunto de datos que se utilizan
para el entrenamiento en cada uno de los entrenamientos independientes. En rojo,
se representan las subdivisiones del conjunto utilizadas como test para cada uno de los
5 entrenamientos independientes.

En la Tabla B.1 se exponen los resultados de la validación cruzada realizada sobre los

datos de entrenamiento. Como se puede observar, los resultados son muy homogéneos

entre subdivisiones (splits, en inglés). Además, la estimación de la máscara del objeto

(segmentation loss) produce un error menor que en el caso de la estimación de los

vértices (vertex loss).

Train
Precision % Recall % Seg. Loss % Ver. Loss %

Split 1 99,955 99,978 0,008583 0,075
Split 2 99,964 99,978 0,008779 0,102
Split 3 99,957 99,983 0,008812 0,087
Split 4 99,959 99,981 0,008 0,071
Split 5 99,959 99,983 0,008213 0,089

Tabla B.1: Resultados de la validación cruzada en los datos de entrenamiento para los
5 entrenamientos realizados.

En la Tabla B.2 se exponen los resultados de la validación cruzada sobre los datos

de test. Como se puede observar, los resultados son muy homogéneos, y con valores

muy similares a los datos de entrenamiento. Por tanto, se puede afirmar que no se ha

producido sobreestimación con el primer entrenamiento realizado, ya que los resultados

para el entrenamiento y el test son muy similares. En el caso del test, la estimación de

los vértices (vertex loss) es algo peor que en el caso de entrenamiento, pero los valores

se pueden considerar aceptables, con un error por debajo del 0, 5 %.

Por último, se han calculado los errores en la estimación de la traslación y la rotación

del h́ıgado, conforme a la métrica expuesta en el Anexo C. En la Tabla B.3 se exponen
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Test
Precision % Recall % Seg. Loss % Ver. Loss %

Split 1 99,96 99,977 0,008748 0,237
Split 2 99,961 99,98 0,008333 0,275
Split 3 99,958 99,98 0,008687 0,236
Split 4 99,959 99,98 0,008271 0,255
Split 5 99,959 99,979 0,008409 0,24

Tabla B.2: Resultados de la validación cruzada en los datos de test para los 5
entrenamientos realizados.

los resultados en traslación y rotación del sistema de referencia calculado con respecto a

la pose verdadera. Para obtener estos resultados, se ha calculado la media y la varianza

de la traslación y la rotación para los datos del test, una vez obtenida la función de

estimación en el entrenamiento. Como se puede observar para los 5 entrenamientos, los

datos en traslación y rotación son muy homogéneos, aunque se estima con más precisión

la traslación que la rotación, donde el error es considerable (25 º) pero mejorable con

entrenamientos posteriores, como los que se realizan en la Sección 3.2.

Pose estimation
dRMS(cm) θRMS(o) ds2 θs2

Split 1 0,16822 25,8429 0,02679 631,15905
Split 2 0,49979 26,73338 0,24598 677,71824
Split 3 0,20582 23,00947 0,04108 503,86028
Split 4 0,15595 23,05769 0,02306 504,34913
Split 5 0,13877 22,61551 0,01837 487,83626

Tabla B.3: Resultados de la validación cruzada en la estimación de la pose para los 5
entrenamientos realizados.

En conclusión, tras realizar la validación cruzada del modelo se puede afirmar que

no se ha producido un sobreentrenamiento, y que el conjunto de datos elaborado para

el primer entrenamiento es correcto y válido para entrenar a la red neuronal.
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Anexo C

Métrica de evaluación de la red
neuronal

Se ha creado una nueva métrica para la evaluación de las estimaciones de pose

realizadas por la red neuronal, comparando el error en la estimación de las poses

predichas con la red neuronal con respecto a las poses de referencia contenidas en

el conjunto de datos.

Se ha creado una métrica para la traslación y otra para la rotación. No se han

considerado las métricas de estimación de pose que utiliza la red PVNet, puesto que

esta nueva métrica aporta una mayor información, y se puede detectar con más facilidad

dónde falla la red, aśı como el origen de los errores.

C.1. Métrica de la traslación

Para cuantificar el error de la traslación en la pose obtenida por la red, se calcula

la distancia eucĺıdea (en cent́ımetros) del vector que une los dos oŕıgenes de los dos

sistemas de referencia (pose estimada y pose de referencia). Siendo CTO,n la pose

obtenida a partir de la red neuronal, y CTO,r la pose verdadera para una posición

determinada del h́ıgado:

CTO,n =

(
Rn,(3x3) pn,(1x3)

0(3x1) 1

)
CTO,r =

(
Rr,(3x3) pr,(1x3)

0(3x1) 1

) (C.1)

Donde Rn y Rr representan las matrices de rotación de la pose obtenida a partir

de la red neuronal y de la pose verdadera, respectivamente, de dimensiones 3x3. pn y

pr representan el vector de traslación de la pose obtenida con la red neuronal y de la

verdadera pose, respectivamente, de dimensiones 3x1.
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Los vectores de traslación están formados por las tres componentes XYZ que

determinan su posición en el espacio:

pn =

xnyn
zn



pr =

xryr
zr


(C.2)

Por tanto, la distancia eucĺıdea entre los dos sistemas de referencia, conocidas las

componentes XYZ de cada uno de ellos será:

dp =
√

(xn − xr)2 + (yn − yr)2 + (zn − zr)2 (C.3)

C.2. Métrica de la rotación

La métrica elegida para la estimación del error en la rotación es el cálculo del ángulo

(en grados) que forman los dos sistemas de referencia. Para ello, hay que calcular el

producto escalar de las matrices de rotación de la pose estimada por la red y de la pose

verdadera, respectivamente. En el caso de dos matrices, el producto escalar se define

como:

Rn ·Rr = tr(RT
n .Rr) (C.4)

Partiendo de la definición de producto escalar y de C.4, se puede obtener el ángulo

que forman dos sistemas de referencia θp como:

θp = arccos

(
tr(RT

n .Rr)− 1

2

)
(C.5)

C.3. Media y varianza de los resultados

Lo expuesto en las secciones anteriores corresponde a la comparación uno a uno de

las distintas poses estimadas con la red con respecto a las poses verdaderas. Para poder

tener una visión general de las estimaciones de pose realizadas en el test, es necesario

calcular la media y la varianza del conjunto de errores.

La media cuadrática para la traslación dRMS y para la rotación θRMS se definen

como:
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dRMS =

√√√√ 1

N

N∑
i=1

d2pi

θRMS =

√√√√ 1

N

N∑
i=1

θ2pi

(C.6)

Donde N es el número de muestras, dpi el error en la traslación para cada una de

las poses, y θpi el error en la rotación para cada una de las poses. En este caso, será el

20 % de todas las muestras que contiene el conjunto de datos, y que se han asignado

al test.

La varianza para la traslación ds2 y para la rotación θs2 se definen como:

ds2 =
1

N

N∑
i=1

(dpi − dp)2

θs2 =
1

N

N∑
i=1

(θpi − θp)2

(C.7)

Donde dp es la media aritmética del error en la traslación para todas las muestras,

y θp es la media aritmética del error en la rotación para todas las muestras.
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