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Anexo A

Funcionamiento de PV Net

PVNet [16] es una red neuronal convolucional con la que se obtiene la pose real
de un objeto a partir de una tnica imagen RGB (imagen en color), que puede estar
sometida a oclusiones o truncamientos.

Dada una imagen RGB, el objetivo de la estimaciéon de pose es detectar el objeto
en la imagen, junto con su rotaciéon y traslacion en 3D. En el caso de PVNet, se
trata de una transformacién rigida (matriz de rotacién-traslaciéon) desde el sistema de

coordenadas del objeto hasta el sistema de coordenadas de la caAmara.

A.1. Arquitectura de PVNet

La red neuronal convolucional PVNet estd basada en una red ResNetl8 [9]
preentrenada y con pequenas modificaciones. Asumiendo que existen C' clases de
objetos a detectar y K keypoints para cada clase, los datos de entrada de PVNet son
un vector de dimensiones H x W x 3, correspondiente a una imagen RGB estandar.

La imagen de entrada a la red se procesa por medio de una arquitectura puramente
convolucional, y se obtienen como output dos tensores, de dimensiones H x W x (K x
2 x C), correspondiente a los vectores unitarios, y H x W x (C' + 1), correspondiente

a la mascara del objeto.

A.2. Estimacion de la pose

PVNet divide la estimacion de la pose en dos etapas: deteccion de los
puntos (denominados keypoints) con la red neuronal y estimaciéon de la matriz
rotacién-traslacién (pose) mediante el algoritmo PnP [12]. En la Figura A.1 se
representa la arquitectura de la red neuronal, ademas de las fases para la obtencion de

la pose del objeto.
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Figura A.1: Arquitectura de la red PVNet [16] y fases para la obtencién de la pose del
objeto.

A.2.1. Estimacion de los keypoints

Como se puede observar en la Figura A.1, los datos de salida de la red neuronal
unicamente son la segmentacién o mascara del objeto, y los vectores unitarios, que
representan la direccién desde cada pixel que forma el objeto hacia cada uno de los
keypoints.

Posteriormente, dadas las direcciones desde cada pixel hacia cada keypoint, se
generan hipotesis de la localizacién 2D de cada uno de los keypoints, ademas de sus
intervalos de confianza, obtenidos a partir del algoritmo RANSAC [15]. Basédndose en
los intervalos de confianza, se estima la media y la covarianza de la probabilidad de la
distribucién espacial para cada keypoint.

La estimacion de los keypoints a partir de los intervalos de confianza permite que la
red se centre mas en las caracteristicas locales de los objetos, y disminuye la influencia
de una escena saturada sobre la deteccién del objeto. El uso de un campo vectorial

permite también la estimacion de keypoints que estén ocluidos o truncados.

A.2.2. Estimacion de la matriz rotacion-traslacion

Los keypoints estimados por la red neuronal corresponden a 8 puntos de la malla
3D del objeto, generados mediante el algoritmo Farthest Point Sampling (FPS) [27] de

forma aleatoria antes de comenzar a entrenar la red neuronal. Ademads, a este conjunto
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de keypoints se le anade el centroide del objeto.

En total, el nimero de puntos estimados por la red neuronal es de 9. Conociendo
su posicion verdadera sobre el modelo 3D, y mediante el algoritmo Perspective-n-Point
(PnP), se puede estimar la matriz de rotacién-traslacion del objeto, obteniendo la pose
verdadera del mismo.

La matriz de rotacion-traslacion del objeto corresponde a la matriz de
transformacién entre el sistema de referencia local de la camara y el del objeto, y

para la nomenclatura usada en este proyecto, se denomina ©Tq.
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Anexo B

Validacion del modelo

En este anexo se describe el proceso de validacién del modelo llevado a cabo tras
el primer entrenamiento.

Para la validacion del modelo, se ha seguido el método de validacion cruzada
[37], v se ha utilizado el mismo conjunto de datos que para el primer entrenamiento:
2666 capturas del higado con fondo homogéneo tomadas desde todas las perspectivas
posibles. Las condiciones de entrenamiento también son las mismas que para el primer
entrenamiento, utilizando un tamano de lote de 5, y realizando 40 repeticiones sobre
cada entrenamiento de forma independiente. La tasa de aprendizaje parte de un valor
de 0,001, disminuyendo un 50 % cada 5 repeticiones.

El objetivo de realizar una validacién cruzada del modelo es comprobar si se ha
producido un sobreentrenamiento del modelo (es decir, que las estimaciones se ajustan
demasiado a los datos de entrenamiento, pero el modelo es incapaz de generalizar
resultados).

Se ha elegido el método de validacién cruzada porque el tiempo de entrenamiento
del modelo no es muy alto (5 horas), y el conjunto de datos es relativamente pequeno
(2666 imagenes).

Conforme a lo definido en la Seccién 3.1, la proporcién de imégenes utilizadas para
el entrenamiento del conjunto de datos actual es del 80 %, mientras que la proporcién
de imdagenes utilizadas para el test es del 20 %. Por tanto, se utilizan 4 veces mas
imégenes para el entrenamiento que para el test.

Para realizar la validacion cruzada del modelo, se han creado 5 subdivisiones
del conjunto de datos (533 imdgenes por cada subdivisién), y se han realizado 5
entrenamientos independientes, utilizando como test cada una de las 5 subdivisiones
en los 5 entrenamientos, y las otras 4 partes como datos de entrenamiento. Para cada
entrenamiento, se ha partido del mismo punto, que corresponde al modelo preentrenado
del gato. En la Figura B.1 se representa graficamente el proceso de validacion cruzada

utilizado.
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Figura B.1: Validaciéon cruzada del modelo. El conjunto de datos se divide en 5
subconjuntos de igual tamano, y se entrena 5 veces distintas de forma independiente.
En verde, se representan las subdivisiones del conjunto de datos que se utilizan
para el entrenamiento en cada uno de los entrenamientos independientes. En rojo,
se representan las subdivisiones del conjunto utilizadas como test para cada uno de los
5 entrenamientos independientes.

En la Tabla B.1 se exponen los resultados de la validacion cruzada realizada sobre los
datos de entrenamiento. Como se puede observar, los resultados son muy homogéneos
entre subdivisiones (splits, en inglés). Ademads, la estimacién de la mascara del objeto
(segmentation loss) produce un error menor que en el caso de la estimacién de los

vértices (vertex loss).

Train
Precision % | Recall % | Seg. Loss % | Ver. Loss %
Split 1 | 99,955 99,978 | 0,008583 0,075
Split 2 | 99,964 99.978 | 0,008779 0,102
Split 3 | 99,957 99,983 0,008812 0,087
Split 4 | 99,959 99,981 0,008 0,071
Split 5 | 99,959 99,983 0,008213 0,089

Tabla B.1: Resultados de la validacion cruzada en los datos de entrenamiento para los
5 entrenamientos realizados.

En la Tabla B.2 se exponen los resultados de la validacion cruzada sobre los datos
de test. Como se puede observar, los resultados son muy homogéneos, y con valores
muy similares a los datos de entrenamiento. Por tanto, se puede afirmar que no se ha
producido sobreestimacién con el primer entrenamiento realizado, ya que los resultados
para el entrenamiento y el test son muy similares. En el caso del test, la estimacion de
los vértices (vertex loss) es algo peor que en el caso de entrenamiento, pero los valores
se pueden considerar aceptables, con un error por debajo del 0,5 %.

Por 1ltimo, se han calculado los errores en la estimacion de la traslacién y la rotacion

del higado, conforme a la métrica expuesta en el Anexo C. En la Tabla B.3 se exponen
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Test
Precision % | Recall % | Seg. Loss % | Ver. Loss %
Split 1 | 99,96 99,977 0,008748 0,237
Split 2 | 99,961 99,98 0,008333 0,275
Split 3 | 99,958 99,98 0,008687 0,236
Split 4 | 99,959 99,98 0,008271 0,255
Split 5 | 99,959 99,979 0,008409 0,24

Tabla B.2: Resultados de la validacién cruzada en los datos de test para los 5

entrenamientos realizados.

los resultados en traslacién y rotacién del sistema de referencia calculado con respecto a
la pose verdadera. Para obtener estos resultados, se ha calculado la media y la varianza
de la traslacion y la rotacion para los datos del test, una vez obtenida la funcién de
estimacion en el entrenamiento. Como se puede observar para los 5 entrenamientos, los
datos en traslacién y rotacion son muy homogéneos, aunque se estima con mas precision

la traslacién que la rotacién, donde el error es considerable (25 ©) pero mejorable con

entrenamientos posteriores, como los que se realizan en la Seccion 3.2.

Pose estimation

dRMs(Cm) QRMs(O) dSZ 052
Split 1 | 0,16822 25,8429 | 0,02679 | 631,15905
Split 2 | 0,49979 26,73338 | 0,24598 | 677,71824
Split 3 | 0,20582 23,00947 | 0,04108 | 503,86028
Split 4 | 0,15595 23,05769 | 0,02306 | 504,34913
Split 5 | 0,13877 22,61551 | 0,01837 | 487,83626

Tabla B.3: Resultados de la validacion cruzada en la estimacion de la pose para los 5

entrenamientos realizados.

En conclusién, tras realizar la validacion cruzada del modelo se puede afirmar que
no se ha producido un sobreentrenamiento, y que el conjunto de datos elaborado para

el primer entrenamiento es correcto y véalido para entrenar a la red neuronal.
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Anexo C

Métrica de evaluacion de la red
neuronal

Se ha creado una nueva métrica para la evaluacion de las estimaciones de pose
realizadas por la red neuronal, comparando el error en la estimacion de las poses
predichas con la red neuronal con respecto a las poses de referencia contenidas en
el conjunto de datos.

Se ha creado una métrica para la traslacién y otra para la rotacion. No se han
considerado las métricas de estimacién de pose que utiliza la red PVNet, puesto que
esta nueva métrica aporta una mayor informacién, y se puede detectar con més facilidad

dénde falla la red, asi como el origen de los errores.

C.1. Meétrica de la traslacion

Para cuantificar el error de la traslacion en la pose obtenida por la red, se calcula
la distancia euclidea (en centimetros) del vector que une los dos origenes de los dos
sistemas de referencia (pose estimada y pose de referencia). Siendo ©To, la pose
obtenida a partir de la red neuronal, y “To, la pose verdadera para una posicién

determinada del higado:

CTO L= (Rn,(3x3) pn,(1x3))

’ O(3x1) 1 (1)
CTO _ Rr,(3x3) Pr,(1x3)
a O(3x1) 1

Donde R, y R, representan las matrices de rotacion de la pose obtenida a partir
de la red neuronal y de la pose verdadera, respectivamente, de dimensiones 3x3. p, ¥
pr representan el vector de traslacion de la pose obtenida con la red neuronal y de la

verdadera pose, respectivamente, de dimensiones 3x1.
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Los vectores de traslacién estan formados por las tres componentes XYZ que

determinan su posicién en el espacio:

Pn = | Yn

Pr= | Yr

Por tanto, la distancia euclidea entre los dos sistemas de referencia, conocidas las

componentes XYZ de cada uno de ellos sera:

dp =\ (@0 — )% + (Yo — ¥r)? + (20 — 2,)? (C.3)

C.2. Meétrica de la rotacion

La métrica elegida para la estimacion del error en la rotacion es el célculo del dngulo
(en grados) que forman los dos sistemas de referencia. Para ello, hay que calcular el
producto escalar de las matrices de rotacién de la pose estimada por la red y de la pose
verdadera, respectivamente. En el caso de dos matrices, el producto escalar se define

CO1mo:

R, -R; = tr(RI R;) (C.4)

Partiendo de la definicion de producto escalar y de C.4, se puede obtener el angulo

que forman dos sistemas de referencia 6, como:

(C.5)

tr(Ry Ry) — 1
6, = arccos < riRy Ry )

2

C.3. Media y varianza de los resultados

Lo expuesto en las secciones anteriores corresponde a la comparacién uno a uno de
las distintas poses estimadas con la red con respecto a las poses verdaderas. Para poder
tener una vision general de las estimaciones de pose realizadas en el test, es necesario
calcular la media y la varianza del conjunto de errores.

La media cuadratica para la traslacién dgys v para la rotacién Ogys se definen

CO1mo:
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LN
dryms = N Z dy,;
=1

| X
Orms = \ N;%

Donde N es el nimero de muestras, d,; el error en la traslacién para cada una de
las poses, y 6, el error en la rotacién para cada una de las poses. En este caso, serd el

20 % de todas las muestras que contiene el conjunto de datos, y que se han asignado
al test.

La varianza para la traslacién d,» y para la rotacion 6,2 se definen como:

Donde d, es la media aritmética del error en la traslacion para todas las muestras,

y 0, es la media aritmética del error en la rotacién para todas las muestras.
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